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Abstract—3D Lidar imaging can be a challenging modality
when using multiple wavelengths, or when imaging in high
noise environments (e.g., imaging through obscurants). This
paper presents a hierarchical Bayesian algorithm for the robust
reconstruction of multispectral single-photon Lidar data in such
environments. The algorithm exploits multi-scale information to
provide robust depth and reflectivity estimates together with their
uncertainties to help with decision making. The proposed weight-
based strategy allows the use of available guide information
that can be obtained by using state-of-the-art learning based
algorithms. The proposed Bayesian model and its estimation al-
gorithm are validated on both synthetic and real images showing
competitive results regarding the quality of the inferences and the
computational complexity when compared to the state-of-the-art
algorithms.

Index Terms—3D reconstruction, Lidar, multispectral imaging,
obscurants, robust estimation, Poisson noise, Bayesian inference.

I. INTRODUCTION

Three-dimensional (3D) imaging has generated significant

interest from the scientific community due to its increasing

use in applications such as self-driving autonomous vehicles

[1], [2]. Single-photon light detection and ranging (Lidar)

is a technology for high resolution 3D imaging, where its

high sensitivity and excellent surface-to-surface resolution can

provide rich information on the depth profile and reflectivity

of observed targets in challenging imaging scenarios. Single-

photon Lidar operates by emitting picosecond duration laser

pulses and collecting the reflected photons using a single-

photon sensitive detector which measures the arrival time

of each return photon using a time correlated single-photon

counting (TCSPC) system [3]. This results in a collection of

X-Y pixels, where a timing histogram of photon counts with

respect to their time of flight is constructed for each pixel. In

the presence of a target with partially reflective or scattering

surfaces, the histogram will contain a peak whose amplitude

and location are related to the object reflectivity and distance

from the sensor. This process can be repeated using different

laser wavelengths to obtain a multispectral 3D image of the

scene.
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Several practical challenges currently limit the use of Lidar

in real world conditions. This paper focuses on some of

them and provides a principled statistical-based solution to

improve performance. Such challenges include the photon

sparse regime [4]–[6] often observed for long-range imaging

[7]–[9] or rapid imaging based on short acquisition times [10],

[11] or adaptive imaging [12], [13]. Lidar is also sensitive to

the observation environment when imaging in bright daylight

conditions [14], and through obscurants or turbid media, such

as underwater [11], [15], or through fog, rain [1], [16]. The

latter causes photon scattering which results in the immer-

sion of the useful signal within a high and possibly non-

uniform background level [17]–[19]. To obtain more detailed

information about the observed target, one approach is to use

multiple laser wavelengths which inevitably lead to larger data

volumes which may necessitate the requirement for advanced

algorithms to only select useful pixels [20], [21] or to account

for shared data structures and correlations [22]–[25].

Several solutions have been proposed in the literature to

tackle these challenges. We distinguish three broad families:

statistical, learning-based and hybrid methods. The former

builds on a statistical model and solves the resulting inference

using stochastic simulation methods [6], [15], [26], [27], or

optimization algorithms [19], [25], [28]. These principled

methods benefit from a good interpretability but are subject

to the definition of good features to represent the data. The

second family learns important features from training data

with an available ground-truth, and then uses the learned

features to process new measured data [10], [29]–[31]. These

approaches are dependent on the training data, and might

require expensive network retraining if the imaging conditions

change (e.g., different noise level). The third family uses a

plug-and-play (PnP) approach [32] by combining methods of

different families to improve performance [33], [34]. Beside

providing good results, these methods can lack interpretability

(e.g., in terms of convergence) and increasing interest is now

devoted to providing principled PnP formulations as in [35],

[36].

This paper combines the advantages of these families by

proposing a principled statistical-based algorithm, that can use

state-of-the-art algorithms as a guide for robust processing of

multispectral 3D Lidar data acquired through obscurants. An

approximate likelihood distribution is considered and a hierar-

chical Bayesian model is proposed to exploit the data Poisson

statistics, the multi-scale information (known to improve noise
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and photon-sparsity robustness [19], [25], [33], [37]), and prior

knowledge on the depth and reflectivity maps. This hierar-

chical model ensures the robustness of the proposed strategy

to the mismatch between the simplified observation model

and the actual one. In contrast to the hierarchical Bayesian

models in [6], [22] which required computationally expensive

Markov chain simulation methods for parameter inference,

the proposed formulation allows for independent parameter

updates, leading to efficient parallel implementations and fast

inference. This is achieved by introducing latent variables that

are connected to the parameters of interest using Markov ran-

dom fields, hence accounting for spatial correlations between

pixels while ensuring parameter independence. Inspired by

the PnP approaches that incorporate state-of-the-art denoisers

[32], [34], we propose a weight-based model which uses the

results of state-of-the-art algorithms as a guide to improve

performance. The parameter’s posterior distribution is obtained

by combining the likelihood and proposed prior distributions.

This distribution provides parameter estimates together with

their uncertainties which are essential for result analysis and

decision making. More precisely, we used a coordinate descent

algorithm [38]–[40] to approximate the maximum a-posteriori

estimator of all parameters, leading to simple iterative updates

based on analytical or well known operators (e.g., weighted

median filter [41], [42]). The new algorithm is tested on sim-

ulated and real underwater data showing promising results in

terms of robustness to noise, interpretability and computational

cost when compared to state-of-the-art algorithms.

The paper is structured as follows. Section II introduces

the observation model and formulates the considered approx-

imated likelihood. The proposed hierarchical Bayesian model

is presented in Section III, and the choice of the guidance

weights is described in details in Section IV. Section V then

introduces the estimation algorithm used to approximate the

maximum a-posteriori estimate of the parameters. Section VI

analyses the proposed algorithm’s performance when consid-

ering synthetic data with known ground-truth. Results on real

data are presented in Section VII. Conclusions and future work

are finally reported in Section VIII.

II. PROBLEM FORMULATION

This section introduces the observation model for multi-

spectral Lidar, followed by the likelihood approximation used

in this paper. The last part presents the multi-scale information

which is a key ingredient to restore the parameters of interest.

