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Abstract. The sparse representation has been widely used in many ar-
eas and utilized for visual tracking. Tracking with sparse representation
is formulated as searching for samples with minimal reconstruction errors
from learned template subspace. However, the computational cost makes
it unsuitable to utilize high dimensional advanced features which are of-
ten important for robust tracking under dynamic environment. Based on
the observations that a target can be reconstructed from several tem-
plates, and only some of the features with discriminative power are sig-
nificant to separate the target from the background, we propose a novel
online tracking algorithm with two stage sparse optimization to jointly
minimize the target reconstruction error and maximize the discrimina-
tive power. As the target template and discriminative features usually
have temporal and spatial relationship, dynamic group sparsity (DGS) is
utilized in our algorithm. The proposed method is compared with three
state-of-art trackers using five public challenging sequences, which ex-
hibit appearance changes, heavy occlusions, and pose variations. Our
algorithm is shown to outperform these methods.

1 Introduction

Tracking is to estimate the state of the moving target in the coming observed
sequences. This topic is interesting for many industrial applications, such as
surveillance, traffic monitoring, vehicle navigation, video indexing, etc. Accu-
rate tracking of general object in a dynamic environment is difficult due to the
following challenges [1, 2]:

– Dynamic appearance changes due to illumination, rotation, and scaling;
– The 3D pose variations and information loss due to the projection;
– Partial and full object occlusions;
– Complex background clutters;
– Similar object from the same class which lead to landmark ambiguity.

⋆ This research is completed when the author is a research assistant in the Department
of Radiology in the UMDNJ-Robert Wood Johnson Medicial School
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Current tracking techniques can be categorized as discriminative or genera-
tive methods. Discriminative methods formulate the tracking as a classification
problem[3–6]. The trained classifier is used to discriminate the target from back-
ground and can be online updated during the tracking procedure [7, 8]. The gen-
erative methods represent the target observations as an appearance model [9].
The tracking problem is formulated as searching for the region within the high-
est probability generated from the appearance model [10–16]. It was proposed to
update the target appearance model incrementally for adapting to dynamic en-
vironmental changes and target appearance variations. Generative models and
discriminative models are combined and a one step forward prediction based
collaborative tracking are proposed in [17].

Recently, the learned sparse representation has been utilized in many ar-
eas [18–21] and successfully applied for tracking [22]. The tracking problem is
formulated as finding a sparse approximation in the template subspace Φ. For
candidate sample y, the general sparse problem can be formulated as

x0 = argminx||x||0 subject to ||y − Φx|| < ǫ (1)

where ||.||0 denotes the zero norm which represents the number of nonzero com-
ponents and ǫ is the level of reconstruction error. However, it is well known that
the l0 optimization problem is NP-hard and there is no efficient algorithm to
find the global optimum solution other than exhausting search.

One class of algorithms tries to seek the sparsest solution by performing basis
pursuit (BP) based l1 minimization as

x1 = argminx ||y − Φx|| + τ |x|1 (2)

using linear programming instead of l0 minimization in (1) [23]. This method
is applied to solve l1 minimization with none-negative constraints in [22]. The
results are found to be efficient and adaptive to appearance changes, especially
occlusion. However, there are still several problems exist:

– It is computationally expensive for very high dimensional data, which make
it unsuitable to use advanced image features for fast tracking applications.

– The background pixels in the target templates do not lie on the linear tem-
plate subspace. The scale of the reconstruction error from background pixels
are often larger than that from the target pixels, which might affect the ac-
curacy of the sparse representation. It is therefore more reasonable to build
the target template subspace from the pixels belong to the object.

– The non-negative constraints, although can provide very good results when
there are outliers, are vulnerable to complete tracking failures if wrong tem-
plates are selected.

– Temporal correlation between target templates and spatial relations among
adjacent image features are not considered.

