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Abstract

In airline scheduling a variety of planning and operational decision problems
have to be solved. In this thesis we consider the problems aircraft routing and
crew pairing: aircraft and crew must be allocated to flights of a schedule in a

minimal cost way.

Although these problems are not independent, they are usually formulated as
independent mathematical optimisation models and solved sequentially. This
approach might lead to a suboptimal allocation of aircraft and crew, since a
solution of one of the problems may restrict the set of feasible solutions of the

problem solved subsequently.

Also, in minimal cost solutions, aircraft and crew are highly utilised and short
turn around times are usually used for aircraft and crew. If such a solution is
used in operations, a short delay of one flight can cause very severe disruptions
of the schedule later in the day due to the lack of buffer times. We formulate an
integrated aircraft routing and crew pairing model that can generate solutions
that incur small costs and are also robust to typical stochastic variability in

airline operations.

We propose two new solution methods to solve the integrated model. The
first approach is an optimisation based heuristic approach that is capable of
generating good quality solutions quickly, the second approach can solve the

integrated model to optimality.

In an extension of the integrated model we allow the departure times of some
flights in the schedule to vary in some time window. This creates additional
flexibility that leads to aircraft routing and crew pairing solutions with im-
proved cost and robustness compared to the integrated model without time

windows.



w Abstract

Using data from domestic Air New Zealand schedules, we evaluate the benefits
of the approaches on real world problem instances. Our solutions satisfy all
rules imposed for these problems and are ready to be implemented in practice.
We generate solutions that dramatically improve the cost and robustness of

solutions obtained by existing methods.
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Introduction

The area of research addressed in this thesis is airline scheduling. Airline
scheduling traditionally consists of solving the following five planning problems
one after the other. First, marketing decisions in the schedule design problem
determine the schedule of flights the airline operates. Given the set of flights in
a schedule, the solution of the fleet assignment model determines which flight
is operated by which aircraft type. Next, the aircraft routing problem seeks a
minimal cost assignment of available aircraft to the flights. Similarly, the crew
pairing problem (or tour of duty problem) allocates generic crew to flights in
a minimal cost way. A set of generic crew pairings is constructed subject to
many rules to ensure that each flight is covered by the correct number of crew
members. The last of the planning problems is the crew rostering problem.
Based on the constructed crew pairings, a line of work is assigned to each

individual crew member.

Traditionally, all five scheduling problems are solved in sequence although the
problems are interdependent. Clearly, all subsequently solved problems must
assign aircraft types, aircraft, and crew to the flights that are determined in
the schedule design problem. Once the fleet assignment problem is solved, one
aircraft routing problem is solved for each fleet type. The crew pairing problem
depends on the aircraft routing problem, since the connection time between
two flights a crew is allowed to operate can differ depending on whether the
crew stays on the same aircraft or not. Finally, individual crew members are
assigned to generic crew pairings in the crew rostering problem. Since airlines
operate in a highly competitive market, the main goal of most of these prob-
lems is the minimisation of a cost objective. The decline in airline passengers
following the events of September 2001, rising fuel prices, and competitive

pressure from low-cost airlines increase the need for traditional airlines to op-
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erate as efficiently as possible. Solving the five problems sequentially can lead
to a suboptimal solution due to the interdependencies between the problems.
Once one problem is solved, the solution of this problem may restrict the
feasible solutions of all subsequently solved problems resulting in an overall
suboptimal solution. Additionally, a large percentage of the variable costs of
airline operations occurs in the crew pairing problem which is solved late in

the sequence.

The minimisation of planned costs alone to create a highly efficient schedule
neglects the characteristics of the environment in which such a schedule is
operated. A highly efficient schedule usually features very short ground times
between flights for aircraft and crew to keep aircraft utilisation high and crew
costs low. During airline operations, however, disruptions are likely to occur
because of delayed passengers, aircraft malfunction, or weather conditions, to
name just a few. Once disruptions occur and ground times between flights
of one aircraft are minimal, the flights operated subsequently by the same
aircraft will also depart late. If, additionally, crew are changing aircraft on a
connection with short ground time after a delayed flight, the flight operated
subsequently by the crew will most likely also depart late. Such a propagation
of delay can quickly cause serious disruptions of wide parts of the schedule.
We refer to a schedule where the effects of an initial disruption on other flights
in the schedule are minimal as operationally robust. A schedule that is not
robust can cause large additional costs for an airline, for example requiring
reserve crews and passenger re-accommodation, and resulting in damage to

reputation.

A famous example of the effects of operating a non-robust schedule was pro-
vided - not intentionally - by the UK based low-cost airline Easyjet in August
2002. Many flights were delayed or cancelled and thousands of passengers had
to be re-accommodated all over Europe. The airline was operating highly cost

efficient crew pairings together with very short connection times:

Many budget airlines have fast turnarounds, with airlines unload-

ing their passengers and quickly re-boarding.
This allows them to make the maximum use of their small fleets.

While the strategy is cost effective, it also increases the likelihood
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of cancellations when technical or staffing problems arise.!

Delays on a Saturday morning propagated throughout the day and became so
severe that crew reached their maximum working hours and it became illegal

for them to continue operating:

Crews caught up in the delays worked up to their maximum hours

and then had to be allowed home to rest.?

The reasons for the accumulation of delays were described by a spokesperson

of Easyjet:

We thought the new rostering system would be more efficient and
better. It proved to be anything but that. [...]

The system was “splitting up” crews, meaning that a re-fuelled
plane and a pilot could be waiting at Luton airport but the cabin
crew would be stuck in Barcelona. It [Easyjet] plans to return to

its old rostering system next month.?

It took the airline several days to recover from this operational disaster until all
flights were departing as scheduled. The airline subsequently removed some of

the flights from their schedule to allow for more buffer time during operations.

Ehrgott and Ryan [2002] and Yen and Birge [2006] have shown that the robust-
ness of crew pairing solutions can be significantly improved if aircraft changes
are only made when ground time between the incoming and outgoing flights
is much greater than the minimum ground time. This can be achieved in the
crew pairing problem by penalising aircraft changes when ground time is short.
Robust crew pairing solutions then have “crew following the same aircraft” as
much as possible and changing aircraft only when ground time between flights
is much longer than the minimum. In this sense, the robust crew pairing
solution depends on the given aircraft routing solution. Again, a sequential
solution method may result in a suboptimal solution compared to a solution

method that considers both problems simultaneously.

"http://news.bbc.co.uk/2/hi/business/2182650.stm (14,/05/2008)

Zhttp://news.bbc.co.uk/2/hi/uk news/2172537.stm (14,/05/2008)

3http://www.telegraph.co.uk/news/uknews/1404034/Easyjet-cancels-flights-as-rota-
fails.html (14/05,/2008)
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Clearly, there exists a trade-off between minimal planned cost and operational
robustness. Ideally, we would like to solve a bicriterion problem with the two
objectives of cost and robustness considering all airline scheduling problem
simultaneously in one integrated model replacing the traditional sequential
approach. Such a formulation to integrate all airline scheduling problems is
currently intractable. All individual problems are already hard to solve and

integration increases the complexity of the formulation.

As a step towards integration of all airline scheduling problems, three of the
problems are considered in this thesis: schedule design, aircraft routing, and
crew pairing. We investigate whether it is possible to reduce the cost of the
sequential approach solution and simultaneously increase its robustness by
considering the three problems simultaneously rather than sequentially. We
expect the largest gain in cost and robustness by considering these three prob-
lems and do not include the fleet assignment and crew rostering problems in
our formulation. The fleet assignment model is important for large airlines
with multiple aircraft types. In the context relevant for this thesis, the fleet
can be regarded as homogeneous and fleet assignment can be omitted. The
main objective of the crew rostering problem is maximising crew satisfaction
rather than minimising cost. The crew rostering problem has therefore no

influence on the cost of the overall solution and is also not considered.

In the first part of the thesis we only consider two of the problems: aircraft
routing and crew pairing. We formulate the robust and integrated aircraft
routing and crew pairing problem in one integrated model. This model yields
one optimal solution for the two problems where the objective function is
a weighted sum of cost and a robustness measure, penalising crew changing
aircraft in the objective function. Because the problem is hard to solve, decom-
position methods are proposed in the literature to solve the integrated problem
(see for example Mercier et al. [2005]), but excessive computation times are
necessary to solve the model to optimality. We propose two novel solution
methods for the integrated model: an iterative approach and a Dantzig- Wolfe

decomposition approach.

The iterative approach is an optimisation-based heuristic approach: instead of
solving the integrated model, the two original problems are solved iteratively.

Starting with a cost minimal crew pairing solution, in each iteration we solve
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the aircraft routing problem first, taking into account the current crew pairing
solution, i.e. encouraging aircraft to follow the crew. Then, given the aircraft
routing solution we re-solve the crew pairing problem and this time encourage
the crew to follow the aircraft. We only use the objective functions in both
problems to pass information from the problem solved previously to generate
more and more robust solutions. Hence, the constraints of the models are unal-
tered and the complexity of the two problems is not increased. This procedure
generates a series of feasible solutions for the integrated model with varying
costs and robustness measures. The airline is not required to associate a mon-
etary value with robustness a priori but can observe the trade-off between cost

and robustness and then choose a solution they prefer to operate.

Various crew groups such as captains, first officers, and flight attendants are
required to operate an aircraft. We therefore extend the iterative approach

and consider multiple crew groups at the same time.

While the iterative approach generates feasible solutions very quickly, it cannot
guarantee to find a solution of a certain quality specified beforehand. Neverthe-
less, a (possibly infeasible) lower bound on the crew pairing cost is provided by
the algorithm so that the worst case solution quality can be observed. To ob-
tain feasible lower bounds on the solution quality, we propose a Dantzig-Wolfe
decomposition approach capable of solving the integrated model to optimality
for a weighted sum objective function of crew pairing cost and robustness mea-
sure. Again, both problems are solved individually and the original structures
of the problems are preserved. Aircraft routing problem and crew pairing prob-
lem each form one subproblem of the decomposition approach. The approach
iterates between a master problem and both subproblems until an optimal

solution to the integrated model is found.

In an extension, the schedule design problem is partially integrated into the
formulation. We do not consider constructing a schedule from scratch because
this problem is passenger demand driven and very complex. Also, a high degree
of consistency is required between successive schedules. The departure times of
some flights in the schedule are allowed to vary in some interval, which is why
the problem is called the time window problem. We investigate whether such
flexibility can further increase robustness and decrease crew pairing costs. The

problem is difficult since we consider weekly scheduling periods and all flights
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with the same flight number and same origin and destination must depart at
the same time on all weekdays. Therefore, constraints must be included in
the model to synchronise departure times for such flights over multiple days.
We propose a model for the robust and integrated aircraft routing and crew
pairing problem with time windows and propose two solution methods for this
problem. The first method uses an aircraft routing solution and a crew pairing
solution as input. The sequences of flights included in routings and pairings
of the solutions remain fixed. We find re-timings of the departure times for
the fixed sequences such that robustness is maximised. In a second method
we allow time windows within the iterative approach. A branch-and-bound
algorithm that enforces branches on the time windows is used to synchronise

the departure times.

In order to verify the performance of our solution approaches, we apply all so-
lution methods to various domestic airline schedules of Air New Zealand. The
iterative approach yields low cost solutions which are highly robust compared
to the traditional sequential approach. We compare the quality of the solutions
of the iterative approach with optimal solutions obtained by the Dantzig-Wolfe
decomposition approach. We also compare the performance of the Dantzig-
Wolfe decomposition approach with that of Benders decomposition which is
currently known as the most successful approach in the literature. However,
the approach has the disadvantage of adding constraints to the original for-
mulations which can cause computational difficulties. By applying both time
window solution methods, we demonstrate significant further savings in crew
pairing cost and robustness. Often, the departure times of only very few flights

are changed to achieve the improvements.

The main contributions of this thesis can be divided into two parts. Firstly,
from a theoretical point of view, we want to answer the question whether it
is possible to solve the integrated aircraft routing and crew pairing problem
(with and without time windows) by a decomposition method that does not
add constraints to the individual models of aircraft routing and crew pairing
problems. This enables us to use existing efficient solution methods to solve
each individual problem. All solution methods we propose preserve the original
structures of aircraft routing and crew pairing problems. Secondly, the main
focus of this thesis is to solve a practical problem. This poses additional chal-

lenges compared to solving a simplified mathematical model that only partially
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reflects reality. All rules and requirements of the Air New Zealand problem
are considered in our solution approaches. We do not make any simplifications

and the solutions we generate are ready to be operated in practice.

The thesis is organised as follows. In Chapter 1 we discuss mathematical mod-
els and solution methods that are commonly used in airline scheduling and
for other operations research problems. The concepts are used throughout the
thesis and being familiar with them is helpful to understand the motivation
behind our methodology. We describe operations research problems in the
airline industry and review the most relevant approaches in the literature in
Chapter 2. The chapter provides detailed information on the problems we are
interested in as well as on the planning process of airline scheduling in general.
In Chapters 3 and 4 we describe in detail our solution approach for the aircraft
routing and crew pairing problems, respectively. We list details on the particu-
lar problem instances and the specialised solution techniques that are tailored
to address the specific problems. While the production crew pairing solver was
provided by Air New Zealand to be used for the computational experiments,
an aircraft routing algorithm and algorithms to solve all integrated problems
were implemented from scratch. In Chapter 5 we describe the integrated and
robust aircraft routing and crew pairing problem. We present a model and
various solution approaches. These approaches are compared in an extensive
computational experiment section. In Chapter 6 we enhance the model by
also considering time windows. We again present computational experiments

before we summarise our experiences and results in the Conclusion.






Chapter 1
Mathematical Background

In this thesis a number of different airline optimisation problems are addressed.
Many of these problems can be formulated as mathematical optimisation mod-
els that have similar structures and many properties in common. Hence, the
solution techniques to solve the various problems also have many similarities.
In this chapter, we review the most popular models and solution techniques

used for airline optimisation problems.

A linear optimisation model where all of the solution variables are required to

be integer valued is called integer program (IP):

Minimise ¢’z
subject to Az = b (1.1)

r € Z%.

The integer matrix A is of size m X n, ¢ and b are integer vectors of size n
and m, respectively, and @ is required to be integer. If only some (or none) of
the variables @ are required to be integer (1.1) is called mized integer program
(or linear program (LP)). In this thesis, variables  are also assumed to be
non-negative unless stated otherwise. To solve (1.1), usually the linear relaz-

ation (or LP-relaxation) of problem (1.1) is solved first, where the integrality
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conditions on the @& variables are relaxed:

Minimise ¢’z
subject to Ax = b (1.2)
x > 0.

Column generation techniques (see Section 1.3) are often used to solve the
LP-relaxation. Once problem (1.2) is solved, a branch-and-bound method (see
Section 1.4) can be used to solve the original problem (1.1). Many airline op-
timisation problems can be formulated as large scale set partitioning or multi-
commodity flow problems which are special cases of (1.1). In the subsequent

sections we describe these two problems.

1.1 Set Partitioning Problem

The set partitioning problem (SPP) (see Wolsey [1998]) can be formulated as

follows:
Minimise c’x
subject to Ax = 1 (1.3)
x € {0,1}™

The set S we want to partition contains m elements and matrix A is a m X n
binary matrix. Each column a;,1 < j < n, of A represents a subset of S and
contains a 1 in row ¢ if element ¢ € S is an element of this subset and a 0
otherwise. Value ¢; € R represents the cost of column a;. The solution of

(1.3) is a cost minimal partition of the set S.

An example in airline scheduling where the set partitioning model can be used,
is assigning crew members to operate flights of a schedule. All flights in the
schedule form the set S and the columns of A represent subsets in the form
of sequences of flights a single crew member can operate. All flights of the
schedule must be partitioned so that each flight is operated by some crew

member.

Sometimes additional constraints are used to model the consumption of limited
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resources. When these constraints with non-unit right-hand sides are added
to problem (1.3) the resulting problem is called a generalised set partitioning
problem. These constraints may for example limit the number of crew available

at a particular crew base.

A special form of the set partitioning problem is the so-called rostering problem.
For the rostering problem the matrix A can be written as A = ( 1‘2,/,). A subset of

rows (denoted by A’) of matrix A forms the following block-diagonal structure:

11 1 00 - 0 00 0
| 00 0 11 1

00 - 0

00 0 00 0 11 1

For example, if a task requires to assign sequences of jobs to a number of
employees then the constraints formed by A’ ensure (together with the right
hand side equal to 1) that exactly one sequence of jobs is assigned to each
employee while the remaining constraints formed by A” ensure that each job

is assigned exactly once.

The constraints represented by A’ are called convexity or generalised upper
bound (GUB) constraints.

If we replace the = sign in (1.3) with < (or >), the corresponding formulation

is called set packing problem (or set covering problem).

Zero-One Matrices with Integer Property

Three classes of zero-one matrices are known to ensure that all extreme points
of the LP relaxation of (1.3) are integer and are referred to as matrices with the
integer property. This means we can replace the binary conditions € {0, 1}"
with lower and upper bounds 0 < x < 1 and are still guaranteed to find
an integer optimal solution. This greatly simplifies the solution procedure of
(1.3), see Sections 1.3 and 1.4 below. The three classes known are totally
unimodular [Hoffmann and Kruskal, 1956], balanced [Berge, 1961], and perfect
[Padberg, 1974]. A matrix is called totally unimodular, if the determinant

of every square submatrix is -1, 0, or 1. A matrix is balanced if it does
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not contain any square odd submatrix with row and column sums equal to
2, i.e. the submatrix does not contain an odd order 2-cycle. We explain the
structure of perfect matrices in Section 3.3.4 where we see that the class of
perfect matrices is useful for rostering problems. The class of perfect matrices
is the largest class and contains the class of balanced matrices which in turn

contains the class of totally unimodular matrices.

1.2 Multi-Commodity Flow Problem

Another common formulation frequently used to solve airline optimisation
problems is the multi-commodity flow problem (MCF) (see Ahuja et al. [1993]).
A network G(V, A) with nodes V' and directed arcs A linking the nodes is given.
Each arc a(u,v) € A has a capacity ¢(a(u,v)). Note that multiple arcs may
connect nodes u and v. A total of k commodities K, Ko, ..., K} are defined
by K;(s;,t;,d;) where s; and t; are source and sink nodes of commodity ¢ and
d; is the demand. The non-negative value of variable f;(a(u,v)) represents the
flow of commodity i along arc a(u,v). The minimum cost multi-commodity

flow problem can be stated as follows:

Minimise Z (Z pi(a(u,v))fi(a(u, v))) (1.4)

a(u,w)eA \i=1
k
subject to Zfi(a(u,v)) < c(a(u,v)), for all a(u,v) € A,
i=1

> fila(w,v)) = > fila(v,w)) = b, forallveV,1<i<k,
weV weV
where p;(a(u,v)) is equal to the cost of sending one unit of flow of commodity
—d;, ifv=s;
i along arc a(u,v) and b} = d;, ifv=t
0, otherwise.

The first set of constraints models capacities on the edges. The second set
ensures flow conservation at each node: for each node that is not a source or
a sink of commodity ¢, the amount of commodity ¢ that enters the node must

also leave the node. Also, the flow of commodity i that leaves the source node
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and enters the sink node must be equal to d;, respectively. Constraints can be
added to ensure that a certain amount of a commodity flows through a node.
Model (1.4) assumes a single source and sink node for each commodity. If
multiple source or sink nodes are required, artificial super source or sink nodes
can be added. Super source and sink nodes are only linked to the original
source and sink nodes, respectively. The capacities on the arcs linking super
nodes and original nodes are set to the original supply and demand of the

commodity, respectively.

The aircraft routing problem (see Chapter 3) can be formulated as a multi-
commodity flow problem. A network representation of the flight schedule is
used where flights are represented by nodes and two nodes are joined by an arc
if an aircraft can operate these two flights in sequence. Commodities (i.e. air-
craft) are shipped through this network such that the number of commodities
arriving at an airport, is also departing from this airport (flow conservation).
A capacity constraint on the source node can ensure that only the number
of available aircraft is used. Additional constraints ensure that each flight is

operated by exactly one aircraft.

1.3 Column Generation

The simplex algorithm is commonly used to find a cost minimal solution to a
linear program (1.2). A minimal cost solution x* of (1.2) is attained at one
of the extreme points of the set X = {& : Ax = b,x > 0}. The simplex
algorithm iterates from one extreme point to an adjacent extreme point until
a cost minimal solution is found. Each extreme point is represented by a
set of m linearly independent columns of A, the so called basis. An adjacent
extreme point is reached by swapping exactly one basic column with one non-
basic column of A. As the basis entering column (pricing step of the simplex
algorithm), the column with minimal reduced cost over all non-basic columns
is chosen if this cost is negative. Otherwise, optimality of the current solution
(extreme point) is guaranteed and the algorithm stops. The reduced cost of a

non-basic column ag of matrix A is calculated as follows:

ry = (cs - ch]}las) .
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Costs ¢, and cp are associated with columns a, and the basis matrix Ap,
respectively. The vector m = c¢5 A" is the dual vector of solution x. For a
detailed description of the simplex algorithm see for example Chvétal [1983]
or Schrijver [1986].