A. Observation model

In addition to object reflectivity, the TCSPC Lidar system

measures the depth profiles by illuminating the scene and

measuring the time-of-flight of the returned photons. These

photons are then collected in a histogram of counts, de-

noted yn,t, and representing the received photon counts at

pixel location n ∈ {1, · · · , N}, and time-of-flight (ToF) bin

t ∈ {1, · · · , T}. In the case of multi-spectral imaging, the

system illuminates the scene using K wavelengths leading

to K histograms where each sample is denoted by yn,t,k,

with k ∈ {1, · · · ,K}. It is often assumed that the resulting

histograms of counts follow a Poisson distribution P (.) as

follows [6], [19], [25]:

yn,t,k ∼ P (sn,t,k) (1)

where sn,t,k represents the average photon counts in the nth

pixel, tth time bin and kth wavelength. In presence of at-most

one target per-pixel, the signal can be approximated as follows

sn,t,k = rn,kfk (t− dn) + bn,t,k (2)

where fk represents the system impulse response (SIR) of

the kth wavelength, which can be measured during system

calibration, rn,k ≥ 0 represents the reflectivity of the observed

object assumed different for different wavelengths, dn ≥ 0
represents the object distance which is related to the object

depth profile and assumed the same for all wavelengths (it

is expressed in time bins or converted to meters using the

speed of light c as follows cdn/2), and bn,t,k ≥ 0 represents

the background which gathers all photon events that do not

originate from reflections at the target surface, i.e., the dark

counts of the detector and the environment background due to

the ambient illumination or photon scattering when imaging

through obscurants. When imaging through turbid media, the

background will have a non-uniform shape with respect to

the depth observation timing window [17], [43], hence the

dependence of b on t. Our goal is to estimate the depth and

reflectivity parameters when imaging in extreme conditions

due to imaging though obscurants (high and non-uniform

background) or sparse photon imaging (e.g., rapid or long-

range imaging).

B. Approximated Poisson likelihood

Assuming independence between the observed pixels yn,t,k
leads to the joint likelihood

P (Y |d,R,B) =
N
∏

n=1

K
∏

k=1

T
∏

t=1

s
yn,t,k

n,t,k

yn,t,k!
exp (−sn,t,k) (3)

where d is an N × 1 vector gathering depth values, R is

an N × K matrix gathering reflectivity values, and B,Y
are N × T × K tensors of background values and photon

counts, respectively. Let’s assume the absence of background

counts or the availability of a background rejection method

to isolate signal counts (as introduced later in Section V-G).

Assuming that
∑T
t=1 fk (t− dn) = 1, ∀k for all realistic dn,

the likelihood reduces to (see Appendix for more details)

P (syn|rn, dn) ∝
K
∏

k=1

[

G (rn,k; 1 + s̄n,k, 1) Q̄
(

syn,k
)]

×
∏

t,k

[fk (t− dn)]
syn,t,k (4)

where ∝ stands for proportional to, G(x; γ, θ) ∝
xγ−1exp(−x/θ) denotes the gamma distribution with

shape and scale parameters denoted γ, θ, syn,k represents the

histogram of target reflected (or signal) counts, Q̄
(

syn,k
)

is

a normalization constant that depends on the signal counts
syn,k (but not on the parameters of interest rn, dn) and

s̄n,k =
∑T
t=1

syn,t,k represents the sum of signal counts. It

should be noted from (4) that the maximum likelihood (ML)
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estimate of the reflectivity at the nth pixel location for the

kth wavelength is given by

rML
n,k = s̄n,k. (5)

Similarly, the depth maximum likelihood estimate is obtained

using a simple log-matched filtering of the histogram with the

SIR, as follows

dML
n = argmaxd

∑

t,k

syn,t,klog[fk(t− d)]. (6)

It is common to approximate the SIR at each wavelength with

the Gaussian function fk (µ− dn) ≈ N (dn;µ, σ
2
k) [28], [44].

In this case the likelihood in (4) becomes

P (syn|rn, dn) ∝∼

K
∏

k=1

[

G (rn,k; 1 + s̄n,k, 1) Q̄
(

syn,k
)]

× N (dn; d
ML
n , σ̄2) (7)

where ∝∼ stands for approximately proportional to, N (x;µ, σ2
k)

represents the Gaussian distribution with average µ and vari-

ance σ2
k, σ̄2 =

(

∑

k
s̄n
σ2
k

)−1

and dML
n = σ̄2

∑K
k=1

∑T
t=1 t

syn,t,k

σ2
k

is given analytically when considering Gaussian approxi-

mation for the SIR. Considering these approximations, Eq.

(7) indicates that the depth and reflectivity parameters are

independent and that they appear within conventional Gaussian

and gamma distributions, which is crucial for the design of

the proposed Bayesian strategy. Indeed, the quality of the

ML depth and reflectivity estimators is known to be poor in

challenging scenarios, hence the need to account for known

parameter properties to improve reconstruction. This can be

done within the Bayesian framework adopted in this paper.

C. Multiscale information

A common approach to improve the performance of maxi-

mum likelihood estimation for Lidar data is to consider multi-

scale information, as already exploited in several state-of-

the-art 3D Lidar denoising algorithms [19], [25], [33], [37].

The key observation is that spatially downsampled histograms,

which are still Poisson distributed, lead to depth and reflectiv-

ity estimates with lower noise at a price of a reduced spatial

resolution, and the potential to mix histograms of objects at

different depths. In this paper, we adopt a similar strategy

by considering L downsampled versions of the histogram of

counts. For each wavelength k, spatially downsampled version

of the histograms Y are first computed based on predefined

L graphs of neighbours φ1,··· ,L leading to Y ℓ
k (for example,

q(2) = 3×3 neighbours for φ(2), and q(3) = 5×5 neighbours

for φ(3), · · · ). The latter can be efficiently computed using

convolutions in the case of a regular grid but our algorithm

can be equally applied to a non-uniform sampling grid of

the pixels. Assuming independence between these histograms

leads to L likelihood distributions as follows

P (sy(ℓ)
n |r(ℓ)n , d(ℓ)n ) ∝∼

K
∏

k=1

[

G
(

r
(ℓ)
n,k; 1 + s̄

(ℓ)
n,k, 1

)

Q̄
(

sy
(ℓ)
n,k

)]

× N

(

d(ℓ)n ; dML(ℓ)
n ,

(

σ̄(ℓ)
)2
)

(8)

∀ℓ ∈ 1, · · · , L, where
(

σ̄(ℓ)
)2

=
(

∑

k

s̄(ℓ)n

σ2
k

)−1

, ℓ = 1 is the

original cube, and for example, ℓ = 2 corresponds to a 3× 3
downsampling, ℓ = 3 to a 5× 5 downsampling, etc.

III. HIERARCHICAL BAYESIAN MODEL

Estimating depth and reflectivity parameters in extreme

conditions is an ill-posed problem which requires the use of

prior information to alleviate its indeterminacy. A Bayesian

strategy is considered to combine the approximate likelihood

described above, with parameter prior distributions accounting

for known parameter properties. The resulting posterior distri-

bution will be exploited by deriving Bayesian point estimators

and additional measures of uncertainty about the estimates.

