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Abstract. This paper studies the subspace segmentation problem which aims to
segment data drawn from a union of multiple linear subspaces. Recent works by
using sparse representation, low rank representation and their extensions attract
much attention. If the subspaces from which the data drawn are independent or
orthogonal, they are able to obtain a block diagonal affinity matrix, which usu-
ally leads to a correct segmentation. The main differences among them are their
objective functions. We theoretically show that if the objective function satisfies
some conditions, and the data are sufficiently drawn from independent subspaces,
the obtained affinity matrix is always block diagonal. Furthermore, the data sam-
pling can be insufficient if the subspaces are orthogonal. Some existing methods
are all special cases. Then we present the Least Squares Regression (LSR) method
for subspace segmentation. It takes advantage of data correlation, which is com-
mon in real data. LSR encourages a grouping effect which tends to group highly
correlated data together. Experimental results on the Hopkins 155 database and
Extended Yale Database B show that our method significantly outperforms state-
of-the-art methods. Beyond segmentation accuracy, all experiments demonstrate
that LSR is much more efficient.

1 Introduction

Subspace segmentation is an important clustering problem which attracts much
attention in recent years. It arises in numerous applications in machine learning and
computer vision literature, e.g. image representation [1], clustering [2] and motion seg-
mentation [3] [4]. Given a set of data drawn from a union of subspaces, the goal of
subspace segmentation is to segment (cluster or group) data into clusters with each
cluster corresponding to a subspace. This problem is formally defined as follow:

Definition 1. (Subspace Segmentation) Given a set of data vectors X = [X1, · · · ,
Xk] = [x1, · · · , xn] ∈ R

d×n drawn from a union of k subspaces {Si}ki=1. Let Xi ba a
collection of ni data vectors drawn from the subspace Si, n =

∑k
i=1 ni. The task is to

segment the data according to the underlying subspaces they are drawn from.
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1.1 Prior Works

During the past two decades, a number of subspace segmentation methods have been
proposed. According to their mechanisms of representing the subspaces, existing works
can be roughly divided into four categories: algebraic methods [5] [6], iterative methods
[7] [8], statistical methods [9] [10] and spectral clustering-based methods [11] [12] [13]
[14]. A review of these methods can be found in [15]. In this work, we review four most
recent and related methods: Sparse Subspace Clustering (SSC) [11] [16], Low-Rank
Representation (LRR) [12] [17] and their extensions [13] [14].

SSC and LRR are two spectral clustering-based methods. A main challenge in ap-
plying spectral clustering to subspace segmentation is to define a ”good” affinity matrix
(or graph) Z ∈ R

n×n. Each entry Zij measures the similarity between data points xi

and xj . Ideally, the affinity matrix should be block diagonal, the between-cluster affini-
ties are all zeros. Then it is easy to segment data on such well defined graph by spectral
clustering. Typical choice for the measure of similarity is Zij = exp(−||xi − xj ||/σ),
σ > 0. However, this method is not able to characterize the structure of data from sub-
spaces, and the affinity matrix is also not block diagonal. SSC and LRR provide a new
way to construct the affinity matrix. They express each data point xi as a linear com-
bination of all other data xi =

∑
j �=i Zijxj , and use the representational coefficient

(|Zij |+ |Zji|)/2 to measure the similarity between xi and xj . The difference between
SSC and LRR lies in the regularization on Z: SSC enforces Z to be sparse while LRR
encourages Z to be of low-rank.

Motivated by the fact that an ideal affinity matrix is block diagonal or sparse, SSC
solves the following sparse representation problem:

min ||Z||0 s.t. X = XZ, diag(Z) = 0, (1)

where ||Z||0 is the �0-norm of Z , i.e. the number of nonzero elements. But such opti-
mization problem is non-convex and NP-hard. Under some condition [18], it is equal to
the following �1-minimization problem:

min ||Z||1 s.t. X = XZ, diag(Z) = 0, (2)

where ||Z||1 denotes the �1-norm of Z , ||Z||1 =
∑n

i=1

∑n
j=1 |Zij |. It has been shown

that when the subspaces are independent 1, the solution to problem (2) is block diagonal.
But this solution does not guarantee to obtain a correct segmentation, since it may be
”too sparse”, which divides the within-cluster data into different groups. If there is a
group of data points among which the pairwise correlations are very high, then sparse
representation tends to select only one, at random [19]. Thus, SSC is not able to capture
the correlation structure of data from the same subspace. Another drawback of SSC is
that it is not efficient for solving the �1-minimization problem (2) for each data point.

