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ABSTRACT A compact wearable symmetrical e-slots antenna operated at 2.4 GHz was proposed for

Medical Body Area Network applications. The design was printed onto a highly flexible fabric material. The

final design topologywas achieved by the integration of symmetrical e-slots antennawith an Electromagnetic

Band-Gap (EBG) andDefectedGround Structure (DGS). The use of EBGwas to isolate the body and antenna

from each other whereas the DGS widened the bandwidth. This combination forms a novel and compact

structure that broadens bandwidth. This broadened bandwidth makes the structure robust to deformation

and loading in the human body. The design achieved a measured impedance bandwidth of 32.08 %, a gain

of 6.45 dBi, a Front to Back Ration (FBR) of 15.8 dB, an efficiency of 72.3% and a SAR reduction of more

than 90%. Hence, the integration of symmetrical e-slots antenna with EBG and etched DGS is a promising

candidate for body-worn devices.

INDEX TERMS AMC, EBG,metasurface, metamaterial, medical body-area network, SAR, textile antennas,

wearable textile.

I. INTRODUCTION

Nowadays, the requirements of wearable devices in the ICT

arena for in-body, off-body, and on-body applications; the

Internet of Things, and Wireless Sensor Networks has drawn

great concern. Wearable antennas are an essential part of

these devices. They are broadly utilized in several appli-

cations, such as health-care, sport monitoring, emergency

search, physical training, and the military [1]–[5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chan Hwang See .

An essential merit of these antennas is that they required

to operate on the human body, making them face more chal-

lenges than a traditional antenna. One of the main challenges

facing the implementation of wearable antennas is the stable

performance of the human body [6], [7].

Unlike traditional antennas, which are generally posi-

tioned in free space, wearable antennas are located near

human tissues under various deformation conditions. These

tissues have a highly dielectric nature, effecting antenna

performance parameters such as reflection coefficient (S11),

bandwidth, gain (dBi), and radiation characteristics [8], [9].
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Furthermore, electromagnetic radiation from these antenna

needs a Specific Absorption Rate (SAR) level that is within

the health and safety limit set by the European Union (EU) of

over 10 g and the United States (US) of over 1 g [8], [9].

In order to rectify these problems, EBG structures were

introduced to wearable antenna designs to provide a high

degree of isolation from the human body [10]. As a result,

electromagnetic coupling was alleviated compared to tra-

ditional antennas. The SAR level was also dramatically

decreased to comply with standards set by ICNIRP and

FCC [11] [12]. On the other hand, these structures are

either too thick for Medical Body Area Network (MBAN)

applications [13]–[19], utilize semi-flexible materials that

are not sufficiently deformable and are uncomfortable for

users [20], [21] or suffer from low FBR [13], [14], [21]–[26].

Furthermore, most EBG designs suffer from narrow band-

width [13]–[16], [20]–[25], [27], [28] causing frequency

shifts that are sensitive in the vicinity of the human body and

during deformation. In order to reduce frequency shift sensi-

tivity during body load and deformation, a large bandwidth

is required. Frequency shifts will not have much impact with

a large bandwidth, since the desired band would still remain

within a −10 dB bandwidth. Furthermore, high-bandwidth

is also needed for high data rates and short-range indoor

communications [29].

Therefore, to overcome the problem of narrow bandwidth

in EBG antenna design, a novel Defected Ground Structure

(DGS) was etched on the back of EBG array, disturbing

the current distribution in the ground plane. As a result,

the bandwidth is widened, which reduces sensitivity to fre-

quency detuning due to load or deformation on the human

body. Furthermore, the proposed design has a small volume

and provides reasonable gain. In addition, the combination

of EBG-DGS is significantly different from previously pro-

posed EBG ground plane backed antennas because it enables

a large bandwidth [13]–[16], [20]–[25], [27], [28] and its

antenna is compact and superior in performance.

This paper is arranged as follows: Section II discusses

the antenna, EBG and DGS designs using CST Microwave

Studio software [30]. Section III covers the integration of the

antenna alone and over 2 × 2 EBG with and without etched

DGS in free space. The effects of bending when the antenna

over 2 × 2 EBG with etched DGS is also investigated in

this section. Section IV considers the behavior of the antenna

alone and with artificial structures when loaded on chests

and arms as well as on volunteer males. SAR studies were

also performed in this section. Section V concludes with the

performance of the proposed design.