For practical problems in the airline industry the matrix A in problem (1.2) can
contain a very large number of columns. In fact this number can be so large
that it may take a very long time to even construct the matrix and the simplex

algorithm may not be able to find the optimal solution within reasonable time.

Ford and Fulkerson [1958] and Dantzig and Wolfe [1960] introduced the idea of
only implicitly considering all variables. The method is called delayed column
generation (see Liibbecke and Desrosiers [2004] for more details) and works
as follows. Instead of problem (1.2) the so called restricted master problem is

solved with the simplex method:

Minimise 7z
subject to Az = b (1.5)
x > 0.

Matrix A’ initially only consist of a small (possibly empty) subset of all columns
contained in A and ¢’ contains the costs accordingly. To guarantee feasibility of
(1.5), an artificial identity matrix is appended to A’. In the pricing step of the
simplex algorithm a column with negative reduced cost which enters the basis
must be found. Not only all non-basic columns of A" are checked for negative
reduced cost but also all columns of the original matrix A not yet contained in
A’. For the latter part the so-called column generation subproblem is solved. If
7 is the dual vector of the current basic solution the subproblem must identify
a column ag of A with negative reduced costs rs = (¢ —7TTCLS) < 0 or guarantee

that no such column exists.

The method is particularly beneficial whenever the column generation subprob-
lem can be solved efficiently, e.g. as a combinatorial optimisation problem. In
this case it may not be necessary to know all columns of matrix A explicitly to
solve the original problem (1.2). The negative reduced cost columns and cor-
responding variables and costs are added to the restricted master problem and

the simplex algorithm continues. Once no negative reduced cost column can
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be found, the current solution of (1.5) is an optimal solution for the original
problem (1.2).

1.4 Branch-and-Price

Once the LP-relaxation of (1.1) is solved it is likely that some variables of & will
have non-integer values. Most applications in airline scheduling require integer
solutions. For example, it does not make sense to operate a single flight by
two halves of an aircraft. A technique called branch-and-bound (see Barnhart
et al. [1998b] for a survey) is then used to obtain integer solutions. The current
fractional solution is stored as the root node of the branch-and-bound tree. In
the branching step two nodes are added to the tree. At each node only a subset
of all variables is considered. Depending on some properties of the fractional
variables, we divide the variables into two (not necessarily disjoint) sets. At
one node only the first subset of variables is considered while at the other node
the second subset is considered. The variables are divided in such a way that
the previous fractional solution is infeasible at either node. At both nodes the
LP relaxation of (1.1) must be solved again where, additionally, all branching
decisions for the node must be satisfied. We choose a node to be solved first. If
the solution again contains fractional values the branching step is repeated on
the current node, otherwise an integer solution of (1.1) is found. Note that the
addition of two nodes at each branching step is the most common branching
procedure and called binary search. Other branching strategies, adding more

than two branches at each branching decision, can be used in a similar fashion.

At each node where an integer solution is found, the solution value is compared
to the LP-relaxation solution value and if the gap between both values is small
enough we terminate and return the integer solution. Otherwise, we store the
solution and continue to explore the branch-and-bound tree. Once we find
an integer solution we can stop branching on nodes that have a fractional
solution with larger objective value (bounding) than the best integer solution
found. The part of the tree below such a node cannot yield a better integer
solution. When solving the LP-relaxation at each node, we can also use the
column generation technique (pricing). The overall process of obtaining integer

solutions is then called branch-and-price. If we do not generate new columns
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in the branch-and-bound tree we cannot guarantee to find an optimal or even

feasible integer solution.

The branching decisions that are made are incorporated into the simplex algo-
rithm by removing variables that violate the current branching decisions. Vari-
ables can be removed by setting their upper bound to 0. The decisions must
also be obeyed in the column generation problem. Specially tailored branching
rules exist for many airline scheduling problems. These are described in more

detail in the model and solution sections.

Another technique to obtain integer solutions is to add constraints that cut
off the current fractional solutions and is called cutting plane method. This
method can be combined with the methods described above to branch-and-cut

and branch-and-price-and-cut, respectively.

1.5 Linear Program Decomposition Principles

In this section common decomposition principles for large scale linear programs
are described and compared, namely Dantzig-Wolfe decomposition, Benders
decomposition, and Lagrangian relaxation. The common idea of decomposition
principles is to decompose the original problem into smaller problems that can
be solved more efficiently. These problems are then solved iteratively and
information is passed from one to another until an optimal solution for the
original problem is found. Similarly, in a relaxation method the difficult part

of the problem is relaxed and its violation is penalised in the objective function.

1.5.1 Dantzig-Wolfe Decomposition

In this section we describe the Dantzig- Wolfe decomposition principle. An
original LP is decomposed into an LP master problem and an LP subproblem
and both are solved by LP techniques. This is a special case of the column
generation principle (see Section 1.3) where the subproblem can have a more
general form and can also be solved by combinatorial optimisation or enu-

meration algorithms for example. The goal is to solve the following linear
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problem:
Minimise c’x
subject to Az > b (1.6)
x > 0,

with A € R™" b e R™ ¢ € R" and « € R".

A
We can rewrite this problem by splitting A and b into A = ( Al) and b =

(%) |

Minimise ¢’z
subject to Ajx > b
(1.7)
Agw 2 b2
x > 0,

where all A, Ay, ¢, by, by are real valued with appropriate dimensions.

If at least one of the sets of constraints is very large or hard to solve we can
decompose problem (1.7) into two smaller and thus easier to solve problems.
We reformulate problem (1.7) as the equivalent so-called Dantzig- Wolfe master
problem (see Dantzig and Wolfe [1960)):

Minimise ¢? (VA + W) (dual)

subject to Ay(VA + Wpu) > by — m (1.8)
17X = 1 — T,
A, nw > 0.

We define a polyhedron P = {x € R} |A;x > b}, P = conv ({v1,...,vx})U
cone ({wy,...,w;})andsets V = {vy, vy, -+ ,vptand W = {wy, wy, -+ ,w;}.
Set V' contains the extreme points of polyhedron P and set W contains the
extreme rays of P. The set of constraints A;x > by is implicitly satisfied by
the construction of V and W and @ € P is represented as a sum of a convex

combination of extreme points and a conical combination of extreme rays of

P.
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As in Section 1.3, V and W are not needed to be known a priori but can
be constructed during the solution process of the master problem (1.8). To
solve the master problem, we start with initially empty matrices V and W
and solve this restricted master problem. To guarantee feasibility, an artificial
identity matrix is added to formulation (1.8). A phase I/II approach is used
or large costs are associated with the artificial variables to ensure that no
artificial variable has positive value in an optimal solution. We obtain a dual
vector 7 associated with constraints As(VA + Wp) > by and a dual value
7, associated with the convexity constraint 17 X. We solve a pricing Dantzig-

Wolfe subproblem to check if a column with negative reduced costs exists:

Minimise (¢! — nwl Ay)x — 7.
b, (1.9)

x > 0.

v

subject to Ajx

There are three possible outcomes for problem (1.9):

1. An optimal extreme point solution v exists with (¢ — w7 Ay)v — 7, < 0.
In this case we add the negative reduced cost vector v to matrix V of

the master problem.

2. Problem (1.9) is unbounded. Here, we obtain an extreme ray w with

(e — w7 Ay)w < 0 and add w to matrix W of the master problem.

3. The optimal solution & has non-negative reduced cost (¢! — w7 Ay)E —
m, > 0.

In cases (1) and (2) we add a negative reduced cost column to the master prob-
lem and re-solve the master problem and continue iterating between master
and subproblem. In the last case optimality of the master problem is guaran-
teed, or the problem is infeasible if artificial variables with positive value are
part of the solution. The optimal solution of the master problem is also an

optimal solution of the original problem (1.7).

In each iteration, a bound on the solution quality can be calculated. Suppose
¢ = min(c?’ —wT Ay)x is the optimal solution value of the current subproblem
(1.9) without constant 7, and 7 the associated dual of the optimal solution

of the current restricted Dantzig-Wolfe master problem. We can show that
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vector (72) is a feasible solution to the dual problem of (the unrestricted)
master problem (1.8) (see Wolsey [1998]). The value (bim 4 () is a lower
bound for the optimal solution value of (1.8) and hence (1.7). Combined with
the upper bound available from the optimal solution of the restricted Dantzig-
Wolfe master problem, we obtain an optimality gap for the solution and can

stop the algorithm once this gap is sufficiently small.

1.5.2 Benders Decomposition

Another frequently used decomposition technique is Benders decomposition
(Benders [1962], Minoux [1986]). Benders decomposition also iterates between
a master problem and a subproblem but here constraints are generated by the
subproblem and added to the master problem instead of variables as in the

Dantzig-Wolfe decomposition.
We now consider the following LP:

Maximise cfx; + clx

subject to Ajxy + Asxo (1.10)

IA
o

v
o

&1, T2

where Ay, As, b, ¢y, ¢y all take real values and x; and x5 are non-negative real

variables.

We want to eliminate variables ;. This can be achieved via projection. To

use projection we need to reformulate (1.10):

Maximise =z

subject to z — ey — cfxy < 0
) L 27 = (1.11)

All‘l + A2w2 S b

Ty, xy > 0

Using Fourier-Motzkin elimination (see e.g. Schrijver [1986]) this is equivalent
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to:

Maximise =z

subject to uz — welx; + vTAx; < 0'b (1.12)

(z) e C

with C' = {(3) € R™™ : ¥4, — ue] = 0,u > 0,v > 0}. We can represent
the polyhedral cone C' as a conical combination: C' = cone{ (1“)11), ey (53 )}

and we can rescale these extreme rays such that u; equals either 0 or 1. We

can write C' = cone({(&) 1k € K})+cone({(,, ) : j € J}) with KU J =
7 J

{1,...,s}, KNJ = (. With this representation of C' we can rewrite 1.12 as

the so-called Benders master problem:

Maximise z
subject to z < cfxy — vl (A —b) jeJ (1.13)
0 < — 'U%(Al.’ljl — b) ke K.

Similarly to the Dantzig-Wolfe decomposition approach, not all constraints are
considered from the start. We start solving the restricted master problem with
a small set (possibly empty in which case the optimal value of (1.13) z* equals
o0) C and populate C' during the algorithm by constructing constraints with a
subproblem. Each time the restricted master problem is solved, we check if any
constraint of the original problem is violated. Suppose the optimal solution
of the current restricted master problem is z*, xj. The check for violated

constraints can be achieved by solving the following Benders subproblem:

Minimise v7(b— Ajx¥) + u(—z*+ clx*
b Awi) + u(—= +ela) -

subject to () € C.

The subproblem is feasible since (8) € (' is a solution. If (8) is the optimal
solution then the master and the original problem is solved to optimality.
Otherwise we identified an extreme ray (,z‘,) with v*7(b — Ajx?) + u(—2* +
cl'x}) < 0. After rescaling, the ray will yield a constraint that is violated by
the current master problem solution. We add this constraint to the master

problem and re-solve.
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1.5.3 Lagrangian Relaxation

Lagrangian decomposition (Geoffrion [1974], Fisher [1981], Fisher [1985], Mar-
tin [1999]) is also successfully applied to a number of airline scheduling prob-

lems.

Again, we consider problem (1.7) and reduce the problem to include only one
part of the constraints. In contrast to Dantzig-Wolfe decomposition we now
add the second set of constraints to the objective function together with a

penalty for violation of the constraints.
This results in the Lagrangian relazation of (1.7) for any given XA > 0:
L(A) = Minimise ¢’ — A'(Ayz — by)

b, (1.15)

x > 0.

v

subject to Ajx

The solution value to (1.15) is a lower bound for the solution value of (1.7)

because for any feasible solution & of (1.7) the following equation holds:

c'e>c'z — N'(Ayx — by) > xzol,gilalzbl c'x — AT (Ayx — by) = L(X).

To solve (1.7) we maximise problem (1.15) over all A > 0. This is called the

Lagrangian Dual Problem:

Maximise L(A)
subject to A > 0.

(1.16)

The solution to (1.16) can be found with a subgradient method (see Schrijver
[1986]) which is easy to implement. We start solving (1.15) for a given Ay and
obtain a solution xg, then update Ag11 = Ay — V(Ao — by), and re-solve
(1.15). The value 74 is a specified step length and vector Asxy — by is called
the subgradient. This process continues until a stopping criterion is fulfilled,
e.g. the gap between a feasible solution of (1.7) and the lower bound obtained
by (1.16) is sufficiently small. If the solution of (1.16) is infeasible for (1.7), a

heuristic method can be used to obtain a solution for (1.7).

An alternative way to solve the Lagrangian dual problem is to reformulate the
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Figure 1.1. Block-diagonal matrix structure.

problem as a linear program with a large number of constraints (see Wolsey
[1998]). The LP can then be solved with a branch-and-cut method, which is
equivalent to applying Dantzig-Wolfe decomposition to the dual of the LP.

Other methods to solve the Lagrangian dual problem include bundle meth-
ods based on quadratic programming (Hiriart-Urruty and Lemaréchal [1993]),
analytic centre cutting plane methods based on an interior point algorithm
(Goffin and Vial [2002]), or ellipsoid methods (Khachian [1979)]).

1.5.4 Comparison of Decomposition Methods

Although the three decomposition methods seem to be very different they
are closely related to each other. Problem (1.10) is the dual problem of (1.7).
Equivalently, the Dantzig-Wolfe master problem and the Benders master prob-
lem are duals of each other. Benders decomposition is therefore equivalent to

applying Dantzig-Wolfe decomposition to the dual problem.

Additionally, the following equation holds:

min (¢’ —mfTA)x = min cTx—w"(Ayx—by) -7 by = L(w)—7"b,.
r>0,A12>b1 r>0,A12>b1

Therefore, the Dantzig-Wolfe subproblem and the Lagrangian relaxation prob-

lem yield the same lower bound on the solution value of the original problem.

In a particular case when the matrix structure is block-diagonal (Figure 1.1),

decomposition methods are used very successfully in many applications. When
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solving practical applications, the problems can be very large and a standard
simplex method cannot be applied because of performance and memory issues.
Decomposition methods perform well if it is possible to decompose the matrix
into several subproblems that are much smaller than the original problem. In
the example in Figure 1.1, only the coupling constraints in matrix B are kept
in the master problem while the problems with matrices A; and A can be
solved separately in two different subproblems, often even in parallel. This

can enable very fast solution times.

Other methods to solve large-scale linear or integer programs include bundle
methods (Hiriart-Urruty and Lemaréchal [1993]), Wedelin’s algorithm (Wedelin
[1995]), and cross decomposition methods (van Roy [1986]).

Integer Program Decomposition

All decomposition methods described can also be applied to general mixed in-
teger problems. Some care must be taken when conical or convex combinations
are computed to ensure integrality of the resulting vector. Which decomposi-
tion method is chosen to solve a problem depends on the particular structure
of the problem. Often the integer requirements or particular parts of the vari-
ables or constraints cause difficulties in which case these should be relaxed.

We consider a more general case than (1.7):

Minimise ¢’z
subject to Ax > b (1.17)
r € X

X = PNZ, and P € R™ a polyhedron. Relaxing constraints Ax > b with
Dantzig-Wolfe decomposition or Lagrangian relaxation again yields the same
bounds. By replacing X with conv(X) in formulation (1.17) both methods
can be solved by linear programming, the Lagrangian relaxation with a large
number of constraints, the Dantzig-Wolfe decomposition with a large num-
ber of variables. These constraints and columns are formed by sets V' and
W of extreme points and extreme rays of the set conv(X). The Lagrangian
relaxation approach yields multipliers for the problem while Dantzig-Wolfe de-

composition yields a feasible solution x where the integrality of x remains to
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be checked. It is not sufficient to use integer convex/conical combinations of
elements of sets V' and W for x to be integer. However, in the important
special case of a binary linear program when X € {0,1}", all integral points
of a bounded set X are already vertices of conv(X) and each z is the trivial
convex combination of a single element of V. Note that in the integer case, the
primal dual relationship between the master problems of Dantzig-Wolfe and
Benders decomposition does not hold any longer but depends on the structure
of conv(X).

Which solution approach is used depends on the model and the specific problem
instance. Quite often, different solution techniques must be compared on a
particular problem in order to verify the best approach. In some cases some
models are better suited than others. In case of primal degeneracy for example,
dual methods are usually preferred. However, if primal feasible solutions are
required throughout the solution phase, e.g. for early termination, a primal
method may be the only choice. The choice of a solution method also depends
on how fast a solution must be found and how accurate the solution needs
to be. A Lagrangian relaxation approach may quickly result in good lower
bounds but only a heuristic primal solution. Dantzig-Wolfe decomposition on
the other hand may result in a primal feasible solution but the simplex method

may require a long time to converge.

Finally, characteristics of the model are also important. It is desirable to obtain
subproblems that can be solved quickly. If the subproblems are naturally
integer, however, the LP relaxation of the Dantzig-Wolfe master problem is
not tighter than the LP relaxation of the original formulation and therefore
does not yield an improved lower bound. Hence, the integrality property of the
subproblems may be undesirable if the integrality gap of the original problem is
large (see Desrosiers et al. [1995]). For further and more in-depth discussion on
the topic we refer to Nemhauser and Wolsey [1988], Liibbecke and Desrosiers
[2004], and Ralphs and Galati [2006].

1.6 Multiobjective Optimisation

An increasingly important concept in airline scheduling problems as well as

in many other areas of operations research is multiobjective optimisation (or
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multicriteria optimisation). In all formulations presented in this chapter so far,
only a single objective is considered. In practical applications often multiple
objectives must be optimised simultaneously. In most cases these objectives
contradict each other. In this brief overview we consider an integer program
with two objectives (1.18). We refer to Ehrgott [2005] for more details. A

biobjective integer program is defined as:

2 (x
Minimise z(xz) = (@)
(@) (1.18)
subject to Ax = b
r € 7"

The feasible set is called X. Its image under the objective function is called

Z = z(X). We define the following order on the objective space R?:
yv' 2y o y<y k=12 y #v5y v e R

Our goal when solving the biobjective problem is to find feasible solutions
such that no other feasible solutions exist that are better with respect to one
component of the objective vector z(x) and not worse with respect to the

second component.

Definition 1 A feasible solution & € X is called efficient or Pareto optimal
if there does not exist any @’ € X with (z1(a), z2(2')) < (21(2), 22(2)). The
image z(&) = (21(&), 22(x)) of & is called non-dominated. We distinguish

different types of efficient solutions:

e Supported efficient solutions are those efficient solutions that can be ob-

tained as optimal solutions to a (single objective) weighted sum problem:

Minimise Mzi(®) + N2z (x
subject to T e X,

for some A\' > 0,A? > 0. The supported non-dominated points lie on
the boundary of the convex hull conv(Z) of the feasible set in objective

space.
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e Supported efficient solutions which define an extreme point of conv(Z)

are called extreme supported efficient solutions.

e The remaining efficient solutions are called non-supported efficient solu-
tions. They cannot be obtained as solutions of a weighted sum problem

as their image lies in the interior of conv (7).

An example of all non-dominated points of a problem is given in Figure 1.2.

® supp. non-dom.
X nonsupp. non-dom

Figure 1.2. Supported and non-supported non-dominated points.



Chapter 2

Airline Scheduling Background

and Literature

The operation of an airline requires a large number of decision making and
optimisation problems to be solved. An airline needs to solve problems as
diverse as forecasting passenger demand, assigning aircraft and crew to all
flights they operate, purchasing and maintaining aircraft, handling luggage and
cargo, organising catering, handling passengers at check-in and the gate, and

taking care of re-accommodation of passengers and crew in case of disruptions.

The complexity of the problems but also the need for finding cost optimal
solutions in order to be competitive have motivated a large amount of research
in airline optimisation problems over the last 50 years. Optimisation models,
heuristics, and simulations are among the Operations Research (OR) methods
that have been specifically developed or adapted to efficiently solve large scale

problems in the airline industry.

The problems can generally be classified into strategic and tactical planning

problems and operational (or day-of-operations) problems.

Strategic problems include decisions about the size and composition of the fleet
of the airline, e.g. how many new aircraft of which size should be acquired.
Another strategic problem is to decide where to locate crew bases in the flight
network and how many crew members are needed at each crew base. The
decision to enter a new origin-destination market is also a strategic decision

problem.
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Among the tactical planning problems are airline scheduling, pricing, and rev-
enue management problems, see van Ryzin and Talluri [2002] for a survey on
the latter two. The scheduling process usually starts about 12 months before
the schedule is operated and lasts until the day-of-operations. The airline
scheduling problem is usually decomposed into five planning problems and tra-
ditionally these problems are solved sequentially. First, marketing decisions in
the schedule design problem determine which flights the airline operates. Given
the set of flights in a schedule the solution of the fleet assignment problem de-
termines which flight is operated by which aircraft type. Next, a minimal
cost assignment of available aircraft to flights is found in the aircraft routing
problem. The last of the tactical planning problems is crew scheduling, usually
decomposed into two consecutive stages, namely crew pairing and crew ros-
tering problems. Crew members must be assigned to operate all flights in the
schedule. Firstly, the crew pairing problem (or tour of duty problem) allocates
generic crews to flights in a minimal cost way. Secondly, in the crew rostering
problem, monthly or fortnightly work rosters (or lines of work) are constructed
based on the cost minimal crew pairings and assigned to each individual crew

member.