LRR aims to take the correlation structure of data into account, it finds a low rank
representation instead of a sparse representation. In the case of noise free data drawn
from linear subspaces, the original LRR solves the following rank minimization
problem:

min rank(Z) s.t. X = XZ, (3)

1 A collection of k subspaces {Si}ki=1 are independent if and only if
∑k

i=1 Si = ⊕k
i=1Si.
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where rank(Z) denotes the rank of Z . The rank minimization problem is also NP-hard,
a common surrogate of rank function is the nuclear norm:

min ||Z||∗ s.t. X = XZ, (4)

where ||Z||∗ is the nuclear norm of Z , i.e. the sum of all the singular values of Z . It
can be shown that when the subspaces are independent, the solution to problem (4) is
unique and block diagonal. The extended LRR model for data with noise is efficient
and effective for subspace segmentation. However, is it really the low rank property of
Z that makes LRR powerful for subspace segmentation? The intuition is not clear. It is
not necessary to require a block diagonal matrix to be of low rank. The following is a
special example based on the problem (3):

Example 1: Let X1 =

[
1 2
0 0

]

and X2 =

[
0 0
1 2

]

are some data points drawn from sub-

spaces S1 and S2, respectively. We assume dim(S1) = dim(S2) = 1, thus S1 and S2

are orthogonal 2, and rank(X1) = rank(X2) = 1. Let X = [X1, X2]. The solutions to
the problem (3) are not unique and one of which is

Z∗ =

⎡

⎢
⎢
⎣

0.5 1 1 2
0.25 0.5 −0.5 −1
1 2 0.5 1

−0.5 −1 0.25 0.5

⎤

⎥
⎥
⎦ (5)

The above example shows that even when the subspaces are orthogonal, the solution
to the original LRR model (3) does not guarantee to be block diagonal, and we are not
able to get the true segmentation from (5). But we will theoretically show that it is easy
to get a block diagonal solution for independent subspaces segmentation and even the
data can be insufficient if the subspaces are orthogonal. Though LRR performs well
by solving the nuclear norm minimization problem (4) which also leads to a solution
with low rank, its superiority may have nothing to do with the rank of the solution. We
may regard the nuclear norm (4) as a new criterion but not a simple surrogate of the rank
function, at least for the subspace segmentation problem. The motivation of LRR comes
from RPCA [20], but one should notice that their physical meanings are very different.
RPCA aims to find a low-rank recovery of the observation X while LRR focuses on the
matrix of representational coefficient.

Luo et al. proposes the Multi-Subspace Representation (MSR) [13] which combines
both criteria of SSC and LRR by solving the following problem:

min ||Z||∗ + δ||Z||1 s.t. X = XZ, diag(Z) = 0. (6)

Another method, namely Subspace Segmentation via Quadratic Programming (SSQP)
[14] is proposed by solving the following problem:

min ||XZ −X ||2F + λ||ZTZ||1 s.t. Z ≥ 0, diag(Z) = 0. (7)

The main differences among the above four methods are their objective functions. All
these methods have a similar property: the solutions obtained by SSC, LRR and MSR

2 The orthogonal subspaces must be independent, but not vice versa.
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are block diagonal when the subspaces are independent, and SSQP requires an orthogo-
nal subspaces assumption. Now a question is raised: what kind of objective function and
data assumption guarantee a block diagonal solution? Furthermore, which will be a bet-
ter choice? We try to answer these questions which are summarized in the contributions
of this paper.

1.2 Paper Contributions

In this work, we first theoretically show that if the objective function satisfies certain
conditions, we are able to get a block diagonal solution based on the independent sub-
spaces assumption. The above four criteria all satisfy these conditions and they are all
special cases. If the sampling data are not sufficient, we further require the subspaces
to be orthogonal. Second, as a new special case, we present the Least Squares Regres-
sion (LSR) model for subspace segmentation. The grouping effect of LSR help it group
highly correlated data together. We further show that LSR is robust to a bounded dis-
turbance, and is very efficient due to a closed form solution. At last, we experimentally
show that LSR is more effective and efficient than SSC and LRR on the Hopkins 155
database and Extended Yale Database B.