II. ANTENNA, EBG AND DGS DESIGNS

A. ANTENNA DESIGN

The antenna is constructed on a fabric jeans substrate with

a permittivity of 1.7 and a thickness of 0.7 mm. This fabric

is selected due to its lightweight and flexibility. The radi-

ating elements are made from ShielditTM material with a

thickness of 0.17 mm. A Cutter Printer (CAMEO) is used

to cut the conducting materials. A novel monopole antenna

based on symmetrical e-slots etched on the radiation patch

is proposed. The evaluation process of the design is depicted

in Fig.1. The substrate is fixed at a width of 20 mm and a

length of 30 mm to fit the growth of wearable devices. The

ground was fixed at 8.75 mm for all evaluation processes.

The impact of introducing e-slots diverted current distribution

and enlarged the effective current path length [31]. Hence,

the resonant frequency shifted from a higher band to the

desired band as presented in Fig.2.

FIGURE 1. Proposed design processes: (a) Conventional Patch; (b) slot
antenna; (c) e-slot antenna; (d) Final proposed antenna (symmetrical
e-slots antenna); and (e) ground plane of all design processes. All
dimensions are in mm.

The physical layer of the proposed antenna is modelled as

an equivalent circuit based on lumped element components.

Generally, conventional monopole antenna is modelled as

a simple parallel RLC resonant circuit based on the cavity

model revealed in Fig.3 (a). The values of the components R,

L, and Cwere determined by the conventional formulae given

in [31], [32].

The adjustable symmetrical e-slots presented on the radi-

ating element were the key parameter that controlled S11.

They altered the current distribution. Hence, two currents

flow through the radiating element; one is a normal cur-

rent that flows in any traditional radiating patch and the

other is a meandering current around the e-slots, which
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FIGURE 2. S11 based on the evaluation process.

FIGURE 3. Equivalent circuits for: (a) Conventional Patch and (b)
Proposed design.

increases the current paths. Therefore, the resonant frequency

shifted to a lower band. Each e-slot was modelled as an

extra series of inductances and capacitances to the equivalent

circuit of the conventional monopole antenna as presented

in Fig.3 (b).

The equivalent circuit of the proposed antenna is simu-

lated and optimized using Advanced Design System (ADS)

software. The S11 of the equivalent circuit is in line

with the result from CST of the physical insight of the

monopole antenna based on symmetrical e-slots as revealed

in Fig.4. The results from both software were found in close

agreement.

FIGURE 4. Comparison of S11 physical layer and equivalent circuit.

B. EBG DESIGN

The presence of vias in EBG designs for wearable applica-

tions could be uncomfortable. It also increases the complexity

of fabrication [17]. Therefore, vials EBG s is chosen as shown

in Fig.5 (a). However, removing via increases structure size

because of decreases in effective inductance. Thus, effective

inductance should be increased without additional design

complexity. Hence, a slot is introduced in the conventional

square with dimensions of 22.60 x 22.60 mm2 as displayed

in Fig.5 (b) to form a square loop. This square loop simplifies

the fabrication process of this proposed design.

FIGURE 5. EBG unit cell: (a) Conventional square patch; (b) Square loop;
and (c) Equivalent circuit model of (b). All dimensions are in mm.

The operational mechanism of the square loop EBG unit

cell was clarified by the lumped LC equivalent circuit as

shown in Fig.5(c). The capacitance of the surface comes

from gaps between adjacent patches and between loops

while inductance comes from the loop of the metallic patch.
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The values for inductance and capacitance were determined

by the following formulas [24], [17]:
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whereW is width of conductive material and g is the gap size

between the two adjacent unit-cells.

Ld = µ0h (3)

Fig.6 shows a comparison between the square patch with

and without a slot of the same dimension. It appears that the

square patch and the square loop have a zero-degree resonant

frequency at 3.88 GHz and 2.4 GHz, respectively. This proves

that by introducing the slot, the effective inductance increased

and the volume decreased. Furthermore, the equivalent circuit

for the square loop was modelled and optimized by ADS

software. It can be seen from Fig.6 that the square loop

(physical layer) and equivalent circuit were in agreement.

FIGURE 6. Reflection phase of EBG unit cell.