– Since the sparse parameter τ in (2) has no physical meaning, it is therefore
difficult to tune up the parameter.
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We observed that the target can usually be represented by templates sparsely
and only part of the features, which can discriminate the target and background,
are necessary to identify the target. Motivated by [22], considering existing prob-
lems and our observations, we proposed a robust and fast tracking algorithm
with two stage sparse optimization. The algorithm starts from feature selection
by solving a dynamic group sparsity (DGS) [24] optimization problem. The DGS
is then performed on the selected feature space for sparse reconstruction of the
target. These two sparsity problems are optimized jointly and the final results
are obtained by Bayesian inference. According to our knowledge, this is the
first study reporting fast and robust tracking algorithm using two stage sparsity

optimization. The contributions of this paper are:

– A unified online updated sparse tracking framework which is targeted to
very high dimensional image features.

– The location adjacent features and time adjacent target templates tend to
be selected as a group in our sparse representation, which provides more
robust tracking results.

– The sparse parameters do have physical meaning and therefore are easy to
be tuned.

– The algorithm is efficient. It is at least three times faster than the most
current literature on sparse representation based tracking.

– Pose variation, appearance changes, and heavy occlusions are handled in our
algorithm.

The paper is organized as follows: The related work is explained in Section 2.
The tracking algorithm using two stage sparsity is presented in Section 3. Section
4 presents the experimental results. Finally, Section 5 concludes the paper.

2 Related Work

As online learning, sparse representation and dynamic group sparsity are inten-
sively used in our algorithm, in this section we will give a brief review. Online
adaptive tracking method is intensively investigated in recent literature. Grab-
ner et al [7] propose to update the feature selection incrementally using the
training samples gathered from current tracking result, which may lead to po-
tential target drifting because of accumulated errors. Semi-online boosting [25]
was proposed to incrementally update the classifier using unlabeled and labeled
data together to avoid the target drifting. Multiple Instance Learning boosting
method (MILBoosting) [4] put all samples into bags and labeled them with bag
labels. The positive bag is required to contain at least one real positive, while
the negative bags have only negative samples. The drifting problem is handled in
their method since the true target included in positive bag is learned implicitly.
The target is represented as a single online learned appearance model in incre-
mental visual tracking (IVT) [14]. As single appearance model is argued to be
not sufficient to present the target in a dynamic environment, multiple appear-
ance models are also proposed to be incrementally learned during the tracking
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in [26]. Online updating is proven to be an important step in adaptive tracking
and is also used in our algorithm.

Sparse representation was introduced for tracking in [22]. The target candi-
date is represented as a linear combination of the learned template set composed
of both target templates and the trivial template which has only one nonzero ele-
ment. The assumption is that good target candidate can be sparsely represented
by both the target templates and the trivial templates. This sparse optimization
problem is solved as a l1 minimization problem with nonenegative constraints.

Fig. 1. The group structure of template
feature vectors which can be clustered into
six groups. The consecutive templates are
connected with edges.

Another well known class of
sparse optimization algorithms is
the iterative greedy pursuit. The
earliest algorithms including the
matching pursuit [27] and or-
thogonal matching pursuit [28].
The subspace pursuit [29] and
the compressive sampling match-
ing pursuit [30] were proposed to
reach similar theoretical recovery
guarantees as the BP while reduce
computational complexity. How-
ever, the nonzero components of
the solution are not randomly dis-
tributed and tend to be clustered.
Motivated by this prior, dynamic
group sparsity (DGS) recovery al-
gorithm is proposed in [24]. The
algorithm includes five main steps

in each iteration: 1) pruning the residue estimation; 2) merging the support sets;
3) estimating the signal by least square; 4) pruning the signal estimation and
5)updating the signal/ residue estimation and support set. The algorithm is sim-
ilar to that of SP/CoSaMP [29, 30] except considering the effect of neighbors also
in the pruning process. DGS optimization also provides more robust result by
forcing group representation which can eliminate wrong templates that do not
fall in the same linear space as its neighbors. In Figure 1 we show the group
structure of the consecutive learned templates in one of our testing tracking
sequences. The image features are projected to two dimensional vector and clus-
tered into six groups. In the bottom of Figure 1, we can tell that the target is
sparsely represented by two groups. In other words,if one of the templates in the
group is selected, its temporal adjacent templates tend to be selected too in our
sparse representation using DGS.