On the day-of-operations a large number of additional operational problems
must be solved. On one hand the planned schedule must be executed. On the
other hand disruptions occur frequently, which makes it necessary to change
the planned schedule during operations. Among sources of disruptions are un-
foreseen maintenance tasks, late passengers, late crew, or bad weather. The
execution of the schedule as well as the disruption management usually takes
place in the airline operations control centre. If disruptions occur, flights must
be delayed or cancelled, aircraft and crew must be re-scheduled and passen-
gers must be re-accommodated. The resulting models are similar to their
planning counterparts but usually span a smaller time horizon and must be
solved much faster, often in a matter of minutes. Hence, special techniques,
such as heuristics, to obtain good solutions quickly are often utilised to solve
the operational problems. For many airlines, disruption recovery is a mostly
manual process relying on the experience of their schedulers rather than the
utilisation of mathematical models. We refer to the following recent contribu-
tions for a description of airline operations and recovery procedures: Stojkovié¢
et al. [1998], Lettovsky et al. [2000], Filar et al. [2001], Stojkovié et al. [2002],
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Rosenberger et al. [2003], Yu et al. [2003], and Ball et al. [2007].

We describe the airline scheduling process and contributions in the literature in
more detail in the following sections. We do not address revenue management,

cargo, or passenger aspects of airline operations in this review.

2.1 Airline Scheduling Problems

Airline scheduling consists of five different types of planning problems: sched-
ule design, fleet assignment, aircraft routing, crew pairing, and crew rostering.
In this section we summarise each of these problems and describe the liter-
ature on solution approaches for each of the problems. We further present
approaches in which some of the individual problems are integrated into more
comprehensive models. We conclude with formulations that include robustness
measures. A planned solution is understood to be operationally robust if dis-
ruptions of some flights in the schedule have a minimal effect on other flights
in the schedule. Recent surveys on airline scheduling problems are provided
by Gopalan and Talluri [1998b], Barnhart et al. [2003a], Barnhart and Cohn
[2004], and Klabjan [2005]. In the sections that describe the individual prob-
lems, only contributions are cited that address a single problem. Contributions

addressing multiple problems are listed in Section 2.2.

2.1.1 Problem Characteristics

In this section we present important problem characteristics that are common

among many airline scheduling problems.

The literature distinguishes between dauly, weekly, and dated scheduling prob-

lems.

In the daily problem it is assumed that the schedule repeats every day, i.e. the
same flights are operated on each day. This is the most common approach
described in the literature. Many airlines in North-America operate the same
schedule on each weekday and a subset of flights on the weekend. For other

airlines the schedule may vary on a day to day basis.

After solving the daily problem the generated solutions for crew and aircraft
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are repeated every day to obtain a solution for a week. The weekly exception
problem is then solved to eliminate infeasibilities on the weekends. Alterna-
tively, a weekly problem can be solved where it is assumed that the schedule
repeats every week but may vary on different days of the week. The solution
for a single week is then repeated to obtain a solution for a longer period.
Restricting the aircraft or crew solutions to repeat daily can cause suboptimal

solutions even if the schedule repeats daily as shown in Andersson et al. [1998].

A more general approach is to solve a fully dated problem where no restrictions
are imposed between solutions on different days. This problem must be solved
when there is a transition from one schedule to another for solutions that
span both (different) schedules. Here, specific start and end dates are given
for which the problem must be solved. This version of the problem is also
commonly solved by airlines where the schedule varies frequently from day to
day or week to week. Because of the longer time horizon this problem is much
harder to solve than daily or weekly problems and may be intractable for large

schedules containing many flights.

With respect to the flight network structure two different models are common.
The hub-and-spoke network is widely used among airlines in North-America.
In this network only large airports (hubs) are linked by direct flights and all
smaller airports (spokes) are only connected to a single hub. Many aircraft
meet at a hub at the same time ensuring the existence of many feasible con-
nections. This property leads to a very large number of feasible solutions.
A second type of network is the point-to-point (or inter-connected) network.
In contrast to the hub-and-spoke network, in a point-to-point network many

airports are linked with multiple other airports by direct flights.

From a modelling point of view the following two different network types are

distinguished: connection networks and time-line networks.

In a connection network the nodes represent arrivals or departures of flights.
Flight arcs represent the flights and connection arcs link the arrival of an
incoming flight with the departure of an outgoing flight if it is possible to
operate these two flights in sequence with the same aircraft. This is the case
if the destination of the incoming flight is the origin of the outgoing flight and
sufficient time between arrival and departure allows to disembark and embark

passengers and to clean, refuel, and reload the aircraft. This minimal required
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time between arrival of the first and departure of the second flight is called

minimal turn-time for aircraft and minimal sit-time for crew.

The time-line network consists of nodes for time and location of each departure
and each arrival of all flights. The arrival time is hereby adjusted by adding
the minimal turn-time (or sit-time). The two types of arcs are flight arcs (as in
the connection network) and ground arcs. A ground arc links two consecutive
activity nodes (departures or arrivals) at the same airport. The flow on a
ground arc represents all aircraft or crew on the ground at a particular airport

and time.

The time-line network consists of many fewer arcs than the connection network
but the model does not distinguish between individual aircraft or crew on
ground arcs. If a daily or weekly problem is solved, both networks are extended
by wrap-around arcs that link the last flights in the schedule with the first
flights and link the airport at the end of the horizon with the start, respectively.
Wrap-around arcs are needed so that an aircraft routing or a crew pairing can
span multiple days in a daily problem. Figures 2.1 and 2.2 show small examples
of each network type. A final differentiation between network models can be
made depending on the activity represented by an arc. In the flight based model
an arc represents exactly one flight while in the duty-period based model (see
Section 2.1.5) an arc can comprise multiple flights that result in a feasible
work day. In the second model more feasibility constraints can be included
implicitly in the network but many more arcs may exist. We also use the term
duty-period based for aircraft networks if an arc models a sequence of flights

an aircraft can operate.
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2.1.2 Schedule Design

The most important decisions for an airline involve the schedule design. These
decisions determine the profit an airline will achieve and determine the input
data for all other airline scheduling problems. The airline must decide in what
markets to operate. This includes determining city (or airport, port, station)
pairs to connect with direct flights (or sectors, legs), how frequently the flights
are offered, at which times of the day, and on which days of the week. These
decisions are influenced by demand forecasts for itineraries, the resources the
airline has available, and competitor behaviour. The schedule also needs to
be operated by crew and aircraft and time slots must be available at airports.
Considering all these aspects and solving the schedule design problem to op-
timality therefore requires us to consider all schedule planning problems and
solve them in a single integrated model. This is currently intractable due to

the complexity of each individual problem and the large size of the problem.

Another difficulty when constructing a schedule from scratch is that the neces-
sary data is usually not fully available to an airline. Data required includes un-
constrained demand for all possible origin-destination itineraries for any point
in time, which is the largest possible demand without taking actual fares and
capacities of origin-destination pairs into account and cannot be observed. The
actual demand for flights with given capacity depends on the airline’s schedule
as well as schedules of other airlines while the airline’s schedule depends on
the demand. Fares must also be assigned to each itinerary and are difficult
to estimate. Again, fares are depending on the schedule and also on fares a

competitor may introduce in the same market.

From a practical point of view many changes to the airline’s airport infrastruc-
tures may be necessary if the network structure changes and for operational
reasons the airline prefers a high level of consistency from one schedule to the
next. This is also important for the loyalty of frequently travelling business

customers.

For these reasons, a schedule is usually not constructed from scratch but by
adapting a schedule from a previous period. This is usually a manual process
driven by marketing decisions. In the literature the schedule design problem
is not discussed as a separate optimisation problem. Since other resources,

e.g. available aircraft or crew, must be taken into account schedule design is



2.1.8 Fleet Assignment 33

discussed in combination with other airline scheduling problems such as fleet
assignment. We describe various approaches that integrate schedule design
with other airline scheduling problems in Section 2.2. An exemption is on-
demand airline scheduling where a new schedule is constructed each day for a
fleet of small jet planes for the following day based on demand. Usually, small
regional airports are connected by such a service, allowing the flexibility needed
for short-term realisation. Recent contributions can be found in Espinoza et al.
[2008a] and Espinoza et al. [2008b].

Instead of constructing a schedule from scratch, a common approach described
in the literature is to solve a schedule augmentation problem. Here, the original
schedule is given and only small deviations from that schedule are permitted.
These deviations may be the addition or deletion of sets of flights to or from the
schedule (Lohatepanont and Barnhart [2004]) or small deviations in departure
times of some flights in the schedule. The latter case is called time window
(or re-timing) problem. In this problem the flights of the schedule are fixed
but departure times vary in some interval around the originally scheduled
departure time (Klabjan et al. [2002]).

Recent contributions describing schedule design problems include Biidenbender
et al. [2000], Erdmann et al. [2001], Barnhart et al. [2002b], and Armacost et al.
[2002].

2.1.3 Fleet Assignment

The fleet of an airline consists of all aircraft the airline has available to operate
the schedule. These aircraft are usually varying in type, e.g. Boeing 737 or
Airbus 320. The type of aircraft determines its capacity and the cost for oper-
ating a particular flight. The fleet assignment problem decides which aircraft
type operates which flight. The objective is to maximise profit while allocating
exactly one aircraft type to each flight in the schedule and respect the number

of available aircraft of each type.

Profit is usually modelled as the difference between unconstrained revenue
and assignment costs. Unconstrained revenue of a schedule is the maximum
possible revenue regardless of the capacity of the aircraft type assigned to each

flight. Assignment costs include flight operating costs, passenger carrying costs
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and spill costs. Spill costs arise if demand for a flight exceeds the capacity of
the aircraft assigned to that flight and not all passengers can be carried. This
results in loss of revenue and passengers get spilled onto the flight network.
These passengers are either re-captured by the same airline or lost to some
other airline. Since empty seats would be “wasted” if the capacity exceeds the
demand for a flight, the airline must carefully assign aircraft types to flights

in order to maximise profit.

Abara [1989] and Hane et al. [1995] propose a basic fleet assignment model
(FAM) to solve the problem. FAM is a multi-commodity flow problem with
additional constraints. Abara [1989] use a connection network to model the

flight network while Hane et al. [1995] base the model on a time-line network.

As described in Section 2.1.1, the second network consists of fewer arcs than the
first one but it is impossible to distinguish between specific aircraft on ground
arcs. For this reason, maintenance requirements for an individual aircraft can-
not be guaranteed in time-line networks (see Section 2.1.4 for a description
of maintenance requirements). It is possible to add constraints such that the
aggregated maintenance requirements over all aircraft are satisfied by the so-
lution. In the connection network each individual aircraft can be modelled but

the formulation contains many more variables and may be intractable.

The flow conservation constraints in FAM ensure that each aircraft arriving at
an airport is departing from that airport at some later time. Additional con-
straints ensure that each flight is assigned to exactly one aircraft type and that
not more aircraft than available are used of each type. The objective function
is a sum of flight and aircraft type specific operating costs (independent of
the number of passengers carried), carrying costs depending on the number of
passengers on board, spill costs (the sum of all itineraries that could not be
carried due to capacity) and recaptured revenue (spilled passengers recaptured

on other itineraries).

Hane et al. [1995] consider the daily problem. The model is also called flight-
based fleet assignment model because spill and re-capture costs are calculated
for each flight independently. Since passengers may travel on multi-flight
itineraries this method cannot estimate spill accurately because passengers
that are spilled from one flight must also be spilled from the other flights
of the itinerary. Hane et al. [1995] solve the formulation with an LP based
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branch-and-bound method.

In all daily models the schedule and demand is assumed to be independent
of the weekday which is often not true in practice. Also, the fleet assignment
solution is required to be equal on every day which can lead to suboptimal
solutions. Solving problems with a large time horizon is currently intractable

for fleets of large size.

Barnhart et al. [2002a] describe an enhanced fleet assignment model. When
passengers are spilled from one flight in an itinerary the model takes into ac-
count effects on demand of other flights in the itinerary. A so called passenger
miz model is added to the basic FAM formulation. For a schedule with given
fleet assignment the passenger mix model determines the minimal cost (carry-
ing cost plus spill cost) flow of passengers through the network such that the
capacity of each flight is not exceeded and the unconstrained demand is not
violated on any itinerary. This enables more accurate estimation of spill and
re-capture costs which leads to improved solutions compared to basic FAM.
The enhanced problem is called itinerary-based fieet assignment model and is
solved with LP based column generation and branch-and-bound techniques.
The resulting problem formulation contains many variables and is hard to
solve. Barnhart et al. [2006] improve the formulation and its computational

tractability.

Kliewer [1996], Belobaba and Farkas [1999], and Yan and Tseng [2002] also
describe enhanced demand and revenue models in combination with fleet as-
signment. The concept of demand driven dispatch is introduced by Berge
and Hopperstad [1993]. Here, the original assignment of aircraft types can be
changed closer to the date of departure once demand forecasts have become

more accurate.

Barnhart et al. [1998a], Jarrah and Strehler [2000], and Ahuja et al. [2001]
consider the maximisation of through benefits. A through connection contains
two flights operated by the same aircraft. Passengers prefer direct flights from
the origin to the destination of their journey. If no direct flight exists, pas-
sengers prefer to stay on the same aircraft during their itinerary. This saves
transferring in a terminal and possibly missing a connection as well as possible
baggage loss. The additional amount passengers are willing to pay for this

convenience is called through benefit. If the same aircraft type is assigned to
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both flights of a connection this benefit is added to the objective value of the

fleet assignment problem.

Other contributions towards the fleet assignment problem include Gu et al.
[1994], Subramanian et al. [1994], Talluri [1996], and Rushmeier and Konto-
giorgis [1997]. For more detailed information on the fleet assignment problem
we refer to the recent overview of concepts, models, and algorithms by Sherali

et al. [2006].

2.1.4 Aircraft Routing

In the aircraft (or maintenance) routing problem one needs to find sequences
of flights, called routings (or rotations), operated consecutively by a single air-
craft. A rotation is an aircraft routing that starts and ends at the same airport.
Each aircraft regularly needs to undergo different maintenance checks. These
need to be performed at a maintenance station before some maximal time be-
tween maintenance checks elapses. The goal of the aircraft routing problem is
to assign each flight in the schedule to exactly one maintenance feasible aircraft

routing. Additionally, one cannot use more aircraft than available.

The required maintenance checks vary in duration and frequency in which they
must occur. Only a certain amount of time, flying time and number of take-
offs are allowed to elapse between two consecutive checks. Basic checks such as
visual inspections must occur frequently, for example every 36 hours, and last
from one to several hours. Other, less frequent but much more thorough checks
may disassemble and reassemble the aircraft. For this kind of check the aircraft
is taken out of service for several weeks. In aircraft routing formulations usually
only the short and medium length checks are considered that occur on a basis

of one to several days.

If a fleet assignment problem has been solved prior to the aircraft routing
problem, the latter can be solved for each aircraft type separately, as only the
flights in the schedule operated by this particular type must be included in
the problem formulation. This can reduce the problem size significantly and
enable fast solution times. Most of the subsequently described models can be
applied to a single or multiple fleet problem. When applied to multiple fleet

types, the aircraft routing problem also solves the fleet assignment problem
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since together with the aircraft also the aircraft type is assigned to each flight.

Some airlines impose the additional condition that each aircraft must fly all
flights in the schedule within some certain amount of time, the so called big-
cycle constraint. This condition is equivalent to finding an Euler-tour in the
underlying network (e.g. Clarke et al. [1997]).

The aircraft routing problem can be extended from only finding a feasible
solution to finding a solution that maximises through revenue. As in the fleet
assignment problem, through revenue is generated if two flights are operated
in sequence by the same aircraft (a through connection). Other costs that can
be considered are operating costs (e.g. fuel consumption), if these are variable
between aircraft of the same type, or costs to increase the robustness of the

solutions (see Section 2.3).

The aircraft routing problem is described in detail in Clarke et al. [1997] and
Gopalan and Talluri [1998a].

Daskin and Panayotopoulos [1989] consider the problem of assigning routes
to aircraft in a hub-and-spoke network. They do not consider maintenance
restrictions. The problem is formulated as a set packing formulation and solved
with Lagrangian relaxation. Two sets of constraints ensure that each route is
assigned to at most one aircraft and that each aircraft is assigned to at most
one route for each time period. The second set of constraints is relaxed in the
Lagrangian approach which is embedded into a heuristic in order to obtain a

feasible solution.

Feo and Bard [1989] combine the aircraft routing problem with the mainte-
nance base location problem. The minimal number of maintenance bases that
are needed to satisfy four day maintenance requirements for a given schedule
is determined. The problem is modelled as a minimal cost multi-commodity
network flow problem. The aircraft routings for each day are given as input
and must be connected to form maintenance feasible multiple day routings.
Because of the size of the problem a two phase heuristic method is used to
solve the problem. In the first phase, good routing solutions for independent
aircraft are obtained. In the second phase the best routing solutions from
phase one are used to determine minimal cost maintenance locations subject
to maintenance feasibility. The second phase is modelled as a set covering

problem and solved with a greedy heuristic.
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Clarke et al. [1997] consider through revenue and two different maintenance
checks, a routine check that lasts 4 hours and must be performed every three
days and an avionics check that includes the routine check and some addi-
tional checks. The avionics check must be performed every four days and
lasts five hours. Also, the big-cycle constraint is imposed, which is why the
problem is modelled as an Euler-tour problem with side constraints. The side
constraints ensure that no maintenance requirement is violated. The formu-
lation is equivalent to an asymmetric travelling salesman problem with side
constraints. Clarke et al. [1997] solve the problem with Lagrangian relax-
ation by relaxing sub-tour elimination constraints and maintenance feasibility
constraints and adding them dynamically once they are violated. To prove
optimality the procedure is embedded in a computationally expensive branch-
and-bound method.

Gopalan and Talluri [1998a] and Talluri [1998] consider daily maintenance
routing with a maintenance check required every three or four days and a
periodically required balance-check, resulting in an Euler-tour problem. All
maintenance occurs at night when all aircraft are grounded. As a first step
of the solution process the feasible connections of the network during the day
between non-overnight stations are limited by applying first-in-first-out or last-
in-first-out heuristics. The resulting network contains one arc for each sequence
of flights between overnight stations and nodes for overnight stations. In a
second step the maintenance routing problem is solved on this reduced network
where the three day maintenance requirement is taken into account. Fixing
connections can cause the existence of sub-tours called locked rotations. A
heuristic is used to swap flights to unlock those rotations and improve the

maintenance routing.

Sriram and Haghani [2003] consider a weekly maintenance routing problem
with two different maintenance checks. It is modelled as a multi-commodity
network flow problem where the routings during each day are required as input.
The model results in a complex linear formulation and is solved by heuristic

local search.

Gronkvist [2006] combines constraint programming and column generation
techniques to solve the tail assignment problem. In tail assignment individ-

ual aircraft are considered rather than generic maintenance feasible aircraft
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routings. Usually this problem is only solved a few days prior to the day of
operation. The flight network is modelled as a connection network where arcs
represent connections between flights. The tail assignment problem is mod-
elled as a set partitioning formulation (see Chapter 3) where the constraints
ensure that each flight is operated by exactly one aircraft. Constraint pro-
gramming is used in a preprocessing step in order to reduce the number of
arcs. Connection arcs violating the number of available aircraft and arcs that
cannot be part of any feasible solution are removed. Gronkvist [2006] achieves
a significant reduction in the number of arcs. After the preprocessing step,
column generation and a heuristic fixing process are used to obtain integer

solutions for the simplified problem.

Sarac et al. [2006] consider the aircraft routing problem on an operational
level rather than a planning level. The model is a set partitioning formula-
tion with additional constraints to ensure sufficient maintenance capacity at
the maintenance bases and is solved via branch-and-price. The set partition-
ing constraints ensure that each aircraft is assigned to exactly one routing
and each flight is operated by exactly one aircraft. The additional constraints
ensure the availability of maintenance slots and man power to carry out the
required maintenance checks. Due to these additional constraints the branch-
ing strategy described in Section 3.3.4 must be altered. Sarac et al. [2006]
use a combination of follow-on (see Section 4.4.3) and aircraft-flight pair (see

Section 3.3.4) branching to obtain integer solutions.

2.1.5 Crew Pairing

Similar to aircraft routings, crew pairings (or tours-of-duty) are sets of flights
which can be operated in sequence by the same crew. Additionally, the pair-
ings must start and end at the same crew base and satisfy all sorts of work
regulations. The goal of the crew pairing problem is to find a minimal cost
set of crew pairings such that each flight is contained in exactly one pairing.
Usually crew pairings are divided into duty periods. A duty period spans one
or multiple flights on a single workday. A crew pairing consists of one or
multiple duty periods which are separated by (over-night) rest periods. The
construction of legal pairings is subject to a large number of rules imposed by

civil aviation regulation authorities, employment contracts, and agreements.
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Rules include maximal allowed flying time per duty period, maximal allowed
flying time in a rolling time window, minimal rest requirements, or meal break
requirements. “The maximum allowed duty time is 8 hours for any rolling 24

hour time period” is an explicit example of such a rule.