C. DGS DESIGN

A novel DGS is printed on the same substrate of EBG. The

structure is etched on the ground and its characteristics are

analyzed using microstrip line on the top of the substrate as

displayed in Fig.7. The difference between the conventional

dumbbell-shaped DGS [33] and the proposed DGS is that the

dumbbell-shape consists of two rectangular slots connected

by a slot gap, while the proposed DGS consists of a rectan-

gular slot with five branches, which strongly divert current

distribution in the ground plane as displayed in Fig.7 (c) and

reduce the Q factor to widen bandwidth [34].

The equivalent circuit of the proposed DGS structure is

simplified as a parallel LC resonator as depicted in Fig.8,

where the inductance is controlled using etched area size

FIGURE 7. Proposed DGS structure; (a) front view; (b) Back view; and
(c) Surface current (1-5 indicate slot order). All dimensions are in mm.

FIGURE 8. Equivalent circuit for the proposed DGS structure.

while capacitance was controlled by the distance between the

branch slots. Hence, the etched area is inversely proportional

to capacitance and proportional to inductance. As the etched

area was increased inductance increased, therefore, lowering

the cut-off frequency.

The series reactance value of the equivalent circuit is deter-

mined using the prototype element value of the one-pole

Butterworth response, which is given in several refer-

ences [35], [36]. The parallel capacitance value was extracted

using attenuation pole location [34]. Finally, Equation (4)

and (5) [34] are used to calculate the capacitance and induc-

tance values to fulfil the demands of the Butterworth low-pass

response.

C =
ωc

Z0g1
.

1

ω2
0 − ω2

c

(4)

L =
1

4π2f 20 C
(5)

where ωc and ω0 is the cutoff and resonance frequen-

cies, respectively, and g1 is the prototype value of the

Butterworth-type low-pass filter.

The characteristic responses of the proposed DGS are

based on the Full-Wave Simulator (CST), ADS, and the

measurement presented in Fig.9. It showed that the simulated

results have discrepancies compared to the measured result.

These discrepancies may due to the fabrication tolerance and

measuring environment.

III. PERFORMANCE OF THE ANTENNA OVER EBG AND

EBG-DGS IN FREE SPACE

The proposed monopole antenna is based on symmetri-

cal e-slots antenna positioned over 2 × 2 EBG with and
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FIGURE 9. S21 of proposed DGS structure.

without DGS structure etching on the EBG ground. The

overall dimensions were 60×60 × 2.4 mm3. A foam 1 mm

thick is used as an isolation between the proposed monopole

antenna and the EBG structures to avoid short circuits and

alleviate mismatches. The characteristics of the foam were

εr = 1.05 and δ = 0.0003.

A. ANTENNA OVER 2 × 2 EBG WITH AND WITHOUT

ETCHED DGS ARRAYS

Modern wearable systems require a compact design and

broad bandwidth to avoid sensitivity to resonant frequen-

cies from deformation and loading on the human body.

Therefore, DGS and EBG are introduced in this paper to

broaden bandwidth and to act as isolation between the body

and antenna, respectively. These two methods are integrated

with the antenna to form a compact and robust design that

complies with advances in technology.

Placing an antenna on EBG array will detune the resonant

frequency [7] because of mutual impedance coupling. Hence

the dimension of the antenna is optimized to resonate at

2.4 GHz. Furthermore, introducing DGS to the ground of

EBG also detuned S11 due to changes in the current dis-

tribution that led to variations in distributed inductance and

capacitance. This changed EBG characteristics, requiring the

EBG to be optimized to resonate at the desired frequency.

The updated antenna and EBG dimensions is depicted in

Fig. 10(a). The contribution of each DGS slot branch to

bandwidth widening is displayed in Fig.11.

The S-parameters of the antenna alone and over 2×2 EBG

array with and without etched DGS are presented in Fig.12.

It is seen that the antenna over the 2×2 EBG arraywith etched

DGS have a better reflection coefficient and bandwidth than

the antenna alone and antenna over a 2 × 2 EBG array. This

could due to that the novel DGS disturbing current distribu-

tion in the ground plane. In addition, it could also due to a

decrease in the surface wave excitation. As the surface wave

excitation is alleviated, the Q factor and the stored energy is

reduced, which results in bandwidth improvement [34]. This

wider bandwidth is useful in wearable antennas because it

ensures that the desired frequency band is covered even if

FIGURE 10. (a) Integrated proposed antenna: EBG-DGS; (b) Prototype
front view; and (c) Prototype back view.

FIGURE 11. Influence of each slot branch on bandwidth.

there is shift due to deformation and loading on the human

body.