The following sub-sections introduce the proposed Bayesian

model.

A. Prior distribution for depth

Our model assumes the observation of L depth maps

d(ℓ) obtained from multi-scale downsampled histograms, and

having different noise levels as highlighted by the Gaussian

variances in (8). Object depth profiles exhibit homogeneous

surfaces (i.e., spatial correlation) separated by a discontinu-

ous jump between different surfaces. This requires enforcing

spatial correlation between the pixels of a surface, while

preserving edges of isolated objects or between separated

surfaces. To incorporate this information, we introduce an

N × 1 latent variable x that is connected to all multi-scale

depth maps, to provide a robust reconstruction of the true depth

map by considering correlations between pixels. To preserve

edges separating different surfaces, we propose the following

mixture of Laplace conditional prior distributions for x as

follows

xn|d
(1,··· ,L)
n , w(1,··· ,L)

νn,n
, ǫn ∼

∏

n′∈νn

[

L
∏

ℓ=1

L

(

xn; d
(ℓ)
n′ ,

ǫn

w
(ℓ)
n′,n

)]

(9)

where L(x;µ, ǫ) = 1/(2ǫ)exp (−|x− µ|/ǫ) represents the

Laplace distribution with average µ and diversity parameter

ǫ, νn represents the spatial neighbourhood of the nth pixel,

d
(ℓ)
n′ denotes the mean, ǫn > 0 is the variance of xn and

w
(ℓ)
n′,n ≥ 0 are constant weights to be defined. Note that (9)

preserves edges as it considers the sparsity promoting ℓ1-norm

of the differences between x and D =
[

d(1), · · · ,d(L)
]

.

The weights w
(ℓ)
n′,n ≥ 0 are essential as they allow guiding

the connections between x and D using any available side-

information (e.g., obtained from other sensors in the case of

multi-modal imaging, or by using state-of-the-art denoising

algorithms in the case of plug-and-play approaches). It is

also worth noting that prior (9) is connected to the Bayesian

lasso model [45], [46]. Indeed, (9) could be obtained by

marginalizing the exponentially-distributed variance hyper-

parameter of a Gaussian mixture prior. Finally, (9) does not

enforce positivity on the depth parameter x, however, this will

be ensured as indicated in Section V-B.
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B. Prior distribution for reflectivity

In a similar fashion to depth, spatial smoothness can be

enforced on the reflectivity by considering latent variables as

in the gamma Markov random field prior [47]. However, this

prior will lead to underestimated reflectivity values as already

highlighted in [27]. In this work, we introduce an N×K latent

variable M assigned a Gaussian prior distribution as follows

mn,k|r
(1,··· ,L)
νn,k

, v(1,··· ,L)νn,n
, ψ2

n,k ∼

∏

n′∈νn

[

L
∏

ℓ=1

N

(

r
(ℓ)
n′,k,

ψ2
n,k

v
(ℓ)
n′,n;k

)]

(10)

where v
(ℓ)
n′,n;k ≥ 0 are constant weights to be defined, and

ψ2
n,k represents the variance of the latent variable and contains

reflectivity uncertainty information for the kth wavelength.

The N ×1 latent variable associated with the kth wavelength,

denoted mk, contains reflectivity information through its

relation to r
(ℓ)
n,k and will serve as the reflectivity estimate for

the kth wavelength.

Although this is not a conjugate prior, it will lead to non-

negative analytical estimates for M ,R as indicated in Section

V.

C. Priors of the variance hyperparameters

The variance parameters ǫn, ∀n (resp. ψ2
n,k, ∀n, k) should be

positive. Assuming prior independence between the parameters

ǫn, ∀n (resp. ψ2
n,k, ∀n, k) and accounting for their positivity,

we assign a conjugate inverse gamma distribution for these

parameters as follows

f (ǫ) =
N
∏

n=1

IG (ǫn;αd, βd)

f (Ψ) =
K
∏

k=1

N
∏

n=1

IG
(

ψ2
n,k;αr, βr

)

(11)

where αr, βr, αd, βd are positive user fixed hyperparameters.

In absence of additional knowledge, these hyperparameters are

fixed to obtain a non-informative prior.

D. Posterior distribution

The joint posterior distribution of this Bayesian model can

be computed from the following hierarchical structure (after

dropping indices for clarity)

f (x,D,M ,R, ǫ,Ψ|Y ) ∝ f(Y |R,D)f(D,x|ǫ,W )

f(R,M |Ψ,V )f(ǫ)f(Ψ) (12)

where W and V gather the depth and reflectivity non-

negative weights, respectively. f(Y |R,D) is given in (8),

f(D,x|ǫ,W ) in (9), f(R,M |Ψ,V ) in (10), and f(ǫ), f(Ψ)
in (11). This distribution contains complete information re-

garding the parameters of interest x,D,R,M and their

uncertainties ǫ,Ψ. A common approach is to extract Bayesian

point estimators such as the maximum a-posteriori (MAP)

estimator or the minimum mean square estimator (MMSE). In

this paper, we consider the MAP estimator of all parameters.

It should be noted that the depth related parameters D,x, ǫ
and the reflectivity ones R,M ,Ψ are independent allowing

parallel optimization with respect to both set of parameters.

Finally, Fig. 1 presents a directed acyclic graph (DAG) which

summarizes the main parameters of the proposed hierarchical

Bayesian model.

Y
(1)
1:K Y

(2)
1:K Y

(L)
1:K

d(1) d(2) d(L)

r
(1:L)
1 r

(1:L)
2 r

(1:L)
K

m1 m2 mK V

ψ1 ψ2 ψK

x Wǫ

Fig. 1. DAG for the observations, parameter and hyperparameters of the
proposed model. The guiding weights appear in circles, the observations in
a dashed box and the rectangular box gathers the joint multi-scale or multi-
wavelengths parameters.

IV. INCORPORATING GUIDANCE USING WEIGHTS

SELECTION

The choice of the weights is very important and will have a

direct impact on the algorithm performance. Several strategies

have been considered in the literature where the choice can be

based on the spatial distance between points, similarity of their

values, etc [48]–[50]. In this paper, we assume the presence

of guiding information (e.g., by using other algorithms, or

sensors) and define these weights while considering multi-

scale and multi-wavelength information.