After fuel costs, crew salary is the second largest operational cost an airline
has to account for. Therefore finding a minimal cost solution to the crew
pairing problem is very important for an airline. Cost is usually a nonlinear
function of flying time, total elapsed work time, and time away from the home
base. Besides paid hours (productive and unproductive), costs can be included
for ground transport, meals, accommodation, and the cost of passengering
crew within the pairing. A transfer of crew is referred to as passengering or
deadheading if crew are travelling as passengers. This is necessary if crew are
required to operate a flight that does not depart at their current location or

to return to their home base.

The problem can be solved separately for different crew types. Different
rules apply to technical crew (i.e. captains and first officers) and cabin crew
(i.e. flight attendants) and while technical crew usually stay together during a
duty period it is possible to split up cabin crew after a flight and rejoin them
with other crew members to operate subsequent flights. Also, most crew are
only qualified to operate a particular aircraft type (especially technical crew)
or a family of very similar aircraft types. In this case the crew pairing prob-
lem can be solved for each aircraft type or family separately. For cabin crew,
multiple crew members are required on each flight depending on the size of
aircraft and possibly the number of passengers transported. Although cabin
crew can be split up after operating on a large aircraft to operate on different
smaller aircraft subsequently, from an operational as well as a robustness (see
Section 2.3) point of view it is desirable to keep crew together as much as
possible which is referred to as unit crewing. It is also possible to replace a
crew member with a higher ranked crew member, e.g. replace a first officer

with a captain, which is called rank over-covering.

The literature focuses on the technical crew problem because potential cost
savings are much higher than for cabin crew. The flight attendant problem is
for example considered in Kwok and Wu [1996]. Wallace [2001] considers the

international (long-haul) flight attendant crew pairing problem for schedules
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from Air New Zealand. Flight attendants are usually qualified to operate on
several different aircraft types (of the same family) and the number of flight
attendants required depends on the aircraft type. Additional complexity arises
from the possibility to split up a crew and re-join the crew members with
members from another crew. Wallace [2001] uses a combination of column

and row generation to solve the problem.

An airline usually operates out of a number of different crew bases located in
cities within the airline’s flight network. At each crew base a certain number
of crew members is available in any time interval. The required crew members
of the crew pairing solution must meet the available resources for each crew

base.

The crew pairing problem is computationally challenging for two reasons. Each
pairing has a very complicated rule and cost structure. Additionally, a very
large number of feasible pairings exist. For large schedules the total enumera-
tion of all possible pairings is therefore often intractable. It is also important
to find good quality solutions to the problem since a few percent improvement
in cost can yield multi million dollar savings in crew salaries over the year.
For these reasons the crew pairing problem has received a lot of attention
in the literature. Here we review some of the most important formulations.
Desaulniers et al. [1998] and Barnhart et al. [2003b] describe the crew pair-
ing problem and related literature in detail and Gopalakrishnan and Johnson

[2005] give a comprehensive overview of state-of-the-art solution methods.

In order to simplify the problem, often a daily optimisation problem is solved
first (see Section 2.1.1). The daily solution is then repeated to cover the sched-
ule of the whole week. Since the schedule is usually different on the weekend
some pairings will be infeasible during the weekend and are called broken pair-

ings. These infeasibilities are resolved in the weekly exception problem.

A further classification of standard approaches can be made by the network
type that is used to model the flight network. We distinguish flight networks,
(e.g. Graves et al. [1993]) and duty period networks (e.g. Lavoie et al. [1988]
and Barnhart et al. [1994]). The flight network consists of nodes for each de-
parture and arrival as well as flight and connection arcs linking the nodes. The
duty period network contains arcs for duty periods and for overnight rests. The

nodes in this network represent the start or the end of duty periods, respec-
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tively. The duty period network contains many arcs but all duty legality rules
can be embedded in the network. In both networks pairings are represented
as paths in the network. The choice of the network depends on the problem
structure. As a general rule of thumb, duty period networks are preferable
whenever the total number of feasible duty periods does not exceed the total
number of flights in the schedule by more than a small factor. Since in inter-
national schedules duty periods rarely consist of more than one flight, these
schedules are often modelled as duty period networks. For domestic schedules
on the other hand, where duty periods can contain several flights, the flight
network is generally used because the total number of feasible duties is very

large.

Until the 1990s, local improvement heuristics were mainly used to solve the
crew pairing problem due to the lack in computational power and because
heuristics are relatively easy to implement. In general, heuristics are not able
to provide a bound on the quality of the solution and are unable to guarantee
to find a feasible solution even if such a solution exists. Because of these draw-
backs, today the use of optimisation methods or optimisation based methods

is clearly favoured when solving the crew pairing problem.

The crew pairing problem is most commonly modelled as a set partitioning
problem where the constraints ensure that each flight is operated by exactly
one crew. Resource limitations at the crew bases can be included by adding
two-sided knapsack constraints (called base constraints) to the formulation.
The set partitioning model is usually solved with LP based branch-and-bound

methods and column generation techniques (see Chapter 1).

When deadheading is allowed, the formulation can be changed to a set covering
formulation requiring each flight to be covered at least once. This formulation
has the drawback that pairing rules that are different for passengering on a
flight instead of operating the flight cannot be modelled. In a set partitioning
formulation, deadheading can be considered in the column generation process
but without including the passengering flight in the column of the matrix.
Two pairings that are identical except for an additional deadhead flight that is
contained in only one of the pairings result in identical columns of the matrix.

The two columns can be distinguished by their costs.

When modelled as a set partitioning problem, two individual problems must
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be solved. The first is to construct feasible pairings and the second is to solve

the IP formulation.

Enumerating all pairings a priori is intractable for medium or large sized sched-
ules because of the large number of feasible pairings. One historic approach is
to only generate all pairings over a subset of flights (Anbil et al. [1991], Ger-
shkoff [1989]). This approach is called local search row approach because in
each iteration only a subset of all rows (constraints) of the formulation is con-
sidered. Starting from a feasible solution, a small number of pairings is chosen
by some heuristic rule. The set of flights contained in the chosen pairings form
a subproblem of the original set partitioning problem. All feasible pairings
are generated for the flights contained in the subproblem and the subproblem
is then solved to optimality. The columns in the original problem that are
covering the flights of the subproblem are replaced with the optimal pairings.
Then, another set of pairings is chosen and a new subproblem is solved. Many
iterations are needed to find good solutions and the procedure can get stuck

in local optima.

To avoid local optima and the enumeration of all pairings, the set partition-
ing formulation is nowadays usually solved by column generation methods.
Here, the IP forms the master problem and in a column generation subprob-
lem pairings with negative reduced costs are generated. The solution process
iteratively solves both problems until no pairings with negative reduced cost

can be found.

Pairing generation can be achieved in flight or duty period networks. Crew
pairings are represented as paths in both networks. Three common approaches

exist to find pairings with low reduced costs:

Using resource constrained shortest path, a label must be maintained for each
feasibility rule and each nonlinear cost component as in Desrochers and Soumis
[1989], Barnhart et al. [1994], Vance et al. [1997a] and Desaulniers et al. [1997a)].

See also Section 3.3.3 for details.

Galia and Hjorring [2003] describe a k-shortest path approach. They first find
a shortest path. If the path is feasible and has negative reduced cost it is
returned, if it is infeasible the second shortest path is considered. This process

continues as long as the k-shortest path incurs negative reduced cost.
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A third approach is to perform depth first search enumeration of the pairings,
e.g. Anbil et al. [1998], Andersson et al. [1998], Klabjan et al. [2001a], and
Makri and Klabjan [2004]. Andersson et al. [1998] describe how pairing gener-
ation is performed at Carmen Systems. This approach separates the algorithm
from the rules that are applicable to the pairings. All rules can be defined by
the user in a specialised rule language. The pairings can then be checked by

the rule system for feasibility.

Klabjan et al. [2001a] describe the generation of random pairings which they
add to a set of pairings with low reduced costs. Connections for the pairings are
picked randomly in such a way that the probability of selecting a connection

increases with shorter sit-time.

Solving the IP formulation is decomposed into two phases. First the LP relax-
ation is solved with the simplex method. Pairings can either be generated a
priori or during the algorithm with column generation. In the second phase a
branching scheme is used to obtain an integer solution to the problem. Pair-
ings can be generated only during the LP phase and the IP is solved for this
fixed set of pairings. This procedure is called branch-and-bound. If instead,
pairings are also generated during the branching process in the IP phase, the

method is referred to as branch-and-price.

In the IP phase a constraint branching rule should be used instead of a vari-
able branching rule. The latter will either force the existence or non-existence
of a particular variable in the solution. This is difficult and time consum-
ing to enforce inside the column generation procedure. It also does not yield
a balanced branch-and-bound tree since forcing a variable into the solution
eliminates all other variables with entries in common rows, but forbidding a
variable does not restrict the solution space significantly. A constraint branch-
ing rule that is particularly well suited for crew-pairing-like set partitioning
problems is branching on follow-on sector pairs (Ryan and Foster [1981]). Two
flights must be covered by the same crew in sequence or are not permitted to be
covered in sequence. This rule is used for example in Anbil et al. [1992], Anbil
et al. [1998], Barnhart et al. [1994], Vance et al. [1997a], and Desaulniers et al.
[1997a]. The rule can easily be enforced in the column generation network by
removing arcs. Another constraint branching rule is called time-line branching

and is proposed by Klabjan et al. [2001a]. In one branch the connection time
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between a particular flight and the next flight must be below some threshold
and in the other branch it must be above the threshold. If all flights in the
schedule depart at different times, time-line branching is a valid branching

rule. This can be achieved by slightly perturbing the departure times.

Alternative approaches to solve the crew pairing problem include Vance et al.
[1997Db], Desaulniers et al. [1997a], and Andersson et al. [1998]. Vance et al.
[1997b] decompose the problem into two stages, first partitioning the flights by
duty periods and then the duty periods by pairings. They use Dantzig-Wolfe
decomposition to solve the problem, the flight set partitioning constraints are
forming the subproblem. This formulation yields a tighter LP bound but is
harder to solve than the standard set partitioning formulation. Desaulniers
et al. [1997a] use a nonlinear multi-commodity network flow formulation and
solve it with a Dantzig-Wolfe decomposition method. The master problem
becomes a set partitioning problem for the flights and the subproblems are
resource constrained shortest path problems that determine feasible crew pair-
ings. Andersson et al. [1998] formulate the crew pairing problem as a set
covering problem. Wedelins algorithm (Wedelin [1995]) is used to solve the

resulting optimisation problem.

Further references addressing the crew pairing problem include Hoffman and
Padberg [1993], Barnhart et al. [1995], Chu et al. [1997], Barnhart and Shenoi
[1998], Butchers et al. [2001], and Klabjan et al. [2001b]. Hoffman and Padberg
[1993] use a branch-and-cut approach to solve the crew pairing problem. The
long-haul problem is addressed in Barnhart et al. [1995] and Barnhart and
Shenoi [1998], Barnhart et al. [1995] focusing on the assignment of passengering
flights. Butchers et al. [2001] give details on the crew pairing solution methods
at Air New Zealand. A weekly crew pairing problem is solved in Klabjan et al.
[2001b]. Next to cost, a second objective is introduced ensuring that the

pairings are as similar as possible on each day of the week.

2.1.6 Crew Rostering

The last of the planning problems is crew rostering. Monthly (or fortnightly)
work schedules (also called line-of-work) must be assigned to each individual

crew member. These are constructed by concatenating the pairings from the
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previous problem. Aside from pairings, the work schedules contain activities
such as reserve duties, days off, leave, and training periods. Again, many work
regulations such as rest time requirements and time limits on the working
periods have to be satisfied. The objective is again to minimise cost but more
importantly to maximise crew satisfaction by constructing high quality rosters

with respect to crew preferences.

In North-America rostering is usually a two phase process. In the first phase
generic rosters, called bidlines, are constructed (see e.g. Christou et al. [1999]).
Then, individual crew members bid on the published rosters and the assign-
ment is based on crew priority, often seniority. An advantage is, that the crew
member knows exactly what work to expect if the bid is successful. But con-
flicts can occur between the assigned rosters and pre-assigned tasks such as
vacation or training periods. In that case some rosters can only be partially
assigned and additional crew is required causing a more expensive solution.

This approach is called bidline approach.

Outside of North-America it is common that schedules are constructed and
assigned directly to each crew member individually, which is called personalised
rostering (see e.g. Kohl and Karisch [2004]). Here, the crew members express
preferences for certain attributes of the roster without knowing the exact line-
of-work they will be assigned to. In this approach either certain quality criteria
are maximised for each roster or individual preferences of each crew member are
considered. The preferences can either be assigned with respect to seniority,
the most senior crew members get as many of their preferences awarded as

possible, or on an equal share basis.

The solution method for both types of rostering problems is very similar. As
the crew pairing problem, the crew rostering problem is most commonly solved
as a set partitioning problem. Constraints ensure that each activity is assigned
to some crew member. Additional GUB-constraints (see Section 1.1) ensure
that each individual crew member is assigned to exactly one roster. Ryan
[1992] first models the rostering problem as a set partitioning problem. To
decrease the problem size, not all possible columns are considered but only a
precomputed subset. For a given duty a limited number of duties is chosen
that can be operated next by any crew member. Also, a number of activities

such as desired days off or training tasks are preassigned to crew members.
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These techniques ensure that no line-of-works are constructed with unwanted
characteristics such as too many days off between tasks or undesired sequences
of duties. The techniques also result in a matrix which is more balanced (see
Section 1.1) and, hence, the solution is expected to contain fewer fractions

simplifying the IP solution process.

There are two versions of the crew rostering problem, the short-haul and the
long-haul problem which are structurally very different. In the short-haul
problem each work period consists of many short duties which implies that the
columns in the set partitioning formulation contain many ones. The long-haul
problem contains much fewer longer duties per work period and hence the
columns are less dense. For this reason the short-haul problem is much harder

to solve than the long haul problem.

Gamache and Soumis [1998] describe an optimality approach for the roster-
ing problem. This approach is based on a set partitioning formulation and
solved by column generation and branch-and-price. They do not pre-assign
any activity. The subproblem is a resource constrained shortest path problem
modelled on a connection network with work-patterns (pairings) represented
as nodes and arcs connecting two nodes if it is possible to work both pairings
in sequence. They use constraint branching and a disjoint column generation
strategy to speed up the solution process. One subproblem is solved for each
employee and, in order to prevent identical columns in different subproblems,
all nodes contained in a negative reduced cost column, obtained from a previ-

ously solved subproblem, are removed.

Further contributions that address the crew rostering problem include Day
and Ryan [1997], Gamache et al. [1998], Gamache et al. [1999], Cappanera
and Gallo [2001], and Kohl and Karisch [2004].

Day and Ryan [1997] describe the rostering process for the short-haul problem
at Air New Zealand. Rostering is decomposed into two phases. In the first
phase off days are assigned and in the second phase pairings and other activ-
ities are assigned between the off days. Both problems are solved by column

generation.

Gamache et al. [1998] describe the preferential bidding system at Air Canada.
Because of a strict seniority principle one crew member can be considered at

a time and the assigned pairings are eliminated for subsequent problems when
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less senior crew members are considered. Column generation and branch-and-
bound is used to solve the IP formulations. Also, Gamache et al. [1999] report

results from Air France.

Cappanera and Gallo [2001] formulate the problem as a multi-commodity net-
work flow problem. They tighten the formulation with valid inequalities and

use an exact IP solution approach.

Kohl and Karisch [2004] give a comprehensive overview on the aircrew ros-
tering problem. They also give some details on the rostering procedure at
Carmen Systems. Depth first search is used to generate rosters on a graph
that contains nodes for activities and an arc between two nodes if it is possible
to assign both activities in sequence. During the construction of a roster a rule
evaluation algorithm is called that verifies if a partial roster can be extended
to a feasible roster. This procedure is chosen rather than standard column

generation methods to separate the rules from the optimisation algorithm.

Recently, Ernst et al. [2004a] provide an extensive annotated bibliography
of rostering problems. Other recent contributions that address the rostering
problem include Dawid et al. [2001], Sellmann et al. [2002], and Thiel [2005].

2.2 Integration of Airline Scheduling Problems

Traditionally, airline scheduling problems have been solved sequentially al-
though all five scheduling problems are interdependent. Among others the
following dependencies exist in the sequential solution approach. The schedule
design problem determines the set of flights that must be considered by all
subsequent problems. But cheaper fleet assignment or crew pairing solutions
might exist if the schedule could be altered slightly. In the aircraft routing
problem a subset of flights, determined in the fleet assignment problem, is
considered. Rules in the crew pairing problem depend on the underlying air-
craft routing solution. And finally, the crew pairings are combined to rosters

in the crew rostering problem.

Ideally, all airline scheduling problems should be considered in one integrated
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model. It is also desirable to include revenue management decisions and pas-
senger aspects into the formulation. Currently, however, such a total integra-
tion of all problems is computationally intractable. Each single problem is
already hard to solve and requires specialised solution techniques as described
in the previous sections. Combining two or more problems in one integrated
formulation usually increases the complexity of the problem and often makes

it impossible to solve the problem efficiently.

Considerable progress has been made in the past 10 years to integrate two or
more problems into tractable models. As first steps towards total integration,
two problems are considered either in an integrated model or by solving one
problem while considering important aspects of another one. In the following
we describe such integration approaches. We conclude with the description of

recent formulations that integrate aspects of three of the original problems.

Integration of Fleet Assignment and Schedule Design

Early approaches integrating FAM and schedule design work iteratively (see
Etschmaier and Mathaisel [1985] for a survey). Demands for a given schedule
are evaluated first. Then, FAM is solved and in the resulting schedule flights
for addition and deletion are identified. With this new set of flights the demand

for the schedule is evaluated again.

Rexing et al. [2000] integrate the basic FAM problem and the time window
problem with the goal of increasing revenue. Their model uses the time-line
network. They discretise the time windows and add copies of flight arcs for
each possible departure time. Additional constraints ensure that exactly one
copy of each flight is operated. Preprocessing of the network is necessary before
the problem can be solved for realistic sized problems. To avoid solving the
large LP formulation, they introduce an iterative approach. First, all multiple
copies of flight arcs are replaced by a single flight arc with reduced duration.
This flight arc departs at the end of the departure time window and arrives
at the beginning of the arrival time window. This network contains as many
arcs as the basic FAM formulation. If the solution is feasible for the original
problem the algorithm terminates with an optimal solution. Otherwise flight
pairs are identified for which the minimal connection time is violated. For these

flight pairs the real duration flight arcs (one copy for each departure time) are
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re-introduced in the model and the problem is re-solved. Many iterations may

be necessary if time windows are large.

Another integrated model for schedule design and fleet assignment is presented
by Lohatepanont and Barnhart [2004]. They use the origin-destination fleet
assignment model. They distinguish between a mandatory set of flights that
must be assigned to aircraft types and optional flights that can or can not be
included in the solution in order to maximise profit. They use column and
row generation and branch-and-bound to solve the model. As an additional
difficulty that needs to be taken into account, removing or adding flights to
the schedule can change the demand on other flights.

Other recent approaches that integrate FAM and schedule design include Yan
and Tseng [2002], Ahuja et al. [2004], and Bélanger et al. [2006].

Integration of Fleet Assignment and Aircraft Routing

A weekly aircraft routing problem is modelled as a set partitioning problem
using a string formulation by Barnhart et al. [1998a]. A string is a maintenance
feasible sequence of flights that starts and ends at a maintenance base. The
set of flights is partitioned by maintenance feasible strings and the aircraft can
be of different fleet types. The big-cycle constraint can be modelled similar
to sub-tour elimination constraints in the travelling salesman problem. The
authors solve the model by branch-and-price. The subproblem is a resource
constrained shortest path problem on a connection network with labels for

each maintenance type and for each nonlinear cost component.

Integration of Fleet Assignment and Crew Pairing

Barnhart et al. [1998¢] partially integrate fleet assignment and crew pairing in
a multi-commodity flow formulation. They enhance the basic FAM model by
adding an approximation of the crew pairing problem based on a duty period
formulation. Not all constraints of the original crew pairing model are consid-
ered and costs are underestimated. After this enhanced FAM model is solved
crew pairing problems are solved for each fleet type. They report considerable
savings in cost caused by making (slightly more expensive) decisions in the

fleet assignment problem that enable much cheaper crew pairing solutions.
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Integration of Aircraft Routing and Crew Pairing

The pairings generated in the crew pairing problem depend on the aircraft
routings as follows. A pair of flights form a connection if both can be operated
in sequence by the same crew or aircraft. The turn-time (for aircraft) or
sit-time (for crew) is the time between the arrival of the inbound flight and
the departure of the outbound flight of a connection. All turn/sit-times must
exceed a lower bound for the routing or pairing to be feasible. This lower
bound is called minimal turn-time for aircraft and minimal sit-time for crew
(see Section 2.1.1). The minimal sit-time can exceed the minimal turn-time but
when crew stay on the same aircraft, the minimal turn-time applies to both,
aircraft and crew. The feasible solution space of the crew pairing problem is
therefore limited by the previously solved aircraft routing problem leading to

a suboptimal solution from a more comprehensive point of view.