The measured S-parameters of the antenna alone and

antenna over 2 × 2 EBG with etched DGS is illustrated

in Fig.12. It can be observed that the measured results agree

with the simulated results with slight discrepancies that could

due to fabrication or soldering errors.

Fig. 13 presents the simulated radiation patterns of the

antenna alone and over a 2 × 2 EBG array with and without
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FIGURE 12. Simulated and measured S11 of the antenna with and
without EBG-DGS.

FIGURE 13. Radiation pattern of the antenna alone and over 2 × 2 EBG
with and without etched DGS (a) E-plane and (b) H-plane.

etched DGS on the E-plane and H-plane. The results illustrate

that the symmetrical e-slots antenna had the maximum num-

ber of radiation points along ±z-direction in its E-plane, and

an omnidirectional pattern in its H-plane, indicating major

backwards radiation. However, placing the antenna over a

2 × 2 EBG array with and without etched DGS directed

maximum radiation to the positive z-direction. The simulated

results illustrate that the antenna over a 2 × 2 EBG array

improved the FBR by 7 dB and by introducing DGS on the

back of EBG FRB further improved from 7 dB to 15.8 dB.

The radiation pattern of the antenna over a 2 × 2 EBG array

with etched DGS was verified as depicted in Fig.13. The

measured results agreed with the simulated results with slight

discrepancies that could due to cable, connector, or fabrica-

tion errors. Furthermore, the incorporated antenna-EBG with

etched DGS has revealed an efficiency of 72.3%.

B. IMPACTS OF DEFORMATION ON DESIGN

PERFORMANCE

The above analysis of free space shows that the integrated

symmetric e-slots antenna on a 2× 2 EBG array with etched

DGS had better performance, especially the widen of the

bandwidth. Therefore, a further investigation is conducted

to evaluate the proposed design when deform and loaded on

body.

The deformation is conducted to demonstrate its ability to

withstand a certain amount of structural bending. Therefore,

the proposed integrated design was experimentally validated

with several degrees of bending to ensure its conformability

before loading onto a human body curvature. The design is

measured under four bending scenarios. It was bent around a

foam cylinder with a diameter (d) of 70mm, 80mm, 100mm,

140 mm along a y-axis, x-axis, y+45◦ axis, and y-45◦ axis as

depicted in Fig.14. These four scenarios gave a clear image

of the effect of bending on the design. The diameters are

carefully chosen to mimic chest and arm sizes in the human

body.

FIGURE 14. Bending orientations: (a) y-axis; (b) x-axis; (c) y+45◦ axis;
and (d) y-45◦ axis.

Fig. 15(a)-(d) provides the S11 measurement results of

the four scenarios. It is seen that the −10-dB impedance

bandwidth of 2.4 GHz is maintained in all cases of varying

diameters, even at extreme degree of bending d = 70 mm.

FIGURE 15. Performance of the design under bending scenarios;
(a) y-axis; (b) x-axis; (c) y+45◦ axis; and (d) y-45◦ axis.
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The frequency shifts do not have much impact, due as the

wide bandwidth still covered the desired band. Furthermore,

bending along y±45◦ has a greater effect than along the

y-axis and x-axis, but still maintained the −10 bandwidth at

the desired band. These effects could due to bending along

the branch slots that disturbed the surface current. Hence,

antenna characteristicsmay change due to variations in induc-

tance and capacitance. This investigation demonstrates that

the design is highly conformable and is a good candidate for

body-worn devices.

Fig. 16 gives the measured normalized radiation patterns

of the antenna over a 2 × 2 EBG array with etched DGS

under different bending scenarios. These measurements are

carried out along a diameter of 140 mm in four bend-

ing scenarios. The design was fixed onto foam using tape.

The results revealed that the radiation pattern almost main-

tained the same shape as the normal scenario (flat) with a

reduction in FBR. This reduction was significant for bend-

ing along y±45◦ due to the effect of branch slots being

disturbed, which effected the surface current and radiation

pattern. This trend was also realized for the s-parameters.

Overall, the design is durable to structural bending in all

scenarios.

FIGURE 16. Radiation patterns under bending four scenarios at
d=140 mm.