A. Depth weights W

Assuming the presence of an outlier free multi-scale guiding

depth d(ℓ), ℓ = 1, · · · , L, our selection of the multi-scale

weights W encourages the depth map at a given scale d(ℓ) to

be close to d(ℓ) (with a graph of neighbours, for example

3 × 3 neighbours in a uniform grid). More precisely, we

assign low weights for pixels that differ significantly from

their corresponding pixels in d(ℓ) as follows

w
(ℓ)
n,n′ = wnorm

[

ℓ−1
∏

ℓ′=1

(

1− w
(ℓ′)
n,n′

)

]

× exp

(

−
|d

ML(ℓ)
n − d

(ℓ)
n′ |

2ζq(ℓ)

)

(13)
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for ℓ ∈ {1, · · · , L}, where wnorm is a normalization con-

stant ensuring
∑

ℓ,n′ w
(ℓ)
n,n′ = 1, the coefficient ζ is easily

fixed based on physical considerations related to the impulse

response width and it is weighted by the downsampling

coefficient q(ℓ) = (2ℓ−1)× (2ℓ−1) to account for the multi-

resolution effect. In (13), the product over ℓ′ promotes higher

weights for lower ℓ, i.e., a high w
(ℓ′)
n,n′ will enforce low values

for w
(ℓ)
n,n′ with ℓ > ℓ′ .

We are now left with the task of finding a reliable multi-

scale depth guide which is robust to outliers. This information

can be obtained by considering other sensing modalities such

as Radar, Sonar, when available. It can also be obtained by

applying an off-the-shelf depth reconstruction algorithm to the

Lidar data (e.g., [19]). The latter strategy is adopted in this

paper. We consider two methods, the first, denoted GD1 for

guide depth 1, is inspired by [5] which adopted the rank order

mean approach to unmix signal from background counts. Here,

we first detect background corrupted pixels (those without
√

q(2) neighbours having close depth values) and then replace

them with the median of surrounding valid points. The second

strategy, denoted GD2, represents dML(ℓ=1:L) as a point cloud

and applies an outlier rejection algorithm to remove corrupted

values (i.e., using pcdenoise in Matlab [51]). We note finally

that the weights could be updated with iterations leading to a

pseudo-Bayesian approach [52], but this is out of the scope of

this paper and will be left for future work.

B. Reflectivity weights V

The reflectivity weights are obtained from the multi-scale

images r
(ℓ)
k , ∀k, ℓ, but we note that they can also be learned

using additional reflectivity maps acquired by other sensors

when available. Assuming the presence of r
(ℓ)
k , ∀k, ℓ reflec-

tivity guides and depth weights W , we consider a multi-

scale bilateral filtering approach [34], [49], [53] and define

the reflectivity weights as follows

v
(ℓ)
n,n′;k = vnorm w

(ℓ)
n,n′ exp

(

−
|r

ML(ℓ)
n,k − r

(ℓ)
n′,k|

2ηn,kq(ℓ)

)

(14)

where vnorm is a normalization constant ensuring
∑

ℓ,n′ v
(ℓ)
n,n′;k = 1, and ηn,k is a constant weighted

by the downsampling coefficient q(ℓ). As indicated in

(14), correlation between depth and reflectivity images is

introduced through the use of W to define V . This will

promote close points in space having similar depths to share

similar reflectivities, in addition to exploit the multiscale

depth guidance information to reject or mitigate the effect of

measured outliers in both D and R. Note that reflectivity

texture will be preserved by considering the R dependent

exponential term in (14). The reflectivity variables r
(ℓ)
k , ∀k, ℓ,

follow a gamma distribution and hence show data dependent

noise levels. To account for this effect, we assume a signal

dependent variance ηn,k, which is fixed as follows

ηn,k = max
(

0.1, r
ML(L)
n,k

)

. (15)

Several reflectivity restoration algorithms can be used to

obtain the guides r
(ℓ)
k , ∀k, ℓ, based on the considered imaging

scenarios. Algorithms based on Poisson statistics can be used

in the sparse photon regime [28], [54], [55], while other state-

of-the-art denoising algorithms [56], [57] can be considered

in dense photon regimes. In this paper, we consider three

guidance methods. The first guidance intensity (denoted GI1)

considers r
(ℓ)
k = r

ML(ℓ)
k , ∀k, ℓ which leads to a multi-scale

generalization of the bilateral filter. Indeed, these multi-scale

maps already contain filtering properties which will provide

good performance in practice. The second guidance (GI2)

considers the Poisson based reconstruction method [54] (used

with authors defaults parameters) which is applied to each

scale and wavelength of r
ML(ℓ)
k , ∀k, ℓ to obtain r

(ℓ)
k , ∀k, ℓ.

As a third guidance (GI3), we considered the state-of-the-

art learning based DnCNN denoiser [57], also applied to

each scale and wavelength r
ML(ℓ)
k , ∀k, ℓ. Finally, note that

reflectivity multi-spectral correlations are introduced through

the depth weights, which are shared between all wavelengths.

Additional correlations can be easily included through the

weights V when building the reflectivity guides.

V. ESTIMATION ALGORITHM

We propose to use the MAP estimators for all parameters

and hyperparameters x,D,R,M , ǫ,Ψ. More precisely, the

maximum of the posterior distribution in (12) is approximated

using a coordinate descent algorithm [38], [39]. This algorithm

sequentially maximizes the conditional distributions associated

with each parameter until convergence to a local minimum

of the negative log-posterior. The algorithm’s main steps are

presented in Algo. 1 and described with more details in

the following sections. Note that the resulting depth updates

alternates between robust to outliers non-linear parameter

estimation (line 11) and a filtering step (line 12), which are

commonly observed steps in several state-of-the-art algorithms

[32], [34], [35] and optimization algorithms [58]. Note also

that reflectivity and depth iterates are independent and can

be run in parallel. Note finally that reflectivity updates are

analytically obtained ensuring fast estimation.

A. Updating x

The parameters of x are independent allowing parallel

updating of xn, ∀n. It is clear from (12) that the conditional

distribution of x results from (9). Minimizing the negative-log

of the conditional distribution reduces to

x̂n = argmin
x

C(x) = argmin
x

∑

ℓ,n′∈νn

w
(ℓ)
n′,n|x− d

(ℓ)
n′ |. (16)

This is a weighted median filter (WMF) which has several

efficient implementations (e,g, [41]). Note that the solution of

(16) will be non-negative provided that d
(ℓ)
n′ ≥ 0, which is

ensured during initialization.