A model to integrate aircraft routing and crew pairing is proposed by Cordeau
et al. [2001] and also by Mercier et al. [2005]. They use Benders decomposition
(Benders [1962]) and branch-and-price to solve the model. Cordeau et al. [2001]
model the aircraft routing problem as the master problem while Mercier et al.
[2005] employ the crew pairing problem as the master problem. Since most of
the cost is originating from crew, in the second approach the aircraft routing
problem only transfers feasibility information back to the master problem,
while in the first approach also optimality information must be transferred
to the master problem. For this reason the latter approach can solve larger
problems in less computation time. Both approaches add inequalities with
highly fractional coefficients to the set partitioning polytopes of the problems

which causes slow convergence towards an optimal solution.

Cohn and Barnhart [2003] also integrate aircraft routing and crew pairing
problems. They extend the crew pairing problem by using the aircraft routing
problem as a second column generator next to the crew pairing generator. For
each solution of the aircraft routing problem, one variable is added to the crew
pairing problem and a convexity constraint ensures the selection of exactly one
of the aircraft routing solutions in the final solution of the problem. LP based
branch-and-price is used in this computationally expensive solution method.
Mercier et al. [2005] report that their Benders decomposition approach yields

better solutions in less computation time than the extended crew pairing model
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of Cohn and Barnhart [2003].

Integration of Fleet Assignment, Aircraft Routing, and Crew Pairing

Clarke et al. [1996] include maintenance and crew considerations into FAM.
Overall maintenance requirement constraints for all aircraft of the same fleet
are added to the basic FAM. Base constraints are added to fulfil crew flying
time requirements. They use the dual steepest edge simplex to solve the LP
relaxation and a fizing procedure and branch-and-bound algorithm to obtain
integer solutions. In the fixing step, variables with a fractional value close to
1 are set to 1, before continuing with the branch-and-bound process. This
approach does not guarantee the feasibility or optimality of the subsequently

solved aircraft routing or crew pairing problem.

Rushmeier and Kontogiorgis [1997] also include aggregated aircraft mainte-
nance and crew considerations into the basic FAM model. First the LP relax-
ation of the multi-commodity flow formulation is solved. Integer solutions are

obtained with a fixing heuristic and a branch-and-bound procedure.

Recently, Papadakos [2007] fully integrate the fleet assignment, aircraft rout-
ing, and crew pairing problems as an extension of the model of Mercier et al.
[2005]. They use simplified crew pairing costs and rules. They use Benders
decomposition to solve the problem by solving one crew pairing subproblem
for each fleet. They use Dantzig deepest-cut pricing as well as a dominance
relaxed constrained shortest path algorithm (see Section 4.4.2) to solve the
subproblems. The deepest cut heuristic is also used in the fleet assignment
master problem. To obtain integer solutions the authors first branch on the
fleet variables. Once all flights are separated by fleet type, they solve a main-
tenance routing problem for each fleet and branch on follow-on flight pairs.
A heuristic depth-first branching routine is used. The solution method is en-
hanced by generating Pareto optimal cuts. They show cost savings compared
to FAM with maintenance routing (Barnhart et al. [1998a]) and the integrated
model of Mercier et al. [2005].

Sandhu and Klabjan [2007] partially integrate fleet assignment, aircraft rout-
ing, and crew pairing with a similar approach as Klabjan et al. [2002] and

solve the model with both Lagrangian relaxation and Benders decomposition.
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While fleet assignment and crew pairing are considered in their original for-
mulations, only plane-count constraints are added to model the maintenance
routing requirements. Plane-count constraints ensure that only the number
of available aircraft is used at any time. This works well for hub-and-spoke
networks but the results are not as good for point-to-point networks that do

not contain as many feasible connections as hub-and-spoke networks.

Integration of Schedule Design, Fleet Assignment, and Aircraft Rout-

ing

Desaulniers et al. [1997b] integrate the basic FAM problem, the aircraft routing
problem, and the time window problem to increase revenue. They formulate
a set partitioning and a multi-commodity network flow model and solve the
models with column generation and branch-and-bound. The second model is
also decomposed with Dantzig-Wolfe decomposition with flight covering and
aircraft flow conservation constraints forming the master problem. This model
is an extension of the model of Abara [1989] with added time window con-

straints and constraints that ensure the feasibility of used connections.

Erdmann et al. [2001] solve the schedule design problem for a charter airline
and explicitly model aircraft routes for each aircraft in the fleet. They solve
the mixed integer path based formulation with branch-and-cut-and-price where

aircraft routing and passenger itinerary subproblems must be solved.

Ioachim et al. [1999] integrate time window, fleet assignment, and aircraft
routing problems in a multi-commodity flow formulation. Aircraft of different
types must be assigned to flights in a schedule of one week and the departure
times of the flights vary in some window. Moreover, flights are labelled with an
identifier and flights on different days with the same identifier must depart at
the same time. Hence, departure time synchronisation constraints are needed.
The model is solved with a Dantzig-Wolfe column generation approach em-
bedded in a branch-and-bound framework to obtain integer solutions. Results

on a weekly schedule are given.

Integration of Schedule Design, Aircraft Routing, and Crew Pairing

Klabjan et al. [2002] partially integrate aircraft routing, crew pairing, and
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schedule design. They reverse the order of the crew pairing and aircraft routing
problems. Plane-count constraints are added to the crew pairing problem to
ensure the existence of a feasible solution for the aircraft routing problem.
Their results are based on a hub-and-spoke network. To include schedule
design in the model the departure time of each flight varies in some time
window. This is done by relaxing feasibility parameters in the crew pairing
problem and hence generating a larger set of pairings. Each feasible pairing
has a departure time attached to each flight contained in the pairing. Klabjan
et al. [2002] solve the crew pairing problem via an LP based branch-and-bound

algorithm.

Cordeau et al. [2001] also reverse the sequential approach and try to solve the
crew pairing problem first, followed by the aircraft routing problem (Klabjan
et al. [2002]). They apply this approach to a point-to-point network but were

not successful in obtaining feasible solutions for the aircraft routing problem.

Mercier and Soumis [2007] extend their model (Mercier et al. [2005]) and in-
tegrate aircraft routing and crew pairing with time windows for the departure
times. Flights may depart five minutes earlier or later than originally sched-
uled. Binary variables are used to indicate which departure time is assigned
to a flight. Constraints, counting the binary departure time variables for the
crew and aircraft solutions, ensure that the same departure times are used in
the solutions of both problems. Again, the authors use Benders decomposition

to solve the problem.

Integrated Vehicle Scheduling Models

Besides the literature specialised on airline scheduling problems, a large num-
ber of publications in the area of vehicle routing (Cordeau et al. [2007]) exist,
dealing with very similar problems. Haase et al. [2001], Freling et al. [2003] and
Huisman et al. [2005] propose models to integrate vehicle and crew scheduling.
Borndorfer et al. [2002] and Borndorfer et al. [2004] describe a proximal bundle
method for the integrated multi-depot vehicle and duty scheduling problem in

public transit.
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2.3 Robustness

The common goal of most problem formulations in the previous section is to
find a cost minimising or profit maximising solution from a planning perspec-
tive. Deterministic flying and turn around times are assumed in all previous
models. Solutions for airline scheduling problems are usually the least expen-
sive if crew or aircraft spend only a minimal amount of time on the ground
between arrival and departure of flights and hence the total working or operat-
ing hours are minimised. Once disruptions occur in operations, due to delayed
passengers, bad weather, or mechanical failures for example, these solutions
may appear brittle in that short delays can cause very severe disruptions.
Because insufficient buffers are available between flights to compensate for de-
lays, a single initial delay can quickly propagate throughout a large part of the
schedule affecting many flights. This sort of disruption may incur large recov-
ery costs caused by additional crew requirements, compensation for passengers
with delayed or cancelled flights, and damaged reputation of the airline. In an
attempt to find robust solutions, the objective that needs to be minimised is
the sum of planned costs and recovery costs (referred to as operational costs)
rather than just planned costs as in the previous sections. In a robust solution
disruptions in some part of the schedule have a minimal effect on other parts
of the schedule.

It is easy to measure the performance of the schedule - once it has been op-
erated - in total minutes of delay that occurred during the operation. It is
difficult, however, to predict the total minutes of delay or to attach costs to
them. It is, for example, difficult to estimate how many minutes of delay will
result in a customer not booking with the airline again and the associated
loss of revenue. The total minutes of delay occurring during operations are a
sum of initial delays caused by unforeseen events and consequential delays that
are caused by flights being delayed or cancelled because of the initial delay.
The decisions made when planning the schedule cannot affect the first type
of delay but influence the second type of delay. It is difficult to estimate the
consequential delays that will occur during operations because they largely
depend on the strategy an airline uses to recover from disruptions, which is
a mostly manual process for many airlines. The decisions made during this

manual process include delaying or cancelling flights and re-routing aircraft,
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crew, and passengers. This recovery process needs to be taken into account

when the minutes of delay are forecast for a planned schedule.

A common measure for robustness among airlines is on time performance
(OTP), i.e. the percentage of all flights in the schedule that depart on time.
A flight is usually referred to as on time if it departs within 10 minutes of the

scheduled departure time.

Because recovery costs are difficult to measure from a planning perspective,
recent attempts in the literature add various robustness measures to different
airline scheduling problem formulations to estimate recovery costs. Consid-
ering a robustness measure as an optimisation goal leads to potentially more
robust solutions, i.e. solutions that are less vulnerable to disruptions, and hence
result in low recovery costs and high OTP. In the following we summarise var-
ious robustness measures that have been introduced for the schedule design,

fleet assignment, aircraft routing, and crew pairing problems.

Robustness and Flight Re-timing

Recently, the topic of flight re-timing in combination with robustness has be-
come increasingly popular in the literature. Recent contributions include Lan
et al. [2006], Wu [2006], Burke et al. [2007], Fuhr [2007], and AhmedBeygi
et al. [2008].

The approach of Lan et al. [2006] is twofold. In a first approach they find
aircraft routings that minimise the propagation of delay by using historic dis-
tributions of delay. In a second approach Lan et al. [2006] re-time the flights of

the schedule in order to minimise the number of missed passenger connections.

Instead of a simulation Fuhr [2007] propose an analytic approach to evaluate

performance. They solve an approximation of the analytical model.

AhmedBeygi et al. [2008] redistribute slack in the planned schedule in order
to minimise the effects of disruptions while leaving the aircraft routing and
crew pairing solutions fixed. This approach is very similar to our indepen-
dently developed re-timing approach described in Section 6.3.2. They use a
probability of delay as a measure of robustness. In a first step only delays that

follow immediately the initial disruption are considered while subsequently all
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down-stream effects are considered. They use a different model to solve the

problem which is larger than ours but possesses some nice integer properties.

Wu [2006] and Burke et al. [2007] consider flight re-timing to enable robust

aircraft routings and are described below.

Robustness and Fleet Assignment

For FAM, uncertainty of departure times is taken into account by Rosenberger
et al. [2004], Smith and Johnson [2006], Kang [2003], and Bian et al. [2003].

Rosenberger et al. [2004] use hub connectivity and the number of short cycles
as the measures of robustness for the solution. Hub connectivity is the number
of legs in the routings that start at one hub, end at another hub, and only visit
spokes in between. If hub connectivity is low delays at one hub are less likely
to affect operations at other hubs. They also observe that airlines usually do
not cancel single flights but cancel a cycle of flights that starts and ends at the
same airport. They find FAM solutions with low hub connectivity that also

contain many short cycles.

A similar idea is presented in Smith and Johnson [2006]. The authors solve
the fleet assignment problem and limit the number of different fleet types that

can serve each airport.

Kang [2003] decompose the schedule into different sub-schedules of relatively
independent flights called layers. The idea is that a delay in one layer does
not affect flights in other layers.

Bian et al. [2003] find that the arrival and departure delay depends on the

number of aircraft on the ground at KLM’s major hub.

Listes and Dekker [2002] and Pilla [2006] consider robust fleet assignment

solutions with respect to uncertainty of demand.

In a stochastic model Listes and Dekker [2002] take demand fluctuations into
account. They maximise the expected profit of the fleet assignment given
probabilities for the realisation of given demand scenarios. They solve the

problem with a scenario aggregation approach.

Pilla [2006] propose a two-stage stochastic model. Only fleet types that can be
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operated by the same crew (fleet family) are assigned to each leg in the first
stage (about 90 days prior to departure). In the second stage (2 weeks prior to
departure) originally assigned fleet types of the same family can be swapped
once most of the demand is realised. This procedure is called demand driven
dispatch (see Berge and Hopperstad [1993]).

Robustness and Aircraft Routing

For aircraft routing problems the robustness measures focus on availability of
aircraft in case previously operated flights are disrupted (Ageeva [2000], Wu
[2006], and Burke et al. [2007]).

The measure of robustness in Ageeva [2000] is the number of times when two
different aircraft routings meet. Aircraft routings meet when the aircraft of
both routings are at the same airport at the same time. This permits the two
aircraft to be swapped: if one aircraft is delayed the other aircraft can operate

the more profitable route.

Wu [2006] consider a fixed aircraft routing solution and re-time flights within

the routings to enlarge buffer times for flights that are likely to be delayed.

Burke et al. [2007] consider multiple robustness objectives of the aircraft rout-
ing problem. They maximise the number of possible aircraft swaps and min-
imise the probability of a flight to be delayed by varying departure times.
They use a so called multi-meme memetic algorithm to solve this biobjective

problem.

Robustness and Crew Pairing

For the crew pairing problem three common robustness approaches exist: min-
imise operational cost instead of planned cost (Schaefer et al. [2005]), minimise
the number of crew changing aircraft if ground time is small (Ehrgott and
Ryan [2002], Mercier et al. [2005], and Yen and Birge [2006]) and maximise
the swapping opportunities for two crew similarly to aircraft swapping oppor-
tunities (Shebalov and Klabjan [2006]). It is particularly important to find
robust crew solutions since a major part of variable operational cost is crew

salary and airlines cannot afford many standby crews to cover flights in case
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of disruptions.

Schaefer et al. [2005] use expected operational cost for crew pairings instead of
planned cost. Interactive effects between pairings are ignored. This assumes
that a delay can only cause further delays within the same pairing. Also,
a basic push-back strategy for recovery is used. In this strategy the flights
are delayed until crew and aircraft are available. The authors use SimAir to
estimate the costs and to evaluate the quality of their solutions. SimAir is
a Monte Carlo simulation of airline operations that permits the evaluation of

schedules and recovery policies in operations, see Rosenberger et al. [2002].

If only minimal ground time is available when crew are changing aircraft after
a delayed flight, the subsequent flights operated by the crew and both aircraft
will be delayed. After a few aircraft changes many flights may be delayed by
the initially minor delay. Ehrgott and Ryan [2002] and Yen and Birge [2006]
therefore penalise crew changing aircraft in the objective function whenever
the ground time is small. Yen and Birge [2006] formulate the crew pairing
problem as a stochastic programming problem in a computationally expensive
approach. Ehrgott and Ryan [2002] propose a deterministic approach. Crew
pairings are penalised where crew are changing aircraft and the sit-time of the
crew is less than the minimal sit-time plus the expected delay of the incoming
flight. Crew who stay on the same aircraft are not penalised. Thus, crew
connections where disruptions are likely to propagate onto multiple flights are
penalised. Robustness is treated as a second objective function in a bicriteria
approach. A similar measure of robustness is used in the integrated aircraft

routing and crew pairing approach by Mercier et al. [2005].

Similarly to the aircraft swapping measure in Ageeva [2000], Shebalov and
Klabjan [2006] solve the crew pairing problem first and then maximise the num-
ber of move-up crews without increasing the planned cost too much. Move-up
crews are crews that can potentially be swapped in case one crew is delayed.
They compare their method with the method of solving the standard crew
pairing problem by simulating disruptions. They find that their improved so-
lutions incur significantly lower operational costs if the additional cost allowed

for move-up crews is not too high.

For many of these robustness measures, the performance of a more robust

schedule is evaluated by means of simulation and compared to traditional
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schedules. Often, significant reductions in recovery costs and an increase in
OTP are indicated by the simulation results. Since simulations usually use
simplified recovery methods the final test of the robustness of a solution, that

is assumed to be more robust, will always occur once it is operating in practice.

2.4 Overview of Solution Approaches for Air-

line Scheduling Problems

Table 2.1 summarises main characteristics of the most relevant solution ap-
proaches for airline scheduling problems. Next to the reference, the problems
considered in the approach are indicated by “S” for schedule design, “F” for
fleet assignment, “A” for aircraft routing, “P” for crew pairing, “C” for crew
rostering and “R” for robustness. The problem types are classified into short,
medium, and long-haul and by daily, weekly, cyclic, and dated. The network
types are classified into flight and duty period networks and connection and
time-line networks. Indications of model and solution approach used are given.
Unless specified otherwise, all approaches use the simplex method to solve the
underlying linear program. The final column describes the largest problem size
that was solved successfully by the approach. Similar tables can be found in
Mercier [2006].



61

2.4 Owverview of Solution Approaches for Airline Scheduling Problems

sqny
¥ ‘syaod QT ‘sedAy [L661] s181013
Jerdare  ‘sYSIY 0Z9T Suryouelq O1ISLINSY ADIN UOI109UU0D Arep X -0jUO}] pue Iorewysny
spotrad Anp
uorjyeIauad pue sjy3ig jo uory ey
SIYS3IY FLT uwnjod ‘aJ[oAA-S1zjue( -tsodwodsp ‘qds pouad Anp -110ys ‘A[rep X [9L66T] ‘T8 1o @ouERA
sod Ay Suryouelq o1}
JeIoIle g ‘yJeIdire 16 -SHNLY ‘OJop -Sizgue Arep [a,66T]
‘syrod ¢¢ ‘sySIY €8¢ ‘uorjeraued uwWN[oy) ADIN ‘ddS UOI}00UU0D ‘[ney-wnrpow ‘TR Jo sIoTunesa(]
sod£y yerd Arep
-Ire 1T ‘SIYSIY £LSe Surypurelq dO1ISLUNSH A0 INVA oul[-owry} ‘[ey-110ys X [9661] Te 10 oxrer)
sodAy gyerorre 11 Sut Arep
‘sya0d OQT ‘sHYSIY 00GZ  -Youeaq dpsumey ‘xorduirg ADIN INVA aul[-owr} ‘[ney-110ys [g661] Te 10 suey
soseq MOId way UO0I1109UU0D yjuowr pajyep
¢ ‘suod 1y ‘sy3tyg ge8 ootrd-pue-yourig -qoxd 3urIeA0d 30g ‘our[-owiry ‘[ney-8uof X [7661] ‘Te 10 1reyureg
[e661]
soseq ¢ ‘sy3Iyg 008 MO-pue-yourIg ddsS Sy X 31oqped pue URWHOH
uory
-eIoUSS UWIN[0D DIJSLINDY
‘Suruwressoad o1gselo A[rep
s1q31y 00LT  ‘seuerd Surnd ‘sonsLmoy] dds LN ‘[ney-110ys X [6661] Te 10 sonerd)
Suiyouelq pue uor}
SISy 008 -eI9UAS UWN]0D JIISMINST] dds WSty Arep X [2661] e 10 [Iquy
[6861] sonodojo
o1IsLINeY ‘ofuriger] Sunyoed 109 qny o[3uls -feued pue unyse(
sypr0d gy “qyemdare §G1 OYSLINAY “INoY I[N A0 [oom pajep [6861] preg pue o]
mey
dI o1ysumay wo[ -Buor‘wunipew
SIY3Y 658 ‘uorjeIgULS UWN[O)) -qoxd 8ur1eA0d 108 potrad Anp ‘porep X [8861] 'Te 10 at0A®RTT
971G we[qoid oroiddy uornjog [°POIN odAT, I0MIoN odAT, weqoay Y D d EBlCREIEPE |



2.4 Overview of Solution Approaches for Airline Scheduling Problems

62

sod Ay jerd
-1re 1T ‘SyySIy LE0T

od Ay
Weoare T ‘syySiy 901

sprod (F
‘sadAy jyeioare g ‘JeIo

-Ire 68 ‘SYSIY Foll
mnwn_aca

Mo gg ‘sSurared TTT

S1YSIY 00001

sodAy qyerd

-Ire 0T ‘yeddire 00g
‘syrod OGT ‘SIYSIY 00€T

SIYSIY €¢ ‘yemire g1
sod Ay
jyemIre g ‘SIYSIY 196
soseq

MAID g ‘SIYSIY GLY

SYYSTH 002 T

SOpou GGOT ‘soIe 8T8

Sose(q MaId ¢

‘syrod g9 ‘spuSty LGTT

SOIe JO UOI}IPPe AT}

-eI9)1 ‘pUNO(-pUR-YOURI

qug ‘uorjerousd

umwnjod ‘oJ[oAA-S1zyue(

sorid-pue-ypuerg

oud-pue-ypuerg
ogens

-uR[ 9[NI ‘UOI)RIDWINUD
Surired 3s1yg yydep ‘uory

-eIoUe8 UWMN[0D ‘UI[OPIAA

xordurtg

OT)SLINSY “IN0Y TSN

UOI)RIOUSS UWN[O))
Suryourelq o13sLNLY
‘uorjetausld UWIN[O))
SuryoueIq O13SHNLY

‘uorpeIauss uwnjoy)

agueider]
Surypuelq
OISLINAY ‘UOT)eIoual

uwnjod ‘ajJopn-S1zjure (]