3 Tracking With Two Stage Sparsity

We start this section from Bayesian tracking framework. The tracking algorithm
is formulated as a two stage sparse optimization that is optimized jointly. The
final results are obtained by Bayesian inference.
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3.1 Bayesian tracking framework

Let affine parameters χt = (x, y, s, r, θ, λ) represent the target state in the t-
th frame, where x and y are the coordinates, s and r are the scale and the
aspect, θ is the rotation angle, λ is the skew. The tracking problem can be
formulated as an estimation of the state probability p(χt|z1:t), where z represents
the observation in the previous t frames. Sequential Bayesian tracking based on
Markovian assumption estimates and propagates the probability by recursively
performing prediction

p(χt|z1:t−1) =

∫

p(χt|χt−1)p(χt−1|z1:t−1)dχt−1 (3)

and updating

p(χt|z1:t) ∝ p(zt|χt)p(χt|z1:t−1). (4)

The transition model p(χt|χt−1) is constrained by assuming a Gaussian dis-
tribution N (χt|χt−1, σ). The observation model p(zt|χt) represents the likelihood
of zt being generated from state χt.

In our algorithm, N candidate samples are generated based on the state
transition model p(χt|χt−1). The state variables are considered as independent
of each other. Each candidate sample Ii with state χi

t is reconstructed from
the template library Φ using dynamic group sparsity (DGS). The likelihood
p(zt|χ

i
t) = exp(−ǫi) where ǫi = minα||Φα − Ii|| is the optimized reconstruction

error of Ii and α represents the sparse coefficients. Instead of solving the op-
timization problem in the full feature space, we propose to perform the sparse
optimization in selected feature space with discriminative power. This enables
us to use advanced high dimensional features without sacrificing the efficiency of
the algorithm. Once the tracking state is confirmed, new samples are extracted
and used to online update the training set and template library. The final result
is obtained by maximizing p(χt|z1:t).

3.2 Two stage sparse representation

Given the learned target template library Φ ∈ R
p×m, where m is the number of

templates and p is the dimension of the features. Let Φ1 = [Φ, I] and α1 =

[

α
f

]

where α represents the sparse coefficient vector and f denotes the occlusion, the
candidate sample y is sparsely reconstructed from Φ by minimizing the l2 errors
and finding α with K1 nonzero components and f with K2 nonzero components
using greedy method:

α1 = argminα,f ||Φ1α1 − y||2,while ||α||0 ≤ K1 and ||f ||0 ≤ K2. (5)

Equation (5) can be solved efficiently when the dimension of the feature space
and candidate searching space are small. However, it is computationally expen-
sive for very high dimensional data, which make it unsuitable if advanced image
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Algorithm 1: Tracking with two stage sparsity optimization

Input: Target’s initial state χ0, sparsity parameter K0 for feature selection, K1 and
K2 for target template and trivial template.
Initialize: Construct n training samples {X ∈ R

n×p, L ∈ R
n×1}, where X is the

sample matrix, L is the label and p is the dimension of the feature vector.

1. For each frame t = 1 : T in the video where T is the total number of frames:
2. Perform DGS to solve w∗ = argminw||Xw − L||2,

subject to: |w|0 ≤ K0 (when t = 1 we will use the initializations).

3. Construct diagonal matrix W , Wi,i =

{

1, w∗

i 6= 0
0, otherwise;

4. Generate N candidate samples yi in state χi
t.

5. For each yi, i = 1 : N

6. Let W ′ ∈ R
K0×p as the matrix contains all non-zero rows of W ,

7. Φ′ = W ′Φ, y′

i = W ′yi, and f ′ = W ′f ,
8. perform DGS to solve

9. (α∗, f∗) = argminα,f

∣

∣

∣

∣

∣

∣

∣

∣

[Φ′ W ′]

[

α

f

]

− y′

i

∣

∣

∣

∣

∣

∣

∣

∣

2

, subject to:
||α||0 ≤ K1

||f ||0 ≤ K2.

10. ǫi = ||Φ′α∗ − y′

i||2.
11. p(zt|χ

i
t) = exp(−ǫi).