B. Updating D

The variables d
(ℓ)
1 , · · · , d

(ℓ)
N are independent and spatial

correlation is introduced through the latent variable x. This

is interesting as it allows the parallel implementation of

d
(ℓ)
n , ∀n, ℓ with respect to n and ℓ. The conditional distribution
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Algorithm 1 Estimation algorithm

1: Input:

2: Y k, ∀k;L;φ
1,··· ,L

3: Generate low resolution data:

4: Generate low-resolution histograms Y
(ℓ)
k , ℓ ∈ {1, · · · , L}

using φ1,··· ,L

5: Estimate background level B̂k, ∀k as in (27)

6: Estimate dML(ℓ), r
ML(ℓ)
k , ∀k as in (6), (5)

7: Compute guiding weights W ,V as in (13), (14)

8: Coordinate descent algorithm

9: while conv= 0 do

10: Update xn, ∀n using WMF in (16)

11: Update d(ℓ), ∀ℓ using threshold operator in (17)

12: Update ǫ using analytical mode in (19)

13: Update mk, ∀k using analytical mode in (20)

14: Update r
(ℓ)
k , ∀ℓ using analytical mode in (22)

15: Update Ψ using analytical mode in (24)

16: Set conv= 1 if the convergence criteria are satisfied

17: end while

18: Output:

19: x,M , ǫ,Ψ

of D is obtained by combining the likelihood in (8), and the

prior in (9). Straightforward computations show that the update

d
(ℓ)
n is given by

d(ℓ)n = argmin
d

[

d− d
ML(ℓ)
n

]2

2
(

σ̄(ℓ)
)2 +

∑

n′∈νn

w
(ℓ)
n,n′ |d− xn′ |

ǫ2n′

. (17)

This is a generalization of the well known soft-threshold

operator which can be analytically solved as in [59]. Note that

the solution of (17) will be non-negative provided that xn′ ≥ 0

and d
ML(ℓ)
n ≥ 0 which is ensured during initialization.

C. Updating depth variance: ǫ

The conditional distribution of ǫn is an inverse-gamma

distribution given by

ǫn|x,D,W ∼ IG
[

L+ N̄ + αd, C (xn) + βd
]

(18)

whose mode is given by

ǫ̂n =
C (xn) + βd

L+ N̄ + αd + 1
(19)

where N̄ is the number of spatial neighbours.

D. Updating M

It is clear from (12) that the conditional distribution of M

results from (10). This is a normal distribution whose mean is

analytically given by

m̂n,k =

∑

ℓ,n′∈νn
v
(ℓ)
n′,n;k r

(ℓ)
n′,k

∑

ℓ,n′∈νn
v
(ℓ)
n′,n;k

. (20)

This equation highlights a weighted sum of the multi-scale

reflectivity maps r, as for the bilateral filter.

E. Updating R

The parameters of R are independent allowing parallel

updating of r
(ℓ)
n,k, ∀n, k, ℓ. The conditional distribution of R

is obtained by combining the likelihood in (8), and the

prior in (10). Minimizing the negative-log of the conditional

distribution reduces to

r̂
(ℓ)
n,k = argmin

r

{

r − s̄
(ℓ)
n,klogr +H(r)

}

(21)

where H(r) = 1
2ψr

(r − µr)
2

with ψ−1
r =

∑

n′

v
(ℓ)

n′,n;k

ψn′,k
and

µr =
∑

n′

(

v
(ℓ)

n,n′;k
mn′,k

ψn′,k

)

. The minimum is analytically

provided by [60]

r̂
(ℓ)
n,k =

µr − ψr +
√

(µr − ψr)
2
+ 4ψr s̄

(ℓ)
n,k

2
. (22)

F. Updating Ψ

The conditional distribution of the reflectivity variance ψn,k
is an inverse-gamma distribution given by

ψn,k|M ,R,V ∼ IG

[

L+ N̄

2
+ αr,K + βr

]

(23)

with K =
∑

ℓ,n′∈νn

v
(ℓ)

n′,n,k

(

mn,k−r
(ℓ)

n′,k

)2

2 . The mode is analyt-

ically given by

ψ̂n,k =
K + βr

L+N̄
2 + αr + 1

. (24)

G. Background estimation

Our algorithm assumes known signal counts, which can be

obtained after removing background counts from observed

histograms. In the presence of obscurants, the background

can be non-uniform bn,t,k, i.e., in addition to pixels and

wavelengths it also depends on time bins related to the depth

dimension. Assuming a spatially homogeneous distribution of

the obscurant, the background level can be assumed smooth.

This means that after downsampling, y
(L)
n,t,k can be represented

by the sum of a smooth function b̂n,t,k and a sparse signal due

to target reflections. Unmixing these two signals is a common

signal processing problem and can be solved using several

tools, e.g., Robust PCA [61]. In this paper, we only require

an approximative estimate of b̂n,t,k and are more interested in

efficient solutions. More precisely, we assume the background

has the same temporal shape for all pixels and estimate this

shape as follows

b̄t,k = median
(

y
(L)
⊓n,t,k

)

(25)

where ⊓n represent the indices of the lowest 10% values of

y
(L)
n,t,k to only consider background and reject signal returns.

For a given time bin, this strategy assumes that at least 10%
of pixels only contain background without a target, which is

often satisfied except when observing a perfectly lateral plane

having the same depth value for all pixels. Akin to [62], the
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noise level of each pixel is estimated using the median as

follows

bn,k = median
(

y
(L)
n,:,k

)

. (26)

The smooth background is then obtained by

b̂n,t,k = max
(

0, bn,k + b̄t,k −
¯̄bk

)

(27)

with ¯̄bk =
∑

t b̄t,k/T . Knowing the background level, the

approximate signal counts can be extracted as follows

sy
(ℓ)
n,t,k = max(y

(ℓ)
n,t,k − b̂n,t,k, 0), ∀n (28)

for t ∈ [tl, th]; where tl = max(1, d
ML(ℓ)
n − I lk), th =

min(T, d
ML(ℓ)
n + Irk), where I lk and Irk represent the attack

and trailing width of the kth SIR.

H. Stopping criteria

Two criteria are considered to stop the iterative coordi-

nate decent algorithm for depth and reflectivity. The first is

maximum number of iterations. The second evaluates the

estimated parameter values and stops the algorithm if the

relative difference between successive iterates is smaller than

a threshold as in [63]
∥

∥

∥
x(i+1) − x(i)

∥

∥

∥

1
≤ ξ

(∥

∥

∥
x(i)

∥

∥

∥

1
+ ξ
)

. (29)

where i denotes the algorithm iterations and ξ = 0.001 is a

threshold.

VI. RESULTS ON SIMULATED DATA

This section evaluates the proposed algorithm on simulated

data. The section first introduces comparisons algorithms

and evaluation criteria. Then we analyse the robustness of

the proposed algorithm with respect to sparse and high-

background regimes and compare it on a single-wavelength

3D Lidar data. Finally, we generalize the analysis to multiple

wavelengths scenarios. All simulations have been performed

on a Matlab R2020a on a computer with Intel(R) Core(TM)

i7-4790 CPU@3.60GHz and 32GB RAM.