IV. ANTENNA PERFORMANCE ON BODY

The next investigation of the presented wearable symmetrical

e-slots antenna design is to evaluate its performance when

loaded onto the human body. Numerical studies are con-

ducted using CST. A multi-layer model tissue is developed

to mimic the human body. The chest is mimicked by a cuboid

of 150 ×150 ×40 mm3 [24], [25] whereas the arm was

mimicked by a cylindrical with a diameter of 80 mm and

a length of 150 mm as seen in Fig.17 [20]. Each model

had four layers with a typical thickness, permittivity, density,

conductivity, and mass as tabulated in Table 1 [20], [24]. The

chest and arm are chosen to represent normal and deformed

cases, respectively.

FIGURE 17. Position of the proposed design on the human model: (a) on
chest; (b) on arm along y-axis; and (c) on arm along x-axis.

TABLE 1. Properties of multilayer body tissues [20], [24].

A. PLACED ON CHEST (NORMAL SCENARIO)

The symmetrical e-slots antenna alone and over a 2 × 2

EBG array with etched DGS are positioned on the chest

model (normal scenario) to evaluate their performance.

Fig.18 shows the simulated result. It can be seen that the

S11 of the symmetrical e-slots antenna did not operate in the

normal scenario at 2.4 GHz and moved to a lower frequency

of 1.4 GHz. Nevertheless, placing antenna over a 2× 2 EBG

arraywith etchedDGS reduced frequency detuning compared

to the antenna alone. The desired frequency was still within

the −10 dB bandwidth.

FIGURE 18. Design performance on chest model.

B. PLACED ON ARM (DEFORMED SCENARIO)

In this subsection, the impacts of deformation on the arm

model was investigated. The designs were placed along the

x-axis and y-axis. Fig.19 provides the simulated results. It can

56352 VOLUME 8, 2020



A. Y. I. Ashyap et al.: Robust and Efficient Integrated Antenna With EBG-DGS Enabled Wide Bandwidth

FIGURE 19. Design performance on the arm model (a) y-axis and
(b) x-axis.

be seen that the symmetrical e-slots antenna had almost the

same effect on both planes. S11 resonated at lower frequencies

of 1.795 GHz and 1.756 GHz along the y-axis and x-axis

respectively. Nonetheless, placing the antenna on a 2 × 2

EBG array with etched DGS alleviated shifts in S11 compared

to the antenna alone. However, even there is a shift in the

resonant frequency, but due to wide bandwidth the desired

band still covered along both axes.

It be can concluded that resonant frequency in all cases

was affected by the highly dielectric nature of human body

tissues, but introducing EBG with etched DGS has reduced

affect. This is due to EBG acting as insolation between the

antenna and body, while etching DGS had broadened the

design bandwidth, making the design more sustainable on

all body curvatures. Hence, antenna over 2 × 2 EBG array

with etched DGS structure is a good candidate for body-worn

systems.

C. RADIATION PATTERN PERFORMANCE ON BODY

A full-wave simulation was conducted to assess the radia-

tion pattern of symmetrical e-slots antenna alone and over a

2 × 2 EBG array with etched DGS. The assessment is based

on a normal case (chest) and bend cases along the x-axis

and y-axis (arm). Fig.20 provides the result of these cases.

When the antenna was without EBG-DGS, it observed that

the radiation is significantly affected and became more direc-

tive. FBR increased, indicating that the body absorbed power

by around 9 dB. As a result, all radiated powers become

very weak. However, placing antenna over 2 × 2 EBG array

with etched DGS revealed more stable radiation patterns.

FIGURE 20. Radiation performance on body: (a) Antenna alone; (b); and
(b) Antenna over 2 × 2 EBG with etched DGS.

The results also show comparable radiation pattern between

free space and body loading. Overall, the increment of FBR

when loaded on the body, especially when the antenna was

alone, is due to the high permittivity of the body compared to

the substrate antenna material.

D. EXPERIMENTAL RESULT ON REAL HUMAN BODY

The proposed antenna over 2×2 EBG array with etched DGS

was validated on different parts of a real male volunteer. The

volunteer had a weight of 78 kg and a height of 160 cm. The

design was positioned directly on the arm along the y-axis

and x-axis, on the chest and back, and on jeans on the leg and

thigh as seen in Fig. 21.

FIGURE 21. Position of antenna with EBG-DGS at several parts of real
male volunteer: (a) chest; (b) thigh; (c) arm-Y; and (d) arm-X.

In order to show the usefulness of introducing EBG-DGS,

the comparison results of the antenna with and without EBG

etched DGSwhen placed on a body and in free space are plot-

ted in Fig. 22. It observed that the symmetrical e-slots antenna

placed at several positions on the volunteer did not operate

at the desired frequency of 2.4 GHz as seen in Fig.22 (a).