12. end for
13. χ∗

t = argmaxχt
p(χt|z1:t).

14. Update the training set and template library with tracking results.
15. end for

features are used. Because only some of the features, which can discriminate the
target and background, are necessary to identify the target, we argued that the
effective dimension of the feature space can be decreased to K0 dimension with
diagonal matrix W . The number of nonzero components in W is not larger than
K0. The i-th feature is activated if Wii is nonzero. Given n available samples
X ∈ R

n×p and their labels L ∈ R
n×1 , The joint sparse solution can be found:

(α1,W ) = argminα1,W λ||WΦ1α1 − Wy||2

+βF (W,X, L) + τ1||α1||1 + τ2||diag(W )||1 (6)

where F (W,X, L) is the loss function in the selected feature space for training
dataset and samples in current frame. The τ1 and τ2 are the sparse parameters.
As we explained before, the parameters τ1 and τ2 in (6) have no physical meaning
and therefore it is difficult to tune their values. In our algorithm, we apply
greedy algorithm to directly solve the original l0 minimization problem for sparse
representation. In this way (6) can be rewritten as:

(α1,W ) = argminα1,W λ||WΦ1α1 − Wy||2 + βF (W,X, L),

subject to: ||diag(W )||0 ≤ K0, ||α||0 ≤ K1 and ||f ||0 ≤ K2. (7)

As it is hard to find an optimum solution for (6) when both α1 and W
are unknown, we solve (7) using two stage dynamic group sparsity optimization
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with greedy method. The first stage is to select the sparse set of features that
are most discriminative in separating the target from background. Then the
generative likelihood of each sample is estimated in the second stage with sparse
representation. The details of the algorithm are shown in Algorithm 1. We will
explain each stage in the following sections.

Feature selection Given a set of training data X = {xi ∈ R
1×p} with L =

{li}, i = 1 . . . n as the labels. The term F (W,X, L) in equation 6 is defined as

F (W,X, L) = e−
∑

n

i=1
(xiw)li , (8)

where w ∈ R
p×1 is a sparse vector. The j-th feature is selected if wj 6= 0. The

solution to minimize F (W,X, L) can be found by solving the following sparse
problem

w∗ = argminw ||Xw − L||, subject to: ||w||0 ≤ K0 (9)

where K0 is the max number of features will be selected. Here we want to
emphasize that using greedy method for optimization, the parameter K0 does
have physical meaning which corresponds to the number of features we plan
to select. Considering Haar-like features, we do have the spatial relationship
between neighborhood features. For example, if a small patch is occluded, the
features extract from this region will tend to be treated as a group in sparse
optimization. Let Nw(i, j) as the value of j-th neighbor of i-th feature, the
support set is pruned based on Z

zi = w2
i +

τ
∑

j=1

θ2
j N2

w(i, j), i = 1 . . . p (10)

in DGS taking the neighborhood relationship into consideration, where θ is the
weight of neighbors. With the optimal w found by DGS, The diagonal matrix
W can be constructed as

Wj,j =

{

1, w∗
j 6= 0

0, otherwise;
(11)

Benefiting from the sparse solution to (9), we will be able to use advanced
high dimensional features without sacrificing the efficiency of the algorithm.
The other benefit is the object selection in the target region. The target tem-
plates usually contain some background features which are not linear. By doing
discriminative feature selection, features from background pixels in the target
templates are eliminated. The target template library is therefore more efficient
and robust.

Sparse Reconstruction After we calculate the weighting matrix W , the α
and f in equation (6) can be found in the second stage

(α, f) = argminα,f ||WΦ1α1 − Wy||, subject to: ||α||0 ≤ K1 and ||f ||0 ≤ K2.
(12)
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where Φ1 = [Φ, I] and α1 =

[

α
f

]

. Let W ′ ∈ R
K0×p as the matrix contains all

nonzero rows of W . We define Φ′ = W ′Φ and y′ = W ′y. Please notify that in
this step we already reduced the feature dimension from p×m to K0 ×m where
m is the number of templates in the target library. In this stage the following
equation is solved

(α∗, f∗) = argminα,f

∣

∣

∣

∣

∣

∣

∣

∣

[Φ′, W ′]

[

α
f

]

− y′

∣

∣

∣

∣

∣

∣

∣

∣

, subject to:
||α||0 ≤ K1

||f ||0 ≤ K2
. (13)

Here the sparsity parameter K1 and K2 have clear physical meaning, where
K1 controls the sparsity of the target template representation and K2 controls
the tolerance of occlusion. Then likelihood of the testing sample y as target is
e−|Φ′α∗−y′|2 and final result is obtained by maximizing the p(χt|z1:t).