A. Comparison algorithms and evaluation criteria

To highlight the robustness and benefit of the proposed

algorithm, it is compared to several state-of-the-art algorithms

including:

• The unmixing algorithm (UA) [19]: considers multi-

scale information for robust reconstruction of depth and

reflectivity images. It assumes the presence of one surface

on all pixels, and is used when analysing robustness to

noise and photon-sparse regime imaging for one surface

scenes on single spectral data.

• The RT3D algorithm [34]: assumes the presence of

multiple surfaces per-pixel and is used when analysing

robustness to noise and photon-sparse regime imaging on

single spectral data.

• The MUSAPOP algorithm [27]: assumes the presence of

multiple surfaces per-pixel and is used when analysing

multi-spectral Lidar data.

• The MNR3D algorithm [25]: is used when analysing

multi-spectral Lidar data. Note that we post-processed the

algorithm outputs (a depth map for each wavelength) to

obtain one depth map for all wavelengths. This is done

by capturing the position of the maximum of the sum of

cleaned cubes.

• The Classical algorithm (denoted Class.): estimates

dML, rML
k , ∀k as in (6), (5) from the observed histograms

(without removing background)

• The B-Class. algorithm: removes estimated background

level as in (27), then estimates dML, rML
k , ∀k as in (6),

(5), respectively (see lines 5-6 in Algo. 1).

Comparison results will be analysed qualitatively (by show-

ing reconstruction scenes) and quantitatively using several cri-

teria. The depth performance is measured based on the depth

absolute error (DAE) measure DAE= 1
N ′

∣

∣

∣

∣

∣

∣
dref − dest

∣

∣

∣

∣

∣

∣

1
,

where N ′ represents the number of pixels having a target, and

dref and dest are the reference and estimated depth maps with

a target, respectively. Similarly, intensity is evaluated using

the intensity normalized absolute error IAE=
||rref−r

est||
1

||rref||1
. In

addition, we consider the metrics used in [27] to evaluate

point clouds. More precisely, we consider the percentage of

true detections as a function of the distance τ , where a true

detection occurs if an estimated point of a given nth pixel has

a reference point in its surrounding such that |d̂n − dref
n | ≤ τ .

The sum of the estimated points that can not be assigned to any

true point at a distance of τ are considered as false detections.

Average normalized IAE is considered for intensity, where

pixels with no or false detections are assumed to introduce an

error of
rref
n

||rref||1
.

B. Robustness to sparsity or background counts

This section evaluates the algorithm performance under dif-

ferent cases, including the photon sparse regime (low average

photon-per-pixels) and low signal-to-background ratio (SBR),

where average SBR=
∑K

k=1

∑N
n=1 rn,k

∑

K
k=1

∑

N
n=1

∑

T
t=1 bn,t,k

. The background

estimation strategy is also evaluated when comparing the

results of Class. and B-Class. algorithms. Simulations are

performed on the Art scene extracted from the Middlebury

dataset1, as it is a cluttered scene used to evaluate many

algorithms [19], [64] (see Fig. 2 (a)). An intensity image

is first constructed using the luminance of the RGB image.

The 283 × 183 depth and intensity images are then used to

generate a 20ps time bin histograms of counts as in (1), while

considering a real system impulse response (leading-edge of 3

bins and trailing-edge of 26 bins). The resulting cube of his-

tograms is of size 283×183 pixels and T = 300 time bins. To

investigate several scenarios, we generate multiple histogram

cubes by varying the SBR ratio logarithmically in [0.01, 100]
and the average photons-per-pixel (PPP) in [0.1, 1000] (this

PPP combines signal and background counts, useful signal

counts can be deduced from the PPP and SBR values). In

addition, we consider two background shapes, a conventional

uniform shape (i.e., bn,t,k = bn,k) where the background level

1Available in: http://vision.middlebury.edu/stereo/data/
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Fig. 2. 3D representations of the art scene for two levels of SBR and PPP obtained with uniform background. (a) Reference point cloud, (b-f) B-Class.,
(c-g) MNR3D [25], (d-h) MUSAPOP [27], (e-i) proposed algorithm. (b-c-d) SBR=1, PPP=10 per wavelength, (e-f-g) SBR=0.1, PPP=10 per wavelength.

is the same for all time bins, and a gamma shaped background

(i.e., bn,t,k ∼ G(α, β) where G denotes a gamma distribution

with parameters α = 2 and β = 30) often encountered when

imaging through obscurants (such as underwater or through

fog [17]). The proposed algorithm is considered with the

following parameters L = 3 with q(2) = 3×3 and q(3) = 9×9,

ζ = 2.7cm (i.e., 9 time bins), while considering the first depth

and intensity guides (GD1 and GI1). It is compared with the

Classical and B-Class. algorithms (matched filter before and

after removing non-uniform background), and the robust UA

algorithm whose depth and intensity regularization parameters

were tuned to provide best DAE performance. RT3D is not

considered here as the scene is only composed of one surface

per pixel. Fig. 3 shows the log scale DAE performance of

the considered algorithms when considering uniform (left

column) and gamma shaped backgrounds (right column). All

algorithms show good results for high SBR and PPP and

the performance degrades when decreasing SBR or PPP or

when considering a non-uniform background. The proposed

algorithm is more robust as it shows the lowest DAE even for

extreme cases (DAE≈ 0.01 for SBR=1 and PPP=1 photons).

The UA algorithm presents second best results, and shows

robust results. However, performance is slightly reduced for

high SBR and PPP levels due to considering a Gaussian IRF

instead of the asymmetric one used to simulate the data. The

B-Class. algorithm is more robust than Class. which highlights

the importance of the background removal step (consequently,

we will only compare with B-Class. without showing Class.

in following sections of the paper). Fig. 4 shows similar

behaviours when considering the recovered intensity images,

i.e., best robustness by the proposed algorithm followed by

the UA algorithm. While all algorithms perform well for high

SBR and PPP levels, it is worth noting that UA presented best

IAEs in this case although its results tend to be over-smoothed

(see Fig. 5).

In addition to depth and intensity maps, the proposed

algorithm also provides their corresponding uncertainty maps

(variance of the estimates), which help with decision making.

Fig. 3. Depth absolute errors (in log scale) obtained for the art scene with
different algorithms w.r.t. SBR and PPP levels. (top-row) Class. algorithm,
(second row) B-Class. algorithm, (third row) UA algorithm [19], (fourth
row) proposed algorithm. (Left-column) data with uniform background, (right-
column) data with gamma background. The lower DAE the better.