A0
SHUTRIISTOD
UOIRZIUOIYOUAS

a[npayds ‘IDIN

dds peseq 3uls

dds

ddS

AOIN INVA
soouanb

-0s ySiy A[rep
dD perewrxoxd
-de ‘IWVL DN

ADIN erewrrxoxddy

dds
urwso[es Sulfe

-ARI) OLIJOWWASY

A0

our[-owry

uory

-0ouu0d ‘I1y

potied

Amp ‘sur[-ewry

poseq Sutired

UOT}O8UT0D

uoI13d59uuod

UOI}0UU0D
qurod-og-qurod
‘ur-ewy

pouiad

Amp ‘out[-owry

131y
uoryegsidde

‘ur-ewy

potrad Anp

Arep

ey
-8uo] ‘Ayjoom

Aeom
‘(ney-suof

SyPom oM}

[ney-jIoys
O1[24D ‘A[rep
[ney-3uoy
[ey-8uog
ey

-110ys ‘A[rep

Arep

ey
-wnipaw ‘A[rep

[000g] ‘Te 30 Surxey

[666T] Te 10 wyorOo]

[eg661] “Te 20 1reyureg

[866T]
wwaﬂcm UQ@ @QU@E@U

[8661] ‘Te 10 uOssIapuUY

[6861] ereqy

[e866T]
umje], pue ueredor)

[08661] 'Te 70 1TeyuIRg
[866T]

I0UBYg PUE JIBYUIRG
[L66T] Te 10 Ny

[L661] Te 30 oxre]D

[2L66T]
‘TR Jo sIoTuUNeSa([

971§ WAqOIJ

oeoiddy uornjog

[PPOIN

odAT, j10MIoN

odA T, wsjqoid

90UdIRJOY



63

2.4 Owverview of Solution Approaches for Airline Scheduling Problems

JJerodre

LT ‘seryIAIdR 86T

JRId
-Ire g1 ‘SIS L0L

S1YSIY 2re

sodAy gyeroare § ‘9JeIo
-1re 997 ‘s1ySy 878
sqny § ‘sadAy

jJedlre 6 ‘sHY3IY 8GGT

syaod ¢), ‘syySIy 8¢

soseq

MoI0 G ‘SIYSIY 0GF

SIYSIY 052

SISy 61

sod Ay
1Jemire 6 ‘SIYSIY FH0T

S3Y 628

S1YSIY 759

Suryourelq d19sLINOY
‘Surtmmrerdoxd jurer)s
-U0d ‘UOIIRIOUSS UTN[O))
s [ewrydo ojered
‘Suryouerq J19sLINLY ‘UOT)
-eIoUS3 UWMN[0D ‘SIepuayg
Suryourlq 213SLINOY ‘UOT)
-eI10U0S UWN[0D (WopuRY)
Sunypuelq

OIISLINOY ‘UOT)RIoUd]

MOI ‘UOTYRISUSS UTIN[O))

S ERICELR (hlely

qug ‘Aypiqisesy paxe
-o1 ‘uorjeIoussd uwWNo))
souid-pue-youriq

‘uorjeraues uwNoy)

uoryeIauss no

‘Jug ‘uorjerousd uwnoy)
Sunpuelq

OIISLINSY ‘UOIjeIoUSS

MOI ‘UOTjeIoUS3 UWN[O))

Suryourelq O19sLINLY ‘UOTY
-RIDUSS UWIN(OD ‘SIopuag
Suryourelq O1SLINLBY ‘UOTY

-eIoueS UWN[OD (Wopuey)

dds

ddS

1500 pajoadxe ‘dds

s8o7 Y31y
reuonido ‘qOIN

A0

A0

sjureI)s

-uod junoo sued
qHm dds mar
dds @andafqorq

so[qeLrea

uorinjos Surpnox

yewre ‘dds

ADN

ddS pereidsjul

dds

UOoI1359uu0d

uory

-09Uuu0d ‘WS

poseq Arerouryt

‘oury-owry

aut[-owry

paseq Arerour

uory

-09Uuu0d ‘WS

UOo1359uuo0d

poeseq Areroury

‘our-owy

uoI13d02uuo0d

pourad

Amp ‘our[-owry}

poyep

Aqrep

Arep

Arep

Afrep

ey
-Hoys ‘A[eom

ey
-110ys ‘A[rep

[ney 10ys
‘y[oom pajep

Aqrep

ey
-}107s ‘payep

Appeom ‘Afrep

[900¢] 1sTAUQIN)

[500g] T 30 18I

[c00g] Te 30 19j0RNDg

[r00z] 3requreg
pue juouedajeyor]

[vooe]
‘Te 10 10310qUesOY

[e002]
ueySR}] pue WRILIS

[2002] Te %0 uelqersy
[z002]

uefy pue 330814y
[c00g]

JreyuIRg pue uyo))
[ez00z] ‘Te 10 YrequIeg

[100z] ‘e 3o neap1o)

[e1002] e 30 uelqersy

971G WAqOIJ

oroiddy uornjog

[PPOIN

odAT, I0MIoN

odA T, ws[qoid

90ud.I9JoYy



2.4 Overview of Solution Approaches for Airline Scheduling Problems

04

sodAy qyerodre g ‘)JeIo
-Ire L9T ‘SSIY G0L

SISy €29

soI31AI30R (0

sod £y

Yeolre § ‘SIYSY ¢h6
sprod T

‘yemire gg ‘SIYSIY GLT

yeroare T ‘SISIY 6L
soseq

MoI0 G ‘SIYSIY |TC

‘swoqoxd Surmpatps aurpire 10J soypeoidde WOTINOS JO MIIAIOAQ) TG O[RT,

sino Tewrjdo ojored
‘Buryourelq J19sLIN_Y ‘UOLY}
-eIoua8 UWN[od ‘sIopuag
Suryourlq O13SLINLSY
‘uoryeIauad Ino ‘uoljyerod
-ue8 UWN[od ‘siopuayg
oIess

[800] ‘WYILI0S[R O11oUdL)

sIopuag ‘uory

-eJoua8 uwnjod ‘ofueider|

ooud-pue-ypuerg

Suryouelq O3NS

uory

-eloua8 uwnjod ‘ofueider|

dds

dds

ADIN @a1999(qorq
sjurerls
-U0D MOID ‘pUnod

-ouerd ‘IDOIN INVA

ddS

wrexdoid d213seyD0)s
a3e1s ¢ ‘ddsS
JUNOD MIID

dn-esowr ‘qds

uory

-09uu0d ‘W31

uory

-0ouu0d ‘I1y

Sty ‘our[-owry

1Sty ‘porrad

Amp ‘our[-owry}

U01109UU0D
uorny
-09Uuu0d ‘WS
uon

-09uu0d ‘WS

Arep ‘mey

-8uo[ ‘wunipawt

Arep

Aeom

Arep
Aqrep
ey

1I0ys ‘A[rep

Arep

[£00g] sosxrepedeq

[L00Z]
SINOG pue ISIOISTN

[L00T] ‘Te 30 exang

[2007]
uelqe[y] pue nypues

[9002] Te 10 ovreg
[9002] sS1g pue uex

[9002]
uelqe[y] pue Aoreqays

971§ WAqOIJ

oeoiddy uornjog

[PPOIN

odAT, j10MIoN

odA T, wsjqoid

90UdIRJOY



Chapter 3
Aircraft Routing Problem

In this chapter we introduce a model for the aircraft routing problem and
propose two solution methods. The methods are particularly well suited to
solve the type of problem we are interested in by exploiting special character-
istics of the problem instances. We describe the characteristics and present
details of the solution procedures. We also demonstrate the performance of

the algorithms on various data sets.

3.1 Model

The aircraft routing problem is the problem of assigning aircraft to a given set
of flights in a schedule. We assign one (aircraft) routing (see Section 2.1.4) to
each aircraft such that each flight of the schedule is contained in exactly one
routing. Each routing is subject to maintenance requirements and other flying
restrictions, and the number of available aircraft is fixed. The requirements
and restrictions are described in Section 3.2. In the aircraft routing problem,
each particular aircraft must be assigned to one specific routing. This problem
is similar to the crew rostering problem where a line of work is assigned to each

particular crew member.

Aircraft routings can be represented as columns of a binary (m+a) x nft matrix
A® where m is the number of flights, a the number of available aircraft, and

n' the number of possible routings. The elements (a;;)® of the first m rows of
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matrix A® are defined as follows:

R 1 if flight 7 is contained in routing j

(ai)"™ = '
0 otherwise,

with 1 <i <m,1 < j < nfl. Additionally, the element (a,,;; ;)7 is defined as:

1 if routing j is operated by aircraft ¢
(aeri,j) ]
0 otherwise,

with 1 < ¢ < a,1 < j < nfl. The last a constraints are referred to as
generalised upper bound (GUB) constraints (or aircraft convexity constraints)
and ensure that each aircraft is assigned to exactly one routing. With this
matrix representation the aircraft routing problem can be formulated in the
following manner:

Minimise  (c®) @

subject to ARght = 1 (3.1)

z® e {0,1}"".

The element cf of ¢® € R™ is the cost associated with routing j. We con-
sider a robustness measure as the only cost of the aircraft routings, which is
described in detail in Section 3.2. The decision variable zf* € {0,1} takes
value 1 if routing j is in the solution and 0 otherwise. Since a variable xf is
associated with a particular column of A¥ and this column represents a par-
ticular aircraft routing we use the terms variable, column, and aircraft routing

interchangeably.

Formulation (3.1) is called a rostering model which is a special case of the set

partitioning model and NP-hard.

We solve the aircraft routing problem with column generation and branch-and-
price methods (introduced in Sections 1.3 and 1.4), as the number of possible
aircraft routings is very large. Firstly, the LP relaxation of problem 3.1 is
solved by alternately solving a restricted master problem and a column gener-
ation subproblem. The restricted master problem is solved with the simplex

method and the column generation subproblem with a resource constrained
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shortest path algorithm. Once the LP relaxation is solved, an optimal integer

solution is obtained with a branch-and-price algorithm.

We model the schedule as a directed flight network where flight arcs represent
flights and nodes represent departure or arrival of a flight. Note that for
the aircraft routing problem only flight nodes are necessary. However, we
use the same network for the crew pairing problem where flight arcs become
necessary to model passengering flights and in-flight meals. Besides flight arcs,
connection arcs link the arrival of one flight with the departure of another flight
if the two flights can be operated consecutively by the same aircraft. In a flight
network, each aircraft routing corresponds to a path. The column generation
problem is solved by a resource constrained shortest path problem. Costs and
rules are incorporated into the network design or as resource constraints in
the shortest path algorithm. Paths with negative reduced cost that represent
feasible aircraft routings are returned as columns of A® to the restricted master
problem. We refer to Section 3.3.3 for more details. Note that we can construct
a flight network and calculate shortest paths for each aircraft separately. This
strategy allows us to include aircraft specific restrictions into the formulation
and therefore the model effectively integrates fleet assignment problem and

aircraft routing problem.

3.2 Rules

An airline specifies a number of rules the aircraft routing solution must satisfy.
In the following we list all rules that are applicable to the problem instances
of Air New Zealand and explain how they are implemented in the simplex

algorithm and the resource constrained shortest path algorithm:

e AIRCRAFTCOUNT
The schedule must be operated by a fixed number of aircraft. For each
aircraft a convexity constraint is included in the set partitioning for-
mulation to ensure that each aircraft is assigned to exactly one aircraft
routing. The problem can be modified to use at most the number of
available aircraft by allowing aircraft to be idle (adding aircraft routings
containing no flights) or equivalently by replacing the equality signs of

the convexity constraints by less than or equal signs.
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e MAINTENANCE

All airports are classified into maintenance and non-maintenance ports.
All maintenance of the aircraft is performed at maintenance ports during
the night when no flights are operated. Each aircraft is maintained each
night if it is located at a maintenance port, otherwise it must be main-
tained at a maintenance port the following night. This requirement is
included as a resource constraint in the shortest path calculation of the
column generator. If an aircraft visits a non-maintenance port overnight
during the construction of a path, we make sure that this aircraft will
visit a maintenance port the following night. We must also make sure
that the aircraft is maintained late in the morning on the day before the
aircraft stays at a non-maintenance port. This is necessary so that the
legal limit of 36 hours between two consecutive maintenance checks is

not exceeded.

If we solve the aircraft routing problem for a single day, the network can
be altered for each aircraft to include the rule. If an aircraft starts at
a non-maintenance port, only arrivals at maintenance ports are feasible

end nodes for the aircraft routing on that day.

There are no capacity constraints at the maintenance ports, i.e. all air-
craft that overnight at a maintenance port can be serviced during the
night. Since all aircraft at maintenance ports must be maintained that
night, maintenance capacity limitations must be considered during sched-
ule construction. The fixed schedule together with the positions of the
aircraft at the start of the planning horizon determine the number of

aircraft at each port for each night.

If the number of aircraft is not pre-determined by the schedule, e.g. if
fleet assignment is considered together with the aircraft routing problem,
maintenance capacity constraints can be added to the model as follows.
Constraints are appended to (3.1) for each combination of port and night
where maintenance capacity is limited. The right hand side of such a
constraint is set to the number of possible maintenance checks that can
be carried out at a particular port during a particular night. The entries
of the columns of matrix A for the appended constraints are all 0, except
for the combination of port and night where the aircraft routing that is

represented by the column terminates. In this case the entry is equal to
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1. Together with less-or-equal signs, the additional constraints ensure

that all maintenance capacity restrictions are obeyed.

e THROUGH
A through connection consists of two flights that must be operated in
sequence by the same aircraft. Through connections are included in
the network if there is high passenger demand for direct connections
(i.e. without the necessity of changing aircraft) on certain itineraries. A
list of through connections is specified by Air New Zealand. The rule
is enforced by removing arcs from the column generation network that
connect the incoming flight with any other successor than the specified
flight for every through connection. Additionally, all connections that
connect other (than the specified) predecessor flights to the outgoing

flight of the connection can be removed.

e OVERWATER
Only a subset of all aircraft can perform international sectors, namely all
aircraft that have life-raft equipment on board. We refer to these aircraft
as overwater capable. All other aircraft cannot operate international
sectors. This is enforced by eliminating international sector arcs from

the column generation network for these aircraft.

e MINTURNTIME
If an aircraft is to operate two flights consecutively, a minimal turn-time
is required between the arrival of the incoming flight and the departure
of the outgoing flight. Different minimal turn-times are defined for dif-
ferent airports and depend on the type of incoming and outgoing flight.
Compliance with the MINTURNTIME rule is also incorporated implic-
itly via the network construction. Incoming flights are only connected
to outgoing flights if the connection time is sufficient, i.e. exceeds the

minimal turn-time.

e MINTURNSEQ
If many connections with minimal turn-time are operated in sequence
by the same aircraft, it is more likely that the flights at the end of this
sequence become delayed during operations. Since no buffer time is avail-
able for the aircraft to compensate for delays that occurred early in this

sequence, the last flights in such a sequence will very often depart late.
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We avoid the occurrence of too many consecutive connections with min-
imal turn-times (denoted by MINTURNSEQ) within an aircraft routing
so that the solution is more likely to be operationally robust (see Section
4.3 for a detailed explanation). Such a sequence ends if a connection is
operated whose ground time exceeds the minimal turn-time. Since all
departure and arrival times occur at 5 minute intervals, the ground time
must exceed the minimal turn-time by at least 5 minutes. In the follow-
ing we refer to connections with minimal turn-time as minimal turns.
Costs are accumulated for an aircraft routing during the shortest path
calculation depending on the number of consecutive minimal turns it
contains (i.e. the more consecutive minimal turns, the larger the cost).
These costs are minimised in the objective function of the set partitioning
formulation. We choose costs of 10, 100, and 1000 for minimal turn se-
quences with 2, 3, and 4 consecutive turns, respectively. Sequences with
more than 4 minimal turns are prohibited. This strategy is motivated by
the observation that a sequence of four consecutive minimal turns leads
to much higher delays than the total delay caused by two sequences with
two consecutive minimal turns each. Other functions of the number of
consecutive minimal turns can easily be considered within the shortest
path calculation. The total cost of minimal turns of an aircraft routing
is the sum of the costs of all minimal turn sequences contained in the

aircraft routing.

THROUGHVALUES

A through-value is revenue attached to a pair of flights if they are op-
erated in sequence by the same aircraft. Through-values can be added
as (negative) costs to the aircraft routings such that as many through
connections as possible are operated by the aircraft. This can be incorpo-
rated into the column generation method by adding costs to connection
arcs. Since for our problem instances a set of through connections that
must be operated by the same aircraft is given by Air New Zealand, we

do not consider through-values.

OPERATIONALCOSTS
Operational costs that vary between aircraft can be considered by at-
taching different costs to the flight arcs for different aircraft. This makes

it possible for example to model different fuel efficiencies among the air-
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craft and assign more flying to more efficient aircraft. In the scenarios
we consider, the differences between aircraft are very small. Hence, we
assume that all aircraft are identical and do not impose any operational

costs.

e MAINTENANCELIMIT
The legal requirement for the maximal time between maintenance checks
is 36 hours. Instead of maintaining the aircraft each night as in current
practice, each aircraft can be maintained less frequently but at least ev-
ery 36 hours. However, maintaining aircraft during the day, when only
limited time is available between flights, is for operational and robustness
reasons not desirable. It can be achieved in the column generation pro-
cess using a resource constraint and only generating paths that contain
as few maintenance checks as possible but two consecutive checks within
36 hours. We do not exploit the legal maintenance limit in our algorithm

and schedule maintenance checks as described in rule MAINTENANCE.

e FLYINGTIME
Another requirement could be for all aircraft routings in the solution to
contain approximately the same number of flights and the same amount
of flying time. Since the total number of flights and the total flying time
in the schedule is known, targets for these values can be added to the
shortest path calculation. The target values can be set to be the average
number of flights and average flying time per aircraft, respectively. Using
resource constraints in the shortest path algorithm, aircraft routings are
generated with flying time and number of flights as close to the target
values as possible. We do not include this rule in our implementation of

the aircraft routing algorithm.

e BIGCYCLE
The BicCyCLE condition, all aircraft must operate all flights in the
schedule within a certain period, is not applicable to schedules that
change frequently. The BIGCYCLE condition is equivalent to finding
a single aircraft routing that contains each flight exactly once and wraps
around from the end to the beginning of the planning horizon as many
times as aircraft are available. If all aircraft must operate all flights in a

schedule of one week then the solution needs to span as many weeks as
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aircraft are available. This is not practical if the schedule already changes
in the subsequent week. The nature of the schedule of the problem in-
stances we consider enables the equal utilisation of all aircraft. Many
aircraft meet at only a few airports for overnight stays. Aircraft routings
of subsequent days can easily be swapped between different aircraft if
necessary. For these reasons we do not include the BIGCYCLE condition

in our approach.

Additional rules are needed if the aircraft routing problem is solved as part of
an integrated aircraft routing and crew pairing model. We describe these rules
in Chapters 5 and 6. Note that in this section, the only costs that are associated
with an aircraft routing are MINTURNSEQ costs. Finding an optimal solution
to the aircraft routing problem is therefore equivalent to finding an aircraft
routing solution with a minimal number of consecutive minimal turn sequences.

This approach is generalised in subsequent chapters.

3.3 Solution Methods

As outlined in Section 3.1, the aircraft routing problem is modelled as a set
partitioning model of the rostering type and is solved with column generation

and branch-and-price.

Columns of the set partitioning model correspond to paths in a flight network.
In this section, we first describe a preprocessing step to reduce the size of the
flight network. Secondly, the column generation and branching procedures are
described in more detail. We finally present two methods to efficiently solve

the problem.

3.3.1 Preprocessing

When performing column generation, we must repeatedly calculate resource
constrained shortest paths in the flight network. The performance of the al-
gorithm depends critically on the number of nodes and arcs contained in the
network. Therefore a preprocessing step is performed on the flight network

in order to reduce the number of arcs. Potentially, each incoming flight can
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be connected to all flights that leave the arrival airport at any time after the
incoming flight has arrived and the minimal turn-time has elapsed, causing a
large number of possible connection arcs in the network. We now show that we
can reduce the number of arcs in the network significantly and still guarantee
to find an optimal solution. Similar techniques are for example discussed in
Gronkvist [2006].

We solve the aircraft routing problem for a given schedule with dated time
horizon. We assume all arrival and departure times occur at 5 minute inter-
vals starting from midnight. The number of available aircraft and locations of
all aircraft at the beginning of the time horizon are given. Since the number of
aircraft at each airport at the beginning of the time horizon is known we can
determine the number of aircraft at each airport for every minute of the plan-
ning horizon. For a given airport p this is simply calculated by the following
summation:

t .0 t gt
n, =mn,+a, dp,

where n; is the number of aircraft at airport p at time ¢ (in minutes), ng
the number of aircraft at airport p at time 0 (the beginning of the planning
horizon), a! the number of arrivals at airport p before time ¢, and d the

number of departures at airport p before t.