The antenna tended to operate at lower frequencies due to

the highly dielectric nature of human tissue. While Fig.22 (b)

provides the measured results for the antenna over a 2 × 2

EBG array with etched DGS. It can be seen that the −10 dB

bandwidth covered the desired frequency of 2.4 GHz. The

slight shifted of S11 has no impact on the design due to its

wide bandwidth. The bandwidth range is not greatly affected
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FIGURE 22. Performance of the proposed design on several parts of a
volunteer male: (a) antenna alone and (b) antenna with EBG-DGS.

TABLE 2. SAR evaluation of antenna without metasurface (unit: W/kg).

and was similar to the free space measurements. The intro-

duced EBG-DGS shows the usefulness of isolating antenna

from the human body and widening bandwidth.

E. SAR EVALUATION

The safety evaluation of the symmetrical e-slots antenna over

a 2× 2 EBG array with etched DGS operating over a human

body was carried out to ensure that the SAR level comply

the safety limits. The evaluation is based on the regulatory

standards given by the FCC and ICNIRP of a maximum level

of 1.6 W/kg for an average of more than 1 gram of tissue and

2 W/kg for an average of more than 10 grams of tissue. The

same models used to evaluate the performance of the design

in section IV were used for SAR assessment.

In this study, the IEEE C95.1 standard provided in CST

was used for SAR assessment at 2.4 GHz with an input power

of 100 mW. The design was evaluated at several distances

(2, 4, 6, and 8 mm) from the model under both a normal

scenario (chest) and bent scenario (arm) along the x-axis and

TABLE 3. SAR evaluation of antenna with metasurface (unit: W/kg).

y-axis. The results are presented in Table 2 and Table 3 for

the antenna alone and antenna over EBG with etched DGS,

respectively. The result revealed that when the antenna is

alone SAR values do not comply with the standards even

when the design is placed 8 mm away from the model.

However, adding EBG with etched DGS to the antenna

brought SAR values far below the safe level of 1.6 W/kg

under the FCC average and 2W/kg under the ICNIRP average

even when the design is placed 2 mm away from the model.

It was seen that as the design was placed further from the

model, the SAR values dramatically decreased. Overall, the

EBG with etched DGS reduced SAR by more than 90%.

Fig.23 reveals the SAR values 4 mm away from the model

over 1 g average tissue. Unfortunately, due to the unavailabil-

ity of the SARmeasurement equipment, the simulated results

could not be compared with the measurement results.

FIGURE 23. SAR levels 4 mm away from the skin over 1 g average:
(a) Chest; (b) Bent along y-axis; and (c) Bent along x-axis.

V. CONCLUSION

A wearable symmetrical e-slots antenna over a 2 × 2 EBG

array with etched DGS was proposed to operate at 2.4 GHz

forMedical BodyAreaNetwork applications. The designwas

numerically and experimentally tested over free space and on

the human body. A comparison between the antenna alone

and over 2×2 EBG arrays with and without etched DGS was

carried out. Generally, the results revealed that 2 × 2 EBG

with etched DGS had better performance through an increase

of bandwidth from 2.09 to 2.86 GHz (32.08%). This widened
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TABLE 4. Comparison of reported flexible/wearable designs with proposed design.

bandwidth made the design highly conformal and robust to

deformation and human body loading over antenna with and

without 2 × 2 EBG, which showed frequency attenuation

and detuning when bent around an arm along the x-axis and

y-axis. The etched DGS on EBG ground also showed an

improvement of FBR of 15.8 dB, efficiency of 72.3%, and

gain of 6.45 dB, respectively. In addition, the etched DGS in

EBG ground alleviated SAR by more than 90% compared to

symmetrical e-slots antennas alone. Furthermore, the numer-

ical simulation of radiation patterns on the body were greatly

affected when the antenna was alone and slightly affected

when the antenna was over 2 × 2 EBG with etched DGS

compared to free space. Based on this achievement, the pro-

posed symmetrical e-slots antenna over 2 × 2 EBG array

with etched DGS is a strong potential candidate for wearable

medical applications. Finally, the integration of antenna with

EBG-DGS demonstrates a compact fabric design, better FBR,

acceptable gain, and wider bandwidth compared to most

recently reported configurations listed in Table 4, which are

intended for wearable applications.
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