Fig. 5 shows the depth and reflectivity maps together with their

uncertainty maps for SBR=1 and PPP=10 photons for uniform

background (i.e., 5 signal photons on average). It is observed

that the proposed algorithm provides sharp depth maps due to

to the use of ℓ1 based sparsity inducing prior. Note that higher

uncertainty is observed on low reflectivity areas, near object

edges and on corrupted regions due to high-background levels.
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Fig. 4. Normalized intensity absolute errors (in log scale) obtained for
the art scene with different algorithms w.r.t. SBR and PPP levels. (top-
row) Class. algorithm, (second row) B-Class. algorithm, (third row) UA
algorithm [19], (fourth row) proposed algorithm. (Left-column) data with
uniform background, (right-column) data with gamma background. The lower
IAE the better.

Fig. 5. Estimated depth and reflectivity maps with the UA [19] and proposed
algorithms for SBR=1 and PPP=10 photons and uniform background. The
proposed algorithm provides additional uncertainty maps.

An advantage of the proposed algorithm is that it can benefit

from state-of-the-art algorithms and use their results as a

guide. We investigate here the performance of the proposed

algorithm when considering two depth guides (GD1 and GD2)

and three intensity guides (GI1, GI2, GI3). We repeat the

same experiment as above while fixing SBR=1 and varying

PPP. Fig. 6 shows the DAE and IAE performance of the four

variants, indicating an overall similar performance with a slight

advantage for GD1 when compared to GD2. GI3 provides

similar results as GI1, GI2 and is not represented for clarity.

In what follows, we consider the GD1 and GI1 guides for all

experiments.

Table I finally reports the computational time of the algo-

rithms considered indicating fast performance when compared

Fig. 6. Proposed algorithm using different depth and intensity guides on
the art scene at SBR=1 and different ppp levels. (top) depth errors, (bottom)
normalized intensity errors. GI3 provides similar results as GI1, GI2 and is
not represented for clarity.

TABLE I
AVERAGE COMPUTATIONAL TIME (IN SECONDS) OF THE COMPARED

ALGORITHMS ON 283× 183× 300×K DATA CUBE GENERATED WITH A

UNIFORM AND GAMMA BACKGROUND, WHERE K REPRESENTS THE

NUMBER OF WAVELENGTHS.

Average photons per pixel (PPP)
0.1 1 10 100 1000

Art, Class. 0.4 0.4 0.4 0.4 0.4
K=1 B-Class. 2.3 2.4 2.4 2.4 2.4

wavelength UA 37 42 65 62 136

Prop. 4.2 4.2 3.9 3.8 3.8

Class. 10 10 10 10

Art, B-Class. 17 18 17 17

K=3 MNR3D 110 185 146 97

wavelengths MUSAPOP 548 628 840 1169

Prop. 21 21 19 19

to the UA algorithm. Note that the computational bottleneck

of the proposed algorithm occurs when building downsampled

cubes necessary for background estimation, whose time is

indicated by B-Class. times (representing > 60% of proposed

algorithm computational times). It should be also noted that

most operations of the proposed algorithm are pixel-wise or

bin-wise independent, and a much reduced computational time

is expected by using parallel computing tools.

C. Evaluation on multispectral 3D Lidar data

This section analyses the performance of the proposed

algorithm for multi-spectral Lidar imaging. We consider 3

wavelengths of the Art scene to generate three histograms

of counts with the same realistic IRF as in Section VI-B

while varying SBR and PPP levels. The proposed algorithm

is considered with the same hyperparameters (as in Section

VI-B), and is compared with the MUSAPOP algorithm (used

with the authors’ parameters) and the MNR3D algorithm.

The latter algorithms are designed to process multi-spectral

data and delivers point clouds hence the use of probability

of detection, and number of false detections to evaluate

performance. Note that MNR3D operates on the data cubes

which requires large memory, thus it has been applied on
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Fig. 7. PD and false detections of the Class, B-Class., MNR3D, MUSAPOP
and proposed algorithms for different SBR, PPP levels and background shapes,
with an error distance of τ = 10bins.

spatially downsampled data of size 142 × 92 pixels and 300
time bins and final results have been upsampled using nearest

neighbour interpolation. Fig. 7 represents these two criteria

for five algorithms when considering a uniform (cross marker)

and gamma shaped backgrounds (circle marker) for two SBR

levels and several PPPs at τ = 10 bins (where PPP is the

average number of photons per pixel and per wavelength). The

proposed algorithm presents best performance (highest true

detections and lowest false ones) highlighting its robustness

due to the efficient use of the multi-scale information. Fig. 2

shows an example of the obtained point clouds with different

algorithms for uniform background. MUSAPOP is better than

B-Class. and MNR3D, but fails to process the noisy case

where only one signal photon is present against 9 background

counts on average (SBR=0.1, PPP=10 photons). The proposed

algorithm presents best performance and is robust to noise. In

addition, it does not join disconnected surfaces (due to the use

of sparsity inducing Laplace prior for the depth) and shows

sharp intensity values (due to the weighted and depth guided

reflectivity reconstruction). Table I finally highlights the fast

computational time of the proposed algorithm when compared

to the MUSAPOP and MNR3D algorithms.

VII. RESULTS ON REAL DATA

A. Results on real 3D underwater data

The proposed algorithm is validated on real underwater

Lidar data of a moving target (painted metal flange 13 mm

thick, diameter of 70 mm, with 7 mm diameter holes) put

at a stand-off distance of 1.7m from the end of the water

tank nearest the sensor (see the target in Fig. 8 (a)). The

data were acquired in lab settings using a CMOS Si-SPAD

detector array based system acquiring binary frames at a rate

of 500fps, with 1ms acquisition time per frame, 700 time bins

and 34ps per bin [11]. The 128×192 pixels binary frames were

pre-processed by building histograms of counts every 10ms

(max of 10 counts per histogram). Different concentrations

of a commercially available antacid medicine, called Maalox,

were mixed with water to obtain varying scattering levels of

the imaging environment. With high Maalox concentrations,

the turbid water is highly scattering leading to a non-uniform

background as shown in Fig. 9.

The proposed algorithm is considered using the hyper-

parameters of Section VI-B and the guides GD1 and GI1.

Results are compared with the B-Class. algorithm and the

RT3D algorithm. The UA algorithm is not considered as it

assumes the presence of a target in all pixels which is not

satisfied in this case. Fig. 8 shows the 3D point clouds obtained

with the different algorithms for clear water (b-c-d) and turbid

water (e-f-g)2. All algorithms performed well in clear water.