2 Theoretical Analysis

For the ease of exploration, we assume the data are noise free in this section. SSC, LRR,
MSR and SSQP use different criteria to control the within-cluster and between-cluster
affinities. Under certain data assumption (independent or orthogonal), a block diagonal
solution is obtained for true segmentation. A natural question is raised: what kind of
criterion owns such property? We first consider a simple situation by using a basis of
subspaces as dictionary.

Theorem 1. Assume the subspaces {Si}ki=1 are independent, Bi is a matrix whose
columns consist of a basis of the subspace Si, B = [B1, · · · , Bk], and Xi is a matrix
whose columns consist of some vectors from Si, X = [X1, · · · , Xk]. The solution Z∗

to the following system
X = BZ (8)

is unique and block diagonal.

Proof. We only need to prove that, for any data point y ∈ Si, y �= 0, there exists a
unique z, y = Bz, where z = [zT1 , · · · , zTk ]T , with zi �= 0 and zj = 0 for all j �= i.
Since the subspaces are independent, there exists a unique decomposition of y:

y = 0 + · · ·+ y + · · ·+ 0

= B1z1 + · · ·+Bizi + · · ·+Bkzk,

where Bizi ∈ Si, i = 1, · · · , k. Thus, Bizi = y and Bjzj = 0 for all j �= i. Consider-
ing Bi is a basis of Si, we have zi �= 0, zi is unique, and zj = 0 for all j �= i.

From Theorem 1, we can learn a basis of X and use it as the dictionary. If the
subspaces are independent, it is very easy to get a true segmentation by solving problem
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(8). But this model cannot be directly extended for handling the data with noise which
destroys the subspace structures. We consider a similar but more general model as the
existing methods as follow:

min f(Z) s.t. Z ∈ Ω = {Z|X = XZ}, (9)

where f(Z) is a matrix function. We show that the solution to problem (9) is block
diagonal if f(Z) satisfies the following Enforced Block Diagonal (EBD) conditions:

Enforced Block Diagonal Conditions. A function f is defined on Ω(�= ∅) which

is a set of matrices. For any Z =

[
A B
C D

]

∈ Ω, Z �= 0, where A and D are square

matrices, B and C are of compatible dimension, A, D ∈ Ω. Let ZD =

[
A 0
0 D

]

∈ Ω.

We require

(1) f(Z) = f(ZP ), for any permutation matrix P , ZP ∈ Ω.
(2) f(Z) ≥ f(ZD), where the equality holds if and only if B = C = 0 (or Z = ZD).
(3) f(ZD) = f(A) + f(D).

Theorem 2. Assume the data sampling is sufficient 3, and the subspaces are indepen-
dent. If f satisfies the EBD conditions (1)(2), the optimal solution(s) Z∗ to problem (9)
is block diagonal:

Z∗ =

⎡

⎢
⎢
⎢
⎣

Z∗
1 0 · · · 0
0 Z∗

2 · · · 0
...

...
. . .

...
0 0 · · · Z∗

k

⎤

⎥
⎥
⎥
⎦

with Z∗
i ∈ R

ni×ni corresponding to Xi, for each i. Furthermore, if f satisfies the
EBD conditions (1)(2)(3), for each i, Z∗

i is also the optimal solution to the following
problem:

min f(Y ) s.t. Xi = XiY (10)

Proof. First, we still assume the columns ofX are in general position:X = [X1, · · · , Xk],
since f(Z) = f(ZP ), for any permutation P , the objective function is invariant to any
permutation. Let Z∗ be an optimal solution to problem (9), we decompose Z∗ to two
parts Z∗ = ZD + ZC , where

ZD =

⎡

⎢
⎢
⎢
⎣

Z∗
1 0 · · · 0
0 Z∗

2 · · · 0
...

...
. . .

...
0 0 · · · Z∗

k

⎤

⎥
⎥
⎥
⎦
, ZC =

⎡

⎢
⎢
⎢
⎣

0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...
∗ ∗ · · · 0

⎤

⎥
⎥
⎥
⎦
,

with Z∗
i ∈ R

ni×ni . Denote [M ]j as the j-th column of matrix M . Assume [X ]j =
[XZ∗]j ∈ Sl, thus [XZD]j ∈ Sl, [XZC ]j ∈ ⊕i�=lSi. But [XZC ]j = [XZ∗]j −