When we calculate n;f, for all times ¢ and all airports p we can identify all times
t when no aircraft is at airport p, i.e. when n% = (0. With this information we
can greatly reduce the number of connection arcs in the network by removing
connection arcs that cannot be part of any feasible solution since a flight
arriving at p before ¢ and a flight departing from p after ¢ cannot be operated
consecutively by any aircraft. Hence, we remove this connection arc from the
network. The dramatic effect of this preprocessing step can be observed in
Table 3.1 where the number of feasible connections for aircraft before and

after preprocessing are compared.

If we assume that the minimal turn-time requirement is the only rule applicable
and that the minimal turn-time is equal for all connections, we can construct
a feasible solution of the aircraft routing problem with a greedy heuristic. We
order all arrivals and departures at an airport by increasing time and consider
one arriving flight at a time. For each arrival, the flight that is operated

subsequently by the same aircraft is chosen to be the first feasible departing
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flight with respect to the minimal turn-time. This assignment will lead to a
feasible aircraft routing solution if such a solution exists. Since most rules
are relaxed it might be an infeasible solution to the original problem. It can
still be useful to determine a lower bound on the number of aircraft that are
required to operate the schedule. We can also use these aircraft routings as
initial columns of the A matrix of the restricted master problem rather than

just using an artificial identity matrix (see Section 1.3).

3.3.2 LP-Relaxation

The linear program of the restricted master problem is solved with ILOG
CPLEX 10.1 (ILOG [2006b]) using the simplex algorithm with default param-
eter settings. The set partitioning model is formulated with the ILOG Concert
Technology 2.3 (ILOG [2006a]) interface and CPLEX is called to solve the
model. As a result, CPLEX returns the solution status (optimal or infeasible)
together with the solution vector & and the dual solution vector 7. Note that
because of the set partitioning formulation all variables are bounded between

0 and 1 and hence the solution can never be unbounded.

The column generation subproblem is called with 7 as input. If columns with
negative reduced cost are returned these are appended to the set partitioning

model and the model is re-solved.

To obtain integer solutions, we use our own branch-and-price method and only
utilise CPLEX to solve the linear programs. As an advantage over the CPLEX
MIP (Mixed Integer Programming) solver, we can generate columns while

traversing the branch-and-bound tree and obtain optimal integer solutions.

Branching decisions are enforced in the set partitioning model by setting the
upper bound of a variable to 0 if the column that is associated with the variable

is infeasible with respect to the branching decisions.

3.3.3 Column Generation

Once the simplex algorithm finds an optimal solution x to the restricted master
problem, a column generation subproblem is called. The column generator

finds a column s with negative reduced cost ry = (¢, — wTas) or guarantees
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that no such column exists.

The column generation problem is solved for each aircraft separately and mod-
elled on the flight network as follows. Only flight and connection arcs that do
not violate the MINTURNTIME rule, the THROUGH rule, and the OVERWA-
TER rule are included in the network. During the branch-and-bound process
we also do not include arcs that violate the branching decisions (see Section
3.3.4). The negative of each dual variable 7; is stored as the cost of the arc
associated with flight 7. Each overnight connection arc is assigned an attribute
if maintenance can be performed during the stopover. The departure of every
flight the aircraft can operate as a first flight of a routing is marked as a source
node. The sink nodes are all arrivals of flights that the aircraft can operate
as last flights of a routing. A minimal reduced cost column corresponds to a
minimal cost path from a source node to a sink node. Hence, the column gen-
eration problem can be solved as a resource constrained shortest path problem
which is implemented as a label setting shortest path algorithm (Algorithm 1).
Since we solve the problem for a dated time horizon, the flight network does
not contain any cycles and we can assume all nodes are ordered by increasing
time. For the same reason it is sufficient to employ a label setting algorithm

rather than a more sophisticated label correcting algorithm.

To find a shortest path satisfying resource constraints we need to loop once over
all nodes, for an overview see Algorithm 1. A set of labels is attached to each
node, each label representing a path from a source node to the current node.
Each label contains the cost and resource usage of its path. Two resources are
attached to each label, one contains the elapsed time since the last maintenance
check, and the other one contains the number of minimal turns in the current
MINTURNSEQ sequence.

For each label [ and outgoing arc a of a node i we extend the label to a successor
label " at the successor node ¢’ (see Step 8 of Algorithm 1): arc a is appended
to the path represented by label [ to form a new path represented by [’ and
the cost of a is added to the cost of [ to form the cost of I’. We also update the
information of the MINTURNSEQ rule. If the arc represents a minimal turn
we increase the resource that counts the length of the current MINTURNSEQ
sequence by 1. If the connection arc exceeds the minimal turn-time the cost
for the previous MINTURNSEQ sequence is added to the cost of the label and
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Algorithm 1 Label Setting - Resource Constrained Shortest Path
1: INPUT: A flight network for each aircraft that respects rules and branching
decisions for this aircraft.
2: for each aircraft do
3:  Initialise label at source nodes with default values for cost and all re-
sources

4:  for each node ¢ {ordered by departure time} do
5: for each label [ at node 7 do

6: for each outgoing arc a connecting ¢ to ¢ do
7: Extend label [ along arc a to [

8: if I’ dominates label(s) [ of i’ then

9: Discard label(s) I.

10: Save [’ as label of i'.

11: else if Some label [ of i’ dominates I’ then
12: Discard label I'.

13: end if

14: end for

15: end for

16:  end for

17:  Store all labels at end nodes as aircraft routings

18: end for

19: OUTPUT: A set of negative reduced cost aircraft routings for each aircraft
(possibly empty).

the resource is set to 0. When we save a label as a path at a sink node, the cost
for the current MINTURNSEQ sequence is added to the cost of the path. The
reduced cost of the path is equal to the sum over all costs of all arcs contained
in the path. If maintenance is performed during the ground time represented

by the connection arc, the MAINTENANCE resource is updated accordingly.

The new label I’ is deleted if any rule is violated, otherwise it is checked for
dominance. A label I dominates another label [ at the same node if all resources
(including cost) used at label [ are better than or equal to the corresponding
resources used at label [. In the case of the aircraft routing problem [ dominates
[, if | incurs less (or equal) cost than [, the last maintenance check in [ was
at the same time or later than the last one in [, and the current number of
consecutive minimal turns of [ is at most that of I. Only non-dominated labels
are kept at each node since such labels always extend to a path as least as
good as a dominated label. When extending a label it may be dominated by a

label already present at the next node, in which case the new label is deleted.
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Otherwise it is added to the list of labels at the new node. If it dominates one
or more other labels at that node these labels are removed. Once the labelling
algorithm is finished, all labels at sink nodes represent feasible aircraft routings

with minimal reduced cost.

Additional resources can be added to the labels to model operational costs,
to enforce a similar amount of flying time between aircraft routings, or to

maximise the time between consecutive maintenance checks.

The column generation subproblem returns the aircraft routing with the most
negative reduced cost for each aircraft to the restricted master problem or
guarantees that no such aircraft routing exists. Hence, for each aircraft at most
one aircraft routing is added to the set partitioning model and the restricted
master problem is solved again. If no negative reduced cost aircraft routing
exists for any aircraft, optimality (or infeasibility) of the LP relaxation of the

original problem is guaranteed and the algorithm stops.

3.3.4 Branch-and-Price

After the LP relaxation is solved we start the branch-and-price process if any
value xy of the solution @« is fractional. We branch on aircraft-flight pairs
which is a special form of constraint branching proposed by Ryan and Foster
[1981]. In one branch a particular aircraft is forced to operate a particular
flight and in the other branch the aircraft is not allowed to operate that flight.
Such a branching rule is much better suited for this kind of set partitioning
problem than variable branching. In variable branching the aircraft routing
associated with a fractional variable is forced to be in the solution or not. This
leads to a very imbalanced branch-and-bound tree since forcing an aircraft
routing to be in the solution restricts the feasible solution space significantly;
banning an aircraft routing from the feasible solution space does not restrict the
feasible solution space significantly since a large number of very similar aircraft
routings may exist. An even more severe problem of variable branching is the
feasibility check of aircraft routings within the column generation subproblem.
If an aircraft routing is banned from the solution space it is difficult and
computationally expensive to prevent this aircraft routing being generated

again. Only after the whole shortest path is generated, can it be checked
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if this path is banned. Using constraint branching on the other hand, the
feasibility of paths can easily be incorporated into the network design (see

below).

To decide which aircraft-flight pair to branch on, for each flight and each
aircraft we sum up all fractional values of variables associated with aircraft
routings that cover this flight and are operated by the aircraft. We usually
branch on the aircraft-flight pair with the highest fraction less than 1. We
branch on the smallest fraction only if the highest fraction is significantly
smaller than 0.5. Since forcing a particular aircraft to operate a flight is
much more restrictive than forbidding it from operating a flight, we choose
the first option as much as possible, i.e. we execute depth-first-one-branching.
In other words, after one branch-and-bound node is solved, the next node to
be considered is the most restrictive child node of the current node. Only if

this decision leads to infeasibility, other nodes are considered.

At each node of the branch-and-bound tree the LP relaxation of problem (3.1)
is solved again. The branching decisions we make at a node are incorporated
into the simplex algorithm by setting the upper bound of variables to 0 if the

associated aircraft routings are banned by the branching decisions.

Since we solve the column generation problem for each aircraft separately, the
branching decisions are included in the flight network (for a particular aircraft)
as follows. If the aircraft is forced to operate a particular flight, all connection
and flight arcs that overlap in time with the forced flight arc are removed from
the network for that aircraft. In fact, other arcs may be removed whenever
the usage of the arc contradicts the usage of the forced arc, i.e. an arc can
be removed if there exists no path between the arc and the forced arc. For
all other aircraft the flight arc is removed from the network. If the aircraft is
forced not to include a particular flight, this flight is removed from the network

for this aircraft. In this case the networks for other aircraft remain unchanged.

To justify the strategy of branching on aircraft-flight pairs we refer to the
theory of perfect matrices which was first proposed by Padberg [1974]. For a
perfect matrix A and the problem min{c’z : Az = 1, > 0,c € Z"} there
always exists an optimal integral solution vector . We first introduce some

notation.

A graph G is called complete if every node is adjacent to every other node.
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The chromatic number of G is the minimal number of different colours needed
to colour all nodes of G such that no adjacent nodes have the same colour.
A subgraph G’ of G is a subset of the nodes of G together with all arcs of
G linking nodes in the subset. A clique is a complete subgraph. A graph G
is called perfect if for every subgraph G’ of G the chromatic number of G’ is

equal to the maximal cardinality of a clique in G'.

Let G denote the intersection graph associated with a matrix A. The nodes
of G correspond to columns of A and two nodes are linked by an edge if the
two corresponding columns have a common 1 in any row. The rows of A must
contain all cliques that are contained graph GG;. The matrix A is called perfect

if the associated intersection graph is perfect.

We investigate the submatrices of A® that consist of the columns of AF as-
sociated with a single aircraft. The intersection graphs of these submatrices
are complete since all columns have a common 1 in the aircraft convexity con-
straint. Every subgraph of a complete graph is also complete. Also, in any
complete graph the chromatic number equals the cardinality of a maximal
clique which is equal to the number of nodes in the graph. This results in the

following theorem.

Theorem 3.3.1 FEach submatriz of A, that consists of the columns associated

with a single aircraft, is perfect.

Hence, not many fractions occur in the solutions of the LP relaxation of the
aircraft routing problem. In particular, if there is only one aircraft then the
solution of the LP relaxation is guaranteed to be integer. Intuitively, in this
simple case the convexity constraint dominates all other constraints and hence
all other constraints can be removed from the formulation. This will lead to
only a single positive variable in the basis which is integer because of the right
hand side of the convexity constraint being equal to one. The observation of
Theorem 3.3.1 has a large impact on a wide range of problems that can be for-
mulated as set partitioning problems with a convexity constraint, enabling this
class of problems to be solved easily. The theorem has an even bigger impact
on the class of rostering problems, e.g. staff rostering. This type of problem not

only occurs in airline scheduling but in a wide range of industries, e.g. health
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care or public transport. This type of problem can be very large, depending
on the number of staff and the duration of the time period that needs to be
solved. Methods resulting from the theorem enable to solve such large scale
problems to integer optimality. The fractions in the LP solution are caused by
different aircraft/staff members competing for the same flight /piece of work.
Such a fraction can be easily removed by applying a constraint branching strat-
egy (see above), effectively assigning the flight /piece of work to one of the two
aircraft /staff members. We refer to Ernst et al. [2004b] for more details on
rostering problems and Gamache and Soumis [1998], Butchers et al. [2001],
and Kohl and Karisch [2004] for successful solution methods.

3.3.5 Alternative Set Partitioning Formulation

In the case when all aircraft are identical, solving Formulation (3.1) can be
difficult due to symmetry in the model. For all aircraft that start at the same
port, identical columns are generated by the column generation subproblem.
This can result in many equivalent columns being present in the matrix that
only differ in the aircraft convexity constraint coefficient. Many equivalent
columns cause degeneracy of the model and can make it very difficult to solve.
To prevent the construction of equivalent columns, the aircraft convexity con-
straints can be substituted by one equality constraint for each starting port.
The right hand side of this constraint is set to the number of aircraft starting
at the port. The rest of the model remains unchanged. The column generation
subproblem is only called for each starting port instead of for each aircraft.
This alternative formulation removes the symmetry from the original model.
The approach has the slight drawback that we cannot longer use aircraft-flight
pair constraint branching as described in the previous section but only follow-
on constraint branching to obtain integer solutions. We do not use this model
for our computational experiments since the number of identical aircraft start-

ing from the same port is usually very small, i.e. less than four.

3.3.6 Decomposition Methods

All scenarios that are addressed in this thesis are dated schedules. We solve

a dated problem because the flights contained in the schedule vary signifi-
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cantly from day to day. A daily solution (Section 2.1.1) can therefore not be
duplicated to cover a multiple day period. The size of the set partitioning for-
mulation is large if a multiple day period such as a week is considered. Also,
because many aircraft are staying overnight in only a few different airports
and all these aircraft can operate many of the flights departing on the next
morning, the number of possible overnight arcs is large. For these reasons,
long computation times are needed to solve the LP as well as the resource con-
strained shortest path subproblems. In this section we describe two methods
that decompose the fully dated formulation in order to guarantee fast solution

times.

Sequential Method

The large number of overnight arcs causes a large number of feasible aircraft
routings. These routings consist of relatively few different routings for each
day that are combined with different overnight arcs. Many solutions with
identical objective values exist, only differing by how the daily routings are
joined together. Since it is sufficient to find one of these solutions we investigate

how to decompose the problem by solving smaller time periods at a time.

We first consider the aircraft routing problem without any cost and the only
rules that apply are the MINTURNTIME rule and the THROUGH rule which
can both be included in the network design. We assume all flights are operated
during the day and all aircraft are grounded overnight at some airport which
is the case for the problem instances we consider. When solving this version
of the aircraft routing problem for a dated period we observe that there is
no interaction of aircraft routings between different days and hence each day
of the period can be solved separately. An aircraft routing solution for the
whole period can be constructed by concatenating the aircraft routings that
span a day. This sequential solution method speeds up the the solution process

considerably.

When we include the OVERWATER rule, the strategy of solving one day at a
time can lead to infeasibility. This is the case for example, whenever aircraft
that cannot fly to international destinations, are staying overnight at an airport

from which only international flights depart on the next day.
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It is easy to see that there is no interdependence between different days if
the MINTURNTIME, THROUGH, MAINTENANCE, and MINTURNSEQ rules are
applied and if all aircraft are identical (no OVERWATER rule). The aircraft
maintenance requirements for an aircraft during a day depend only on the
type of airport where the aircraft stayed during the night before, i.e. if the
airport where the aircraft stayed overnight is a maintenance base or not. Also,
it can safely be assumed that overnight connections are always longer than the
minimal turn-time and hence no sequence of minimal turn-time connections

can span multiple days.

When all rules are considered, solving the sequential method with one day
at a time can lead to infeasible or suboptimal solutions with respect to the
MINTURNSEQ rule. This is caused for example by overwater capable aircraft
that must do many consecutive minimal turns in the morning in order to reach

the origin of international sectors.

We therefore modify the sequential strategy by solving a subperiod of x days
with 1 < z < d and d the number of days in the whole period. We then shift
the subperiod by y days (y < z and x + y < d) and solve the next subperiod
from day y to day y + x. A similar technique is used successfully to solve the
crew rostering problem in Day and Ryan [1997]. Parameters x and y can be
chosen depending on the rules applicable from solving subperiods of one day
(x = 1) to solving the whole period at once (x = d). By solving overlapping
subperiods (y < x), we can guarantee that a feasible extension of the solution
of the previous subperiod exists. We choose the values x = 2 and y = 1 for the
best compromise between running time and solution quality. When using an
overlap of y = 0 days the OVERWATER rule causes infeasible solutions. Solving

subperiods of more then z = 2 days can cause very long running times.

Flow Formulation Method

In this section we present a flow formulation for the dated period problem.
This model guarantees global optimality of the solution but only needs to
generate aircraft routings for single days. This approach features very fast
solution times of the resource constrained shortest path calculations and leads

to an optimal result in contrast to the approach of the previous section.
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Again, we observe that the only interdependence between aircraft routings on
different days is caused by the OVERWATER rule. This effectively separates
the aircraft into two different fleets: one fleet can operate international sectors
while the other fleet cannot operate international sectors. We can partition the
schedule of the whole period by aircraft routings that only span a single day if
we make sure that the correct number of aircraft of the overwater capable fleet
is available on each day to operate the aircraft routings containing international
sectors. After the problem is solved, an aircraft routing that spans the whole
period is defined by the aircraft routings that span a day each and are operated

by the same aircraft. This results in the following model.

We decompose the set partitioning (SPP) model (3.1) for the whole period
into one SPP model for each day coupled by flow conservation constraints for
the aircraft that are overwater capable. Since there are only two types of
aircraft this condition preserves the flow of the other fleet as well. The flow
conservation constraints only link two set partitioning problems on consecutive
days. The constraints ensure that the number of aircraft that are permitted
to fly over water and that end their routing at a specific airport at a specific
day is equal to the number of overwater capable aircraft that leave from that

airport the next morning.

Formulation (3.2) describes the altered set partitioning model. Matrix AT is
split into matrices A%} for each day d. Matrix A} contains aircraft convexity
constraints for each aircraft and flight covering constraints for the flights that

R

are departing on day d. Similarly, costs ¢ and decision variables & are split

for each day. Flow conservation constraints are added to the model as follows.

We define binary m, x nf matrices PdA and PP where m, is the number of

airports and nf the number of possible routings on day d. Elements (p;;)7 of

matrix P;' are defined as follows:

1 if routing 7 is assigned to an overwater aircraft and
(pij)f = routing j ends at port i on day d

0 otherwise,

with 1 <7 <m, 1 <5< nf}. Similarly, elements (pij)éj of matrix PdD are
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defined as:
1 if routing j is assigned to an overwater aircraft and
(pz‘j)dD = routing j starts at port ¢ on day d

0 otherwise,

with 1 <7 < mp,1 <7 < ndR. With this matrix representation the flow

formulation of the aircraft routing problem can be represented as follows:

Minimise (¢®)’zf + (&) zf + (&) zf

subject to  ARgxR =1
ARl =1
ABLR —
. (3.2)
Pzl — PPzl = 0
Pixl — PPzl = 0

All decision variables & € {0,1}"¢ are binary variables. The decision variable
xifj € {0,1} takes value 1 if routing j is in the solution on day d and 0
otherwise. The second set of constraints ensures that the number of overwater
capable aircraft that arrive on a day and stay overnight is equal to the number

of overwater capable aircraft departing in the next morning.

This enhanced SPP formulation contains flight covering constraints for the
whole period and is again solved with CPLEX, but aircraft routings that only
span a day are generated for each day independently. The negative of the dual
values of the associated flow conservation constraints must be added to the

reduced costs of the aircraft routings during the shortest path calculation.

Not many (number of airports times (number of days minus 1)) flow conserva-
tion constraints have to be added to the original set partitioning formulation
(3.1). We also expect most of these constraints to be easily satisfied during
the solution process. The great advantage of the formulation is the speed-up
in the column generation process since resource constrained shortest paths are

generated on single day networks only. We also expect that significantly fewer
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columns need to be generated during the solution process than in the original

problem.

During the LP solution phase, columns can be generated for each aircraft sep-
arately or once for overwater capable aircraft and once for all other aircraft.
In the first case the start nodes represent only flights departing from the air-
port where the aircraft is located. In the latter case the start nodes are all
possible first flights for all aircraft of the same type. In both cases we can
solve the resource constrained shortest path algorithm for each start port sep-
arately. Maintenance conditions of the airport where the aircraft routings end
can then be integrated into the network because the conditions only depend
on the starting port. Since the second option incurs fewer calculations of re-
source constrained shortest paths, we solve the column generation once for
each aircraft type during the LP solution phase. During the branching process
we enforce the branching decisions by the network design and hence solve the

resource constrained shortest path problem for each individual aircraft.