As we have already shown in Figure 1, the target templates have group struc-
ture and the temporally consecutive templates are likely to fall into the same
group. The correct target sample can be reconstructed by sparse grouped tem-
plates. In our algorithm, we take into consideration the relationship between
the template neighbors and tend to select grouped templates. This lead to a
sparse vector in global but dense in local grouped consecutive templates. The
l1 minimization algorithm with non-negative constraints in [22] provides very
sparse representation in template reconstruction coefficients, but it is vulnerable
to outliers, namely, one single mistake in a template library can lead to com-
plete tracking failure. For example, if a background sample is added into the
template incorrectly, in an static background, it probably will have high match-
ing likelihood since they are static most of time and can often find the perfect
reconstruction. We avoid this problem in our algorithm by forcing a group se-
lection of sparse coefficients. Since the outlier template is not in the same linear
space as its neighbors, this can prevent it from being selected as it will lead to
large reconstruction errors where even a standalone matching has a high score.

Once the tracking result is confirmed, the template library is incrementally
updated as [22]. The samples with high likelihood and near the target are added
to the training set as positive while the others are added as negative samples.
This procedure is repeated for each frame in a whole sequence. The joint op-
timization of the two stage sparsity problem thus provides a fast, robust and
accurate tracking result.

4 Experiments

The proposed tracking algorithm is evaluated using five challenging sequences
with 3217 frames in total. The method is compared with three latest state-of-art
tracking methods named L1 tracker(L1) [22], Incremental Visual Tracking (IVT)
[14], Multiple Instance Learning(MIL) [4]. The tracking results of the compared
algorithms are obtained by running the binaries or source code provided by their
authors using the same initial positions. The source code of L1, IVT, MIL can
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Fig. 2. The tracking results of a car sequence in an open road environment. The vehicle
was driven beneath a bridge which led to large illumination changes. Results from our
algorithm, MIL, L1, and IVT are given in the first, second, third, and fourth row,
respectively.

be obtained from the URLs 1 2 3. The first, second, third and fourth sequences
were obtained from [14], and the fifth sequence was downloaded from [4].

In Section 4.1 we present the visual evaluation of the comparative tracking
results. Several frames in five sequences are shown in the figures. Detailed quan-
titative evaluation of the comparative tracking are presented in Section 4.2. The
tacking error-time curves of four sequences are plotted. Both visual and quanti-
tative results demonstrate that our method provides more robust and accurate
tracking results.

4.1 Visual Evaluation of Comparative Experiment Results

The first sequence was captured in an open road environment. The tracking
results of the 4, 56, 200, 238, 309 are presented in Figure 2. The L1 starts to
show some drifting on the 56-th frame. The MIL starts to show some target
drifting (on the 200-th frame) and finally loses the target (the 238-th frame).
IVT can track this sequence quite well. The target was successfully tracked using
our proposed algorithm during the entire sequence.

The second sequence is to track a moving face. The 2, 47, 116, 173, and
222 frames are presented in Figure 3. The L1 algorithm fails to track the target
when there are both pose and scale changes, shown in the 116-th frame. The

1 http://www.ist.temple.edu/ hbling/code data.htm
2 http://www.cs.toronto.edu/ dross/ivt/
3 http://vision.ucsd.edu/ bbabenko/project miltrack.shtml
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Fig. 3. The tracking results of a moving face sequence, which has large pose variation,
scaling, and illumination changes. The order of the row sequences is the same as Figure
2.