3 The data sampling is sufficient which makes the problem (9) have a nontrivial solution.
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Table 1. Criteria which satisfy the EBD conditions (1)(2)(3)

f(Z) Ω

SSC ||Z||0 or ||Z||1 {Z|X = XZ, diag(Z) = 0}
LRR ||Z||∗ {Z|X = XZ}
SSQP ||ZTZ||1 {Z|X = XZ,Z ≥ 0, diag(Z) = 0}
MSR ||Z||1 + δ||Z||∗ {Z|X = XZ, diag(Z) = 0}

Other choices
(
∑n

i=1

∑n
j=1 λij |Zij |pij )s {Z|X = XZ, diag(Z) = 0}

λij > 0, pij > 0, s > 0

[XZD]j ∈ Sl, since the subspaces are independent, Sl ∩ ⊕i�=lSi = {0}, so [XZC ]j =
0. Thus XZC = 0, XZD = X , ZD is feasible for problem (9). By the EBD conditions
(2), we have f(Z∗) ≥ f(ZD). Notice Z∗ is optimal, f(Z∗) ≤ f(ZD). Therefore,
f(Z∗) = f(ZD), the equality holds if and only if Z∗ = ZD. Hence, Z∗ is block
diagonal.

If the EBD conditions (3) is further satisfied, we have f(Z∗) =
∑k

i=1 f(Z
∗
i ), X =

XZ∗ = [X1Z
∗
1 , · · · , XkZ

∗
k ], Xi = XiZ

∗
i . Hence, Z∗

i is also the minimizer to problem
(13).

From Theorem 2, it is easy to confirm SSC, LRR, MSR and SSQP are all special
cases (see Table 1) by the following propositions:

Proposition 1. If f satisfies the EBD conditions (1)(2)(3) on Ω, then also on Ω1 ⊂ Ω,
Ω1 �= ∅.

Proposition 2. {fi}mi=1 are a series of functions. For each i, if fi satisfies the EBD
conditions (1)(2)(3) on Ωi, then also

∑m
i=1 λifi, (λi > 0) on ∩m

i=1Ωi(�= ∅).

The independence of subspaces guarantees the separability of data. Theorem 2 shows
that many criteria can utilize such separability for correct segmentation. The minimiza-
tion problem (13) helps us understand the within-cluster affinities which are not studied
before. SSC not only enforces sparsity between-cluster but also within-cluster, which
may lead to a too sparse solution. LRR encourages the within-cluster affinities to be of
low nuclear norm (also low rank). But the physical meaning is unclear by a low rank
graph.

For SSC, both ||Z||0 and ||Z||1 satisfy the EBD conditions (1)(2)(3). ||Z||1 is not
only a good surrogate of ||Z||0 for optimization, but also an independent method for
subspace segmentation. For the rank criterion, rank(Z) does not satisfy the EBD con-
ditions (2), which is the key to enforce sparsity between-cluster. This is also the major
difference between rank(Z) and ||Z||∗. Thus, the original low rank representation (3)
may be far from enough for subspace segmentation. ||Z||∗ has its independent ability
for modeling the data from different subspaces, it is not a simple surrogate of rank(Z)
for subspace segmentation.

Notice SSQP requires the subspaces to be orthogonal for correct segmentation, but
we show the independent subspaces assumption is enough. But the data sampling can
be insufficient if the subspaces are orthogonal:
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Theorem 3. If the subspaces are orthogonal, and f satisfies the EBD conditions (1)(2),
the optimal solution(s) to the following problem:

min ||X −XZ||2,p + λf(Z) (11)

must be block diagonal, where || · ||2,p is defined as ||M ||2,p = (
∑

j(
∑n

i=1 M
2
ij)

p
2 )

1
p ,

p > 0, and λ > 0 is a parameter which balances the effects of two terms.

Notice the error term ||X − XZ||2,p is not caused by noise, but the limited represen-
tational capability with insufficient data. We omit the proof here since it is very similar
to Theorem 2 in [14], one only needs to replace ||ZTZ||1 as f(Z) and complete the
proof similarly. Theorem 3 guarantees the block diagonal structure of the solution to
problem (11) from insufficient data. Though the orthogonal subspaces assumption is
possibly violated in real data, Theorem 3 provides a theoretical low bound for correct
segmentation from insufficient data.