However, both RT3D and B-Class. performed poorly in turbid

water due to non-uniform background affecting the data, and

leading to the detection of a fake object in front of the

true target. The proposed algorithm successfully eliminates

the background counts and retrieve a good reconstruction of

the target even under these extreme imaging conditions. In

addition, the proposed algorithm also provides uncertainty

maps for the estimated parameters, as indicated in Fig. 10.

These maps show higher uncertainties when imaging through

scattering water, and near object edges. More results when

considering other frames at AL=1.2 are provided in video 1,

video 2, and at AL=4.8 in video 3, video 4.

B. Results on real photon starved multispectral data

The proposed algorithm is validated on real multispectral

Lidar data of a static lego target (see Fig. 11 (left) for a

reference acquired at 40 ms acquisition time per pixel) [23].

This data has 200×200 pixels, T = 1500 bins (a bin represents

2ps) and L = 4 wavelengths acquired at 473, 532, 589 and

640 nm. We are interested in the sparse photon regime and

analyse performance with six acquisition times per pixel as

follows 0.05, 0.1, 0.5, 1, 10, 40 ms, leading to average photon

counts of 1.4, 2.9, 14.5, 29, 289, 1159 photons per pixel and

per wavelength with SBR ∈ [50, 60]. Fig. 11 shows the

reference point cloud (obtained with the B-Class. algorithm

on 40ms data after correcting outliers) and the reconstruction

results with the B-Class., MUSAPOP, MNR3D and proposed

algorithms at 500µs acquisition time per pixel. The B-Class.

provides multiple false detections, and a noisy reflectivity im-

age. MNR3D operates on the data cubes which requires large

memory, thus it has been applied on spatially downsampled

cubes of size 100 × 100 pixels and 300 time bins, and the

final results have been upsampled using nearest neighbour

interpolation. Both MNR3D and MUSAPOP improve results

compared to B-Class. but show blocky-points, and blurred

reflectivity. In contrast, the proposed algorithm provided the

best performance with distinct surfaces and sharp reflectivity

image even at this low level of photons. Fig. 12 indicates the

true detection probability and number of false detection for the

studied algorithms, indicating the superiority of the proposed

algorithm.

2 Attenuation length (AL) is an indication of the effect of optical attenua-
tion, and is the distance over which the light intensity is reduced to 1/exp(1)
of its original value. AL = αd, when the light propagates a distance d in
water with attenuation coefficient α [11].

https://www.dropbox.com/s/vwmufthk9guvuh1/Video_Depth_Reflect_10ms_AL1.2_XcorrW0_Prop.avi?dl=0
https://www.dropbox.com/s/7vmlha5dl5jhkh6/Video_PC_10ms_AL1.2_XcorrW0_Prop.avi?dl=0
https://www.dropbox.com/s/99s63l3dzhx4czo/Video_Depth_Reflect_10ms_AL4.8_XcorrW0_Prop.avi?dl=0
https://www.dropbox.com/s/ievuughgmis1pvg/Video_PC_10ms_AL4.8_XcorrW0_Prop.avi?dl=0
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Fig. 8. (a) Target used for underwater imaging experiments. 3D representations of underwater scenes with (b-e) B-Class., (c-f) RT3D [34] and (d-g) the
proposed algorithm. (b-c-d-e) clear water with AL=1.2, (f-g-h-i) turbid water with AL=4.8 (these AL values are for transceiver to target, and not round-trip).

Fig. 9. Examples of the obtained histogram summed over all pixels for (top)
clear water with laser power 1.2 mW, (bottom) turbid water with laser power
8 mW, when imaging the flange target located around the 500 time bin. The
bottom curve highlights a non-uniform background (see the region 100 - 400
bins). The shape of the peak is different in the two histograms because the
target return is visible in different pixels during the two measurements, as the
target moves across the field of view of the camera.

VIII. CONCLUSIONS

This paper addressed the combination of several challenging

problems using a new robust Bayesian algorithm for the

reconstruction of multispectral single-photon Lidar data. The

algorithm exploited multi-scale information to improve depth

and reflectivity estimates under extreme conditions due to low

light level illumination or imaging through turbid media. The

framework has the ability to incorporate other state-of-the-

art denoisers/estimators or fuse information from additional

sensing sources, in addition to providing uncertainty measures

Fig. 10. Estimated Depth values and uncertainty maps using the proposed
method for (top) clear and (bottom) turbid water.

regarding the estimates which is crucial for decision mak-

ing. The algorithm has been validated on different scenarios

using both simulated and real data, leading to best results

in presence of a high and possibly non-uniform background

noise, and a significant speed improvements over other state-

of-the-art algorithms. Future work will generalize the proposed

strategy to process multiple detections per-pixel as observed

in object’s edges or when imaging through semi-transparent

surfaces. Current implementation was done in Matlab, and

a computational improvement is expected by using parallel

computing tools (such as GPUs) which is being investigated.
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Fig. 11. 3D representations of Lego scene with different algorithms obtained
at 500µs acquisition time per pixel and 14 average counts per pixel and
wavelength.

Fig. 12. PD and false detections of the B-Class., MNR3D [25], MUSAPOP
[27], and proposed algorithms for the Lego data at different acquisition times
per pixel with an error distance of τ = 30bins.

APPENDIX

APPROXIMATE LIKELIHOOD

In absence of background counts, (3) can be written for the
nth pixel as follows

P (syn|rn, dn) ∝
∏

t,k

[rn,kfk (t− dn)]
syn,t,k exp [−rn,kfk (t− dn)]

syn,t,k!

(30)

or equivalently

P (syn|rn, dn) ∝
K
∏

k=1

[rn,k]
∑T

t=1
syn,t,k

×
∏

t,k

[fk (t− dn)]
syn,t,k

1
syn,t,k!

×
K
∏

k=1

exp

[

−
T
∑

t=1

rn,kfk (t− dn)

]

.(31)

Assuming
∑T
t=1 fk (t− dn) = 1, ∀k leads to

∑T
t=1 rn,kfk (t− dn) = rn,k

∑T
t=1 fk (t− dn) = rn,k.

In addition, denoting s̄n,k =
∑T
t=1

syn,t,k gives

P (syn|rn, dn) ∝
K
∏

k=1

r
s̄n,k

n,k exp (−rn,k)

×
∏

t,k

[fk (t− dn)]
syn,t,k

1
syn,t,k!

. (32)

Adopting a Bayesian strategy and assuming that the parame-

ters rn, dn are random, (32) shows that rn,k follows a gamma

distribution as indicated in (4). This was expected as gamma

is a conjugate distribution of the Poisson distribution.
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