MIL method can roughly capture the position of the object, but does have some
target drift problems, especially in the 173-th and 222-th frame. Our proposed
two stage sparse tracking algorithm can track the moving face accurately through
the whole sequence while the IVT produces some errors, especially on the 222-th
frame.

The third image sequence with frame 2, 241, 459, 611, and 693 is shown in
Figure 6. The L1 method starts to have some drifting problem from roughly
the 200-th frames, shown in the 241-th and 459-th frame. The MIL algorithm
provides very good tracking results in this sequence. IVT fails to follow the object
on the 611-th frame after major pose variation and can not be recovered. Our
algorithm provides robust and accurate tracking result for this long sequence.

In the fourth sequence, the vehicle was driven in a very dark environment
and captured from another moving vehicle. The 2, 35, 208, 239, 378 frames are
presented in Figure 3. The L1 algorithm starts to fail to track the target from
the 35-th frame. The MIL can roughly capture the position of the object before,
but start to have target drift problem from the 208-th frame distracted by light
. IVT can track the target through the whole video sequence but it is not as
accurate as our results, which can be found in the 378-th frame.

The results of the fifth sequence are shown in Figure 6. In this sequence we
show the robustness of our algorithm in handling occlusion. The frame indexes
are 10, 427, 641, 713, and 792. Starting from the 641-th frame, our method
perform consistently better compared with the other methods.
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Fig. 4. The tracking results of a plush toy moving around under different pose and
illumination conditions. The order of the rows is the same as in Figure 2.

Fig. 5. The tracking results of the car sequence in a dark environment. This sequence
has low resolution and poor contrast, which introduce some landmark ambiguity. The
order of the row sequences is the same as Figure 5.

4.2 Quantitative Evaluation of Comparative Experimental Results

For fair comparison, the tracking error e in each frame is measured as e = ǫ/d,
where ǫ is the offset of center from the ground truth and the d is the diagonal
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Fig. 6. The tracking results of a face sequence, which includes a lot of pose variations,
partial or full occlusions. The order of the row sequences is the same as Figure 2.

Table 1. The overall quantitative tracking performance comparison of proposed robust
tracking method with two stage sparse optimization, L1 [22], MIL [4], and IVT [14].

Mean Overall

Seq1 Seq2 Seq3 Seq4 Seq5 Mean Variance Median Max Missing

L1 1.10 1.31 0.89 3.22 0.21 0.38 0.26 1.34 5.09 828

MIL 1.02 0.34 0.17 1.16 0.12 0.31 0.29 0.46 3.82 55

IVT 0.04 0.09 1.15 0.07 0.13 0.08 0.08 0.05 5.82 470

Proposed Method 0.03 0.08 0.16 0.08 0.12 0.07 0.06 0.04 0.34 0

length of the target rectangle. For perfect tracking, the e should be equal to zero
for each frame. In Table 1, we compared the quantitative e using our proposed
algorithm with L1, MIL and IVT.

The best result in each column is shown in bold in Table 1. The missing
column represents the number of frames where the e > 1. For a fair comparison,
we do not count these failing frames when computing the overall mean and vari-

ance in the 7-th and the 8-th columns in Table 1. Measured by the public open
benchmark, on average our algorithm only has 7% of drifting errors and never
misses one single frame in the five tracking sequences which contain thousands
of frames in total. In Figure 7 we present the tracking error-time curve. We can
see that except for the fifth sequence, in which we obtain similar results as IVT
(IVT will intend to shrink the window to very small size but won’t lose the
center of the target, as shown in Figure 6), our algorithm does outperform the
other methods. The method is computationally efficient. Even using a MATLAB
implementation, it can process two frames/second.
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Fig. 7. The tracking accuracy e for each frame in four different sequences.

5 Conclusion

We have proposed an online robust and fast tracking algorithm using a two
stage sparse optimization approach. No shape or motion priors are required for
this algorithm. Both the training set and the template library models are online
updated. Two stage sparse optimization is solved jointly by minimizing the target
reconstruction error and maximizing the discriminative power by selecting a
sparse set of features. The experimental results demonstrate the effectiveness of
our method in handling a number of challenging sequences.
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