3 Subspace Segmentation via LSR

3.1 Least Squares Regression

The theoretical analysis in Section 2 not only summarizes some existing works, but
also helps us design a new criterion. Theorem 2 shows that many criteria guarantee
the block diagonal property between-cluster. But the within-cluster affinities are also
very important for subspace segmentation. Sparse representation encourages sparsity
not only between-cluster, but also within-cluster, thus it misses the important correla-
tion structure in the data. However, most data exhibit strong correlations. The subspace
segmentation problem studied in this paper assumes data are drawn from a union of
subspaces. If the sampling data are sufficient, they tend to be highly correlated. For
modeling such data, we present the Least Squares Regression (LSR) method as follow:

min ||Z||F s.t. X = XZ, diag(Z) = 0. (12)

Here ||Z||F denotes the Frobenius norm of Z , i.e. ||Z||F = (
∑n

i=1

∑n
j=1 Z

2
ij)

1
2 , which

is a special case of (
∑n

i=1

∑n
j=1 λij |Zij|pij )s. As corollaries to Theorem 2 and Theo-

rem 3, we have

Theorem 4. Assume the data sampling is sufficient, and the subspaces are indepen-
dent. The optimal solution Z∗ to problem (12) is block diagonal:

Z∗ =

⎡

⎢
⎢
⎢
⎣

Z∗
1 0 · · · 0
0 Z∗

2 · · · 0
...

...
. . .

...
0 0 · · · Z∗

k

⎤

⎥
⎥
⎥
⎦
,

where Z∗
i ∈ R

ni×ni is also the optimal solution to the following problem:

min ||Y ||F s.t. Xi = XiY, diag(Y ) = 0. (13)



354 C.-Y. Lu et al.

Theorem 5. If the subspaces are orthogonal, the optimal solution to the following
problem

min ||X −XZ||2,p + λ||Z||2F (14)

is block diagonal, where p > 0, λ > 0.

The above two theorems show LSR can reveal the true subspace membership under
some data assumption.

3.2 LSR with Noise

The data from real applications are always contaminated with noise. Similar to SSC,
we use the Frobenius norm to penalize the noise as follow:

min ||X −XZ||2F + λ||Z||2F s.t. diag(Z) = 0, (15)

where λ > 0 is a parameter used to balance the effects of the two parts. Problem (15)
can be efficiently solved by the following analytical solution:

Theorem 6. The optimal solution to problem (15) is

Z∗ = −D(diag(D))−1 and diag(Z∗) = 0, (16)

where D = (XTX + λI)−1.

The proof of Theorem 6 is presented in Appendix.
The constraint diag(Z) = 0 can be removed from problem (15) which leads to an-

other formulation of LSR as follow:

min ||X −XZ||2F + λ||Z||2F . (17)

It also has an analytical solution:

Z∗ = (XTX + λI)−1XTX. (18)

The problem (17) is actually the well known Tikhonov regularization [21] or ridge
regression [22]. We will discuss why it is better than SSC and LRR for subspace seg-
mentation in next subsection.

3.3 Why LSR?

The motivation by using LSR for subspace segmentation is that it tends to shrink coef-
ficients of correlated data and groups them together. LSR exhibits the grouping effect
that the coefficients of a group of correlated data are approximately equal. The grouping
effect of LSR is stated in the following theorem:

Theorem 7. Given a data vector y ∈ R
d, data points X ∈ R

d×n and a parameter
λ. Assume each data point of X are normalized. Let z∗ be the optimal solution to the
following LSR (in vector form) problem:

min ||y −Xz||22 + λ||z||22. (19)
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Algorithm 1. Subspace Segmentation via LSR
Input: data matrix X , number of subspaces k.

1. Solve the LSR problem by (16) or (18).
2. Define the affinity matrix by (|Z∗|+ |(Z∗)T |)/2.
3. Segment the data into k subspaces by Normalized Cuts.

We have ||z∗i − z∗j ||2
||y||2 ≤ 1

λ

√
2(1− r), (20)

where r = xT
i xj is the sample correlation.

The proof of Theorem 7 is presented in Appendix.
The grouping effect of LSR presented in the above theorem shows that the solution

is correlation dependent. If xi and xj are highly correlated, i.e. r = 1 (if r = −1 then
consider −xj), Theorem 7 says that the difference between the coefficient paths of xi

and xj is almost 0. Thus xi and xj will be grouped in the same cluster.
Sparse representation does not have the grouping effect and even it is unstable. The

grouping effect of LRR is still unclear 4, but note that (20) is a tight bound and so we can
expect LSR to possess greater grouping capabilities. It is interesting that the solution
(18) of LSR is also of low rank, rank(Z∗) = rank(X). But the effectiveness of LSR
for subspace segmentation comes from its grouping effect, it has nothing to do with the
property of its low rankness.

3.4 Algorithm of Subspace Segmentation by LSR

Similar to SSC and LRR, our method is also a spectral clustering-based method. We
first solve the LSR problem by (16) or (18) (the solution is denoted by Z∗), then define
the affinity matrix as (|Z∗| + |(Z∗)T |)/2. The spectral clustering algorithm such as
Normalized Cuts [23] is employed to produce the ultimate segmentation results. In
summary, we have the entire Least Squares Regression (LSR) algorithm for segmenting
data drawn from multiple subspaces in Algorithm 1.

4 Experimental Verification

In this section, we evaluate LSR 5 on the Hopkins 155 motion database and Extended
Yale Database B, in comparison with SSC 6 and LRR 7. We implement two versions of

4 The original LRR by rank minimization (3) does not have the grouping effect.
5 The Matlab code: http://home.ustc.edu.cn/˜canyilu/
6 The Matlab code: http://www.vision.jhu.edu/code/, it uses the CVX pack-

age for solving the sparse representation problem, we instead use the SPAMS package
(http://www.di.ens.fr/willow/SPAMS/index.html), which is very efficient
due to its implementation by C++. It is not fair, but SSC is still slower than LRR and LSR.

7 The Matlab code: http://sites.google.com/site/guangcanliu/

http://home.ustc.edu.cn/~canyilu/
http://www.vision.jhu.edu/code/
http://www.di.ens.fr/willow/SPAMS/index.html
http://sites.google.com/site/guangcanliu/
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Table 2. The parameter, segmentation errors (%), and running time (s) of each method on the
Hopkins 155 Database

SSC LRR LSR1 LSR2
Parameter λ 2× 10−3 2.4 4.8× 10−3 4.6× 10−3

Error

Max 39.53 36.36 36.36 36.36
Mean 4.02 3.23 2.50 2.84

Median 0.90 0.50 0.31 0.34
STD 10.04 6.06 5.62 6.16

Running times 149.70 129.30 24.33 21.35

LSR, LSR1 denotes the LSR algorithm by (16), and LSR2 denotes the LSR based on
(18). All experiments are carried out by by using Matlab on a PC with 2.4GHz CPU
and 2GB RAM.

4.1 Motion Segmentation

We apply LSR on the Hopkins 155 database 8. It consists of 156 sequences of two or
three motions (a motion corresponding to a subspace). Each sequence is a sole seg-
mentation task and so there are 156 subspace segmentation tasks totally. We first use
PCA to project the data onto a 12-dimensional subspace. Then SSC, LRR and LSR are
employed for comparison. The parameter is manually tuned for each method and we
report the best result. Table 2 shows the parameter, segmentation errors, and running
time of each method on the Hopkins 155 database. Notice the running time show in the
Table 2 is the cost that we compute the affinity matrix by different methods.

4.2 Face Clustering

We evaluate LSR on the Extended Yale Database B [25]. In this experiment, we use
the first 5 and 10 classes data, each class contains 64 images. The images are resized
into 32 × 32. Then the data are projected onto a 5 × 6-dimensional subspace for 5
classes clustering problem by PCA, and a 10 × 6-dimensional subspace for 10 classes
clustering problem. The three methods all perform well on the above setting. Table 3
lists the parameter, segmentation accuracies, and running time of each method on the
Extended Yale Database B.

4.3 Experimental Results and Discussions

Based on the experimental results shown in Table 2 and Table 3, we have the following
observations and discussions:

(1) LSR outperforms SSC and LRR on the Hopkins 155 database and Extended Yale
Database B. The advantage of LSR is mainly due to its grouping effect for modeling
the correlation structure of data. Notice the motion data exhibit strong correlations,
the dimension of each affine subspace is at most three [11]. The correlation struc-
ture of face images has been widely used for face recognition [24] [25].

8 http://www.vision.jhu.edu/data/hopkins155/

http://www.vision.jhu.edu/data/hopkins155/
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Table 3. The parameter, segmentation accuracies (%), and running time (s) of each method on
the Extended Yale Database B

SSC LRR LSR1 LSR2

Parameter λ
5 0.05 0.15 0.4 0.4

10 0.05 1.5 0.004 0.004

Accuracy
5 76.88 81.88 88.13 91.56

10 47.81 65.00 70.16 72.34
Running 5 0.657 0.602 0.018 0.009

time 10 4.760 2.261 0.101 0.045

(2) LSR is robust. Theorem 1.9 in [26] shows that problem (17) is equivalent to a
robust optimization problem, when the data X is subjected to a bounded matrix
disturbance with a Frobenius norm.

(3) Beyond the performance and robustness, the experimental results show that LSR is
more efficient than SSC and LRR. SSC solves the �1-minimization problem, which
is non-smooth and requires much computational cost. The optimization of LRR by
inexact ALM which demands hundreds of singular value decomposition and the
convergence is not strictly proved in theory.

(4) The most important is that LSR is simpler and better. The previous models for sub-
space segmentation, SSC, LRR, MSR and SSQP, are unnecessary sophistication.

5 Conclusions

This paper explores the subspace segmentation problem. We first theoretically provide
an Enforced Block Diagonal (EBD) conditions, and show that if the subspaces are in-
dependent, many criteria which satisfy the EBD conditions always produce a block
diagonal solution. The EBD conditions are general and easy to be satisfied, the exist-
ing methods, SSC, LRR, MSR and SSQP are all special cases. Furthermore, the data
sampling can be insufficient when the subspaces are orthogonal. Second, considering
that sufficient data which can be characterized by linear subspace are usually highly
correlated, we further propose the Least Squares Regression (LSR) method which takes
advantage of the correlation of data. We theoretically show that the grouping effect of
LSR makes it group the highly correlated data together, and also it is robust to noise.
Experimental results on real data demonstrate that LSR is efficient and effective, with
comparison to the state-of-the-art subspace segmentation methods SSC and LRR. LSR
is simple while the existing methods are sophisticated.
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Appendix

Proof of Theorem 6

Proof. Assume X = [x1, x2, · · · , xn] ∈ R
d×n. Remove the i-th column of X , we get

Yi = [x1, · · · , xi−1, xi+1, · · · , xn]. The i-th column of Z∗ is [Z∗]i = EiY
T
i xi, where

Ei = (Y T
i Yi + λI)−1. But it is not efficient to compute an inverse of matrix for each

xi. We will show how to obtain [Z∗]i from D = (XTX + λI)−1 which can be pre-
calculated. First, we arrange X as XP = [Yi xi], where P is a permutation matrix,
PPT = PTP = I . Thus we have

[PT (XTX + λI)P ]−1 = PTDP. (21)

On the other hand, we can compute [P (XTX + λI)P ]−1 by using the Woodbury for-
mula [27] as follow:

[PT (XTX + λI)P ]−1

=

[
Y T
i Yi + λI Y T

i xi

xT
i Yi xT

i xi + λ

]−1

=

[
Ei 0
0 0

]

+ βi

[
bib

T
i bi

bTi 1

]

where
bi = −[Z∗]i,

βi = xT
i xi + λ− xT

i YiEiY
T
i xi.

Thus [Z∗]i = −bi is what we need, and we can get bi from (21) by considering the
property of P , we get

Z∗
ji =

{
−Dji

Dii
, j �= i,

0, j = i.

The solution can be rewritten as Z∗ = −D(diag(D))−1 , diag(Z∗) = 0.

Proof of Theorem 7

Proof. Let L(z) = ||y − Xz||22 + λ||z||22. Since z∗ is the optimal solution to problem
(19), it satisfies

∂L(z)

∂zk

∣
∣
∣
∣
z=z∗

= 0. (22)

Thus we have
−2xT

i (y −Xz∗) + 2λz∗i = 0, (23)

−2xT
j (y −Xz∗) + 2λz∗j = 0. (24)

Equation (23) and (24) gives

z∗i − z∗j =
1

λ
(xT

i − xT
j )(y −Xz∗). (25)
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Since each column of X is normalized, ||xi − xj ||2 =
√
2(1− r) where r = xT

i xj .
Notice z∗ is optimal to problem (19), we get

||y −Xz∗||22 + λ||z∗||22 = L(z∗) ≤ L(0) = ||y||22 (26)

Thus ||y −Xz∗||2 ≤ ||y||2. Then equation (25) implies

||z∗i − z∗j ||2
||y||2 ≤ 1

λ

√
2(1− r). (27)
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