The model can easily be modified by decomposing the aircraft into more than
two types depending on properties of the aircraft. The model can then be
used to solve the integrated fleet assignment and aircraft routing problem. If
all aircraft have different feasibility parameters, one needs to add flow conser-
vation constraints for each aircraft. It remains to be checked how this affects
the solution times which depend on how many of these constraints are difficult
to enforce during the solution process. If the scheduling period is very long the
number of rows can become very large and the simplex algorithm cannot solve
the model efficiently any longer. In this case the matrix structure implies a
Dantzig-Wolfe decomposition approach as the most natural solution method.
The master problem only contains the flow conservation constraints and one

aircraft routing subproblem must be solved for each day of the period.

3.4 Computational Experiments

We perform computational experiments on point-to-point flight networks cor-
responding to domestic airline schedules of Air New Zealand. The schedules
mostly contain short-haul flights and a small number of medium-haul inter-

national flights. The schedules vary on a daily basis and we consider dated
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time periods of one day, three days, and one week. We consider four different
schedules: summer 2005 (s05), winter 2005 (w05), summer 2006 (s06), and
winter 2007 (w07). For the last schedule (w07) we additionally solve periods
of 10 and 14 days. The schedule in the second week differs from the schedule
in the first week for this scenario and the large schedules yield an indication of
the scalability of the approaches to solve larger instances. For each schedule
we compute solutions to the aircraft routing problem with three different ap-
proaches presented in the previous section: we investigate the performance of
the sequential approach with a subperiod length of one day (seql), the sequen-
tial approach with a subperiod length of two days and an overlap of subperiods

of one day (seq2), and the performance of the flow method (flow).

The fleet consists of 14 aircraft for all scenarios, four of which can operate
international sectors. The flight networks contain up to 750 flights and 3000
connection arcs per week. More details on the characteristics are given in Table
3.1. The table shows the scenario names, the number of available aircraft and
the number of overwater capable ones. We also list the number of feasible

aircraft connections before and after preprocessing.

scenario aircraft flights aircraft connections aircraft connections

(overwater) before preprocessing after preprocessing
s05, 1 day 14 (4) 113 8678 170
s05, 3 days 14 (4) 330 17605 734
s05, 7 days 14 (4) 743 33191 2170
w05, 1 day 14 (4) 114 9312 188
w05, 3 days 14 (4) 336 18745 822
w05, 7 days 14 (4) 753 34391 2212
s06, 1 day 14 (4) 108 8930 210
s06, 3 days 14 (4) 324 17980 877
s06, 7 days 14 (4) 745 33789 2298
w07, 1 day 14 (4) 110 8993 177
w07, 3 days 14 (4) 330 18227 1057
w07, 7 days 14 (4) 751 34303 3091
w07, 10 days 14 (4) 1092 48570 4063
w07, 14 days 14 (4) 1510 64569 6467

Table 3.1. Characteristics of scenarios.
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Tables 3.2 - 3.5 list results for the different schedules and solution methods.
In the first two columns, scenarios (i.e. schedules and the number of days of
the scheduling periods) and solution methods are listed. In some instances
of seql, the OVERWATER rule needs to be relaxed in order to find feasible
solutions. For these scenarios all aircraft may operate international sectors and
we denote the scenarios by “seqlr”. The numbers of rows and columns refer to
the number of rows in the constraint matrix and the total number of generated
columns. For sequential approaches these numbers are maximal values over
all subperiods. To obtain an estimate of the total number of columns that are
generated and the number of branch-and-bound nodes evaluated, the values
need to be multiplied by the number of subperiods that are solved in the

scenario.

In the column “minimal turns” the number of consecutive minimal turns is
listed for the whole solution period. The values (9, t3,t4) represent the occur-
rences of minimal turn sequences of length 2, 3, and 4, respectively. Since the
penalty for 5 consecutive minimal turns is very large, such a sequence does
not occur in any of the solutions. The number of branch-and-bound nodes
to obtain an optimal integer solution is shown in column “BnB-nodes”. For
sequential approaches this is again a maximum over all subperiods. Finally,
computation times to solve the whole period of the scenarios are listed. The to-
tal running times (“tot”), the LP solution times (“lp”), the branch-and-bound
solution times (“ip”), and the total times used to generate columns (“colgen”)
are listed separately. The total running time includes setup and preprocessing
times besides LP and IP solution times. The LP and IP solution times include
the time used for column generation. All times are given in seconds. Note
that we generate columns during the branch-and-bound process. The LP /TP
gap is 0 for all scenarios shown, i.e. for all scenarios the objective values of the
optimal LP and integer solutions coincide. Note that the only costs considered

in the objective function are penalties for minimal turn sequences.

The results are similar for all schedules. For all scenarios of 7 day duration,
the number of minimal turn sequences of length two is between 67-80 and be-
tween 1-12 for sequences of length three. Hardly ever four consecutive minimal
turns need to be included in the solution. Also, run times, number of rows,
columns, and branch-and-bound nodes are similar for all scenarios considered.

We observe that the seql method is very fast but not always able to generate
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feasible solutions in which case we relax the OVERWATER rule. As expected
(see Section 3.3.4), many of the LP solutions are integer or almost integer
causing the number of branch-and-bound nodes to be small and IP solution

times very short.

The seq2 method takes significantly longer than seql and many more aircraft
routings are generated over two days than for a single day. The seq2 method
always finds a feasible solution, and in all but 2 instances (10 and 14 day
periods of schedule w07, Table 3.5) the solution is optimal with respect to the
number of minimal turn sequences. The number of branch-and-bound nodes
required is also significantly larger than for method seql. From the increase in
run time between methods seql and seq2 we conclude that solving subperiods

of more days than two is impractical.

The flow method is faster than the seq2 method and generates fewer columns
than the seq2 method for a single subperiod. Even when we solve a two
week period with the flow method the number of aircraft routings generated
is smaller than the number of aircraft routings generated for a two day period
with seq2. The number of branch-and-bound nodes is larger than in the other
approaches since the row dimension of the matrix is much larger. Compared
with the total number of nodes required in the sequential approaches (num-
ber of subperiods x number of BnB-nodes) the number of nodes is still small.
Branching on multiple days simultaneously can be investigated to speed up the
solution process without deteriorating solution quality. Since the flow method
guarantees to find the optimal solution the superiority of this approach is ob-
vious. We utilise this method for all computational experiments in subsequent

chapters.
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minimal  BnB- times
scenario  method rows*  cols* turns nodes* tot Ip ip colgen
s05, 1 seq 1 127 637 (11,3,0) 6 0.09 0.03 0.04 0.02
s05, 3 seq 1 127 821 (33,5,0) 6 0.19 0.14 0.05 0.06
s05, 7 seq 1r 132 2970 (67,10,3) 20 1.12  0.51 0.58 0.36
s05, 3 seq 2 233 10046 (33,5,0) 19 4.70  2.06 2.60 1.58
s05, 7 seq 2 247 23095 (67,10,3) 39 30.36 834 21.84 7.23
s05, 1 flow 127 1014 (11,3,0) 7 0.27 0.13 0.14 0.11
s05, 3 flow 398 3980 (33,5,0) 5 1.56 1.07 0.47 0.39
s05, 7 flow 919 12834 (67,10,3) 59 2477 4.79 19.96 8.21
* for sequential approaches the maximal number over all iterations is listed.
Table 3.2. Computational results for summer 2005.
minimal  BnB- times

scenario method rows*  cols* turns nodes* tot Ip ip colgen
w05, 1 seq 1 128 1098 (12,2,0) 10 015 008 007 007
w05, 3 seq 1 129 2272 (35,5,0) 10 0.60 0.27 0.32 0.27
w05, 7 seq 1 133 3163 (71,12,1) 20 1.61 0.70 0.90 0.62
w05, 3 seq 2 236 25117 (35,5,0) 2 17.35 588 11.32 424
w05, 7 seq 2 249 25117  (71,12)1) 43  42.98 13.46 29.16 10.46
w05, 1 flow 128 1356 (12,2,0) 1021 020 001  0.04
w05, 3 flow 404 5241 (35,5,0) 21 4.09 1.62 2.47 1.54
w05, 7 flow 929 14171 (71,12,1) 36 22.99 7.24 15.71 7.05

* for sequential approaches the maximal number over all iterations is listed.

Table 3.3. Computational results for winter 2005.
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minimal BnB- times
scenario method rows* cols*  turns nodes* tot Ip ip colgen
s06, 1 seq 1 122 1800  (13,0,0) 1 0.11 0.10 0.00 0.02
s06, 3 seq 1r 126 2430  (41,0,0) 13 0.59 0.38 0.21 0.24
s06, 7 seq 1r 134 2651  (80,1,0) 14 1.65 0.86 0.76 0.49
s06, 3 seq 2 230 33177 (41,0,0) 30 26.13 6.91 19.01 4.99
s06, 7 seq 2 247 34168  (80,1,0) 33 61.14 17.07 43.51 14.41
s06, 1 flow 122 2198  (13,0,0) 1 0.42 0.40 0.01 0.19
s06, 3 flow 392 8282  (41,0,0) 26 7.26 2.78 4.46 2.40
s06, 7 flow 921 18455  (80,1,0) 75 43.65 8.88 34.71 12.70

* for sequential approaches the maximal number over all iterations is listed.

Table 3.4. Computational results for summer 2006.

minimal BnB- times

scenario method ro.*  cols* turns no.* tot Ip ip colgen
w07, 1 seql 124 1296  (12,1,0) 6 013 008 002  0.06
w07,3  seql 120 4304  (254,0) 11 093 054 037  0.30
w07, 7 seq 1r 135 6647 (60,6,0) 18 2.82 1.62 0.50 0.74
)
)

w07, 10 seqlr 135 6647  (93,8,0 18 477 256 216  1.53
w07, 14 seq1r 135 6647 (127,90 21 655 353 294  1.76

w07,3  seq2 234 53107 (2540
w07,7  seq2 252 69792  (60,6,0
w07,10 seq2 252 69792 (92,90
w07, 14  seq2 252 75689 (126,10,0

26 28.29 11.69 16.25 5.13
33 98.77  46.46  51.17  21.36
33 14420 65.21 77.39  31.96
47 227.88 103.64 121.74  48.35

_ — — T

w07,1  flow 124 1482 (12,10
w07,3  flow 398 8494  (25,4,0
w07, 7  flow 927 22387 (60,60 73 64.41  18.09  46.26  20.64
w07, 10 flow 1349 31688  (93,8,0 82 12751 3222  95.18  3L.75
w07, 14 flow 1875 48781  (127,9,0) 92 287.55 69.38 216.39  59.08

* for sequential approaches the maximal number over all iterations is listed.

6 0.40 0.23 0.17 0.14

)
) 50 1014 261 751 3.33
)
)

Table 3.5. Computational results for winter 2007.



Chapter 4
Crew Pairing Problem

In this chapter we describe the crew pairing problem and our solution approach
in detail. We use a commercial solver for the crew pairing problem and hence
obey all rules and restrictions applicable to the problem instances we are in-
terested in. The generated solutions are therefore ready to be implemented in
practice. All scenarios assume an aircraft routing solution as input together
with the schedule data. Note that the model and all solution methods described
are featured in the commercial solver. We add the AIRCRAFTCHANGECOST
mechanism as described in Section 4.3. The cost constraint approach (Section
4.4.4) is introduced in Ehrgott and Ryan [2002].

4.1 Model

Given a flight schedule, the crew pairing problem is defined as the problem
of assigning generic crews to flights in the schedule such that each flight is
operated by exactly one crew. A sequence of flights which can be flown by a
crew on one work day is called a duty period. After each duty period a rest
period must be assigned to each crew member. An alternating sequence of
duty periods and rest periods is called a (crew) pairing or tour of duty. Any
crew pairing must start and end at the same crew base and is restricted by a
number of rules such as rest time regulations or flying time restrictions (see
Section 4.2). There are costs associated with each crew pairing. In the crew

pairing problem we seek a minimal cost set of crew pairings that partition the
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flights in the schedule, i.e. each flight is contained in exactly one pairing.

The crew pairings can be represented as columns of a binary m x n” matrix
AP where m is the number of flights in the schedule and n is the number of
possible crew pairings. Entries (a;;)” of matrix A" are defined as follows:
(0:)" 1 if flight ¢ is contained in pairing j
aij =
0 otherwise,
with 1 < i < m,1 < j < nf. With this matrix representation we formulate

the crew pairing problem as a standard set partitioning model:

Minimise (cF) &
subject to  APxf = 1 (4.1)
= e {0,1}"".

The element cf of ¢” € R™" is the cost associated with pairing 7. The decision
variable xf € {0,1} has value 1 if pairing j is contained in the solution and 0
otherwise. The cost of a pairing is composed of a combination of flight time
and duty time salaries, and meal, rest, and travel allowances (see Section 4.2).
Base-constraints are added to the standard model to consider base strengths
at the crew bases. The base strength restricts the number of crew pairings
that can start at a crew base in a particular week or on a particular day.
To include these restrictions, constraints are appended to formulation (4.1)
for each combination of day (or week) and crew base where base restrictions

apply. The columns of matrix A" are appended by the following entries:

k; if pairing 7 starts at the crew base and in the time interval
J p g
(ai+m,j)P = specified by base-constraint ¢

0 otherwise,

with 1 <7 < mP 1 < j <nP. Integer value k; € N specifies the number of
working days that are necessary to operate crew pairing j and m?¢ is the total
number of base-constraints. The base-constraints usually have inequality signs
and non-unit integer right hand sides. The integer right-hand side ensures that

at least (>) or at most (<) a given number of crew pairings start on a particular
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day or during a particular week from a given crew base. With base-constraints

included the model is referred to as generalised set partitioning model:

Minimise (cf )Tch
subject to APz = b (4.2)
=’ ¢ {01},

where the entries of " have value 1 for all flight partitioning constraints and
are non-negative integers for base-constraints. Besides crew pairing columns
and variables, matrix A" and variables & also contain slack and surplus

columns and variables to satisfy the inequality base-constraints.

In the crew pairing formulation (4.2) generic crew members are assigned to
flights. This is the main difference from the aircraft routing model (3.1) that
assigns individual aircraft to flights. The generic crew pairings are assigned to
particular crew members in a subsequent step in the crew rostering problem
(see Section 2.1.6). Convexity constraints which ensure that each pairing is
operated by the appropriate number of crew members are therefore not in-
cluded in formulation (4.2). The total number of crew to operate all flights in
the schedule is not known a priori but determined by the solution. However,

the number of crew available is limited by the base-constraints.

Similar to the aircraft routing problem, the number of feasible crew pairings

n? is very large and we use column generation to solve the A'P-hard problem.

We model the network in the same way as for the aircraft routing problem,
i.e. arcs represent flights as well as connections between flights if a crew can
operate the two flights consecutively. A copy of a flight arc is added to the
network if the crew may travel as passengers on this flight (also called passen-
gering). These arcs are only included in the network. No entries are added to
the column in the set partitioning formulation for passengering flights. Two
columns may exist that cover exactly the same flight constraints, but one col-
umn contains a passengering sector while the other column does not. The two
columns are distinguished by the objective coefficient and the entries covering
the base-constraints. This is in contrast to a set covering formulation where
passengering a sector is treated identically to operating the sector and the

equality constraints are replaced by greater-than-or-equal constraints (see for



94 4.2 Rules

example Wedelin [1995]). The set covering model results in fewer variables but
costs and rules associated with passengering cannot be modelled accurately.
Similarly to flight arcs, copies of connection arcs are added to the network if
it is possible for crew to have a meal break during this connection: one con-
nection arc represents the crew having a meal break during their stay at the
airport while the other arc copy represents the crew not having a meal break.
Each crew pairing is represented by a path in this network. The arcs contained
in the path determine when meal breaks occur or if the crew travel as pas-
sengers. For each column the corresponding path must be stored so that this
information can be retrieved for a solution. A resource constrained shortest

path algorithm is used to find feasible crew pairings.

4.2 Rules

In this section we describe the rules that are applicable to feasible crew pair-
ings. We limit the description to the most important rules, in particular with
respect to robustness and the integration of aircraft routing and crew pairing
problems as described in the following chapter. Some additional rules are im-
posed by Air New Zealand but these do not affect the characteristics of the
results and are therefore omitted. Since we use the airline’s crew pairing solver
all of them are satisfied by the generated crew pairing solutions. All rules de-
scribed apply to scenarios of dated scheduling periods. The crew pairing solver

can also be used to solve cyclic problems (see Section 2.1.1).

e CREWCOST
The cost of a pairing is a sum of costs for working time (flying or on the
ground), daily expenses allowances (paid for each day away from base),
staying overnight, transportation, hotel rooms, meal breaks, idle time,
working overtime, passengering crew, and other factors. Most of these
costs can be assigned to arcs, for example flying time costs, overnight
costs or passengering costs. Other (so called non-arc) costs must be
calculated during the resource constrained shortest path calculation. An
example is the cost of working overtime since this cost cannot be assigned
to any arc because it depends on the starting time of the duty period.

The cost resource of a label accumulates all arc and non-arc costs of the
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path the label represents.

Additional penalty costs can be added to the cost of the path to influ-
ence certain characteristics. For example, crew can be discouraged from
changing aircraft by adding penalties to the costs of connection arcs that

represent aircraft changes, see AIRCRAFTCHANGECOST below.

e MINSITTIME
The minimal sit-time is the minimal time required between the arrival
and departure of two flights a crew can operate in sequence. The min-
imal sit-time depends on the port and on the flight types (domestic or
international) of the two flights. The minimal sit-time is usually shorter
when crew stay on the same aircraft compared to when they change air-
craft to give crew enough time to transfer to the departure gate of their
next flight. The minimal sit-time is also different for crew that operate
the second flight compared to crew travelling as passengers on the second
flight. Only arcs that satisfy the minimal sit-time rule are included in

the network.

e MAXSITTIME
Similarly to MINSITTIME, the maximal sit-time specifies the maximal
time on the ground for a crew member between consecutive flights he or
she can operate. Connection arcs violating this rule are not included in

the network.

e AIRCRAFTCHANGECOST
Costs can be imposed for crew changing aircraft when the sit-time is
below some threshold. The rule is explained in detail in the following

section.

e DUTYPERIODAIRCRAFTCHANGELIMIT (DPACLIM)
The limit specifies how often a crew member can change aircraft during

one duty period. The rule is explained in detail in the following section.

e BASECONSTRAINTS
A fixed number of crew bases is located throughout the network. All
crew pairings start at one of the crew bases and must end at the same
one. For each day and week of the scheduling periods we consider, a

minimal and maximal number of crew pairings is specified that can start
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at a crew base on that day or week, respectively. This requirement is
included in the set partitioning formulation (4.2) as knapsack constraints

with non-unit right-hand sides for each day or week and crew base.

MAXSECTORS
Each duty period can contain a maximal number of flights which is en-

forced by a resource during the shortest path calculation.

MAXDUTYPERIODS
Any crew pairing can contain a maximal number of duty periods. This

is enforced by a resource during the construction of the shortest path.

LEADIN

As general practice the airline solves the crew pairing problem for a
fixed period (e.g. a week) of the schedule at a time. This is necessary
since the number of crew available at each crew base changes over time.
The schedule itself is also different for each week. Whenever a period
is solved, some crew pairings that span multiple days may continue into
the subsequent period. When such a subsequent period is solved, lead-in
crew pairings that started in the previous period and continue into the
current period must be taken into account. The user can specify a list of
lead-in crew pairings, usually as a result of the solution of the previous
period. All flights of the current period that are already operated by crew
from the last period are removed from the set partitioning formulation
since they do not need to be covered again. This ensures that the solution
of the current period can be appended to the solution of the previous

period without operating the same flight multiple times.

FORCEBAN

The user can specify a set of connections that are forced, i.e. must be
operated by some crew, or banned, i.e. cannot be operated by any crew.
This is enforced in the network design by only including feasible connec-

tion arcs with respect to the force and ban input data.

PASSENGERING (DEADHEADING)
Crew can travel as passengers to operate a flight that is not departing
from their current location or to return back to their home base. Pas-

sengering (also referred to as deadheading) may be permitted anytime
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during a duty period, only at the start or the end of a duty period, or
not at all. Passengering is considered in the network by adding a copy of
a flight arc if the crew can use this flight to travel as passengers. These
flight copies are only part of the network and not present in the set par-
titioning formulation. Additional costs for passengering can be added to

the passengering arcs.

e TIMELIMITS
Limits on the total length (in minutes) of a duty period or a crew pairing

are enforced during the shortest path calculation by a resource.

e MINRESTTIME
A minimal time of rest is required between two consecutive duty periods.
The required rest needs to be enforced during the shortest path calcula-
tion by a resource since it is a function of the working time during the

duty periods.

o MAXFLIGHTTIME
Other restrictions on the flying time include maximal working time (in
minutes) in any 24 hour rolling time window. This rule is enforced by a
resource in the shortest path algorithm. The working time depends not

only on the current duty period but also on previous duty periods.

e MEALBREAKS
Meal breaks must take place in certain time windows within the duty
period, and there must be sufficient ground time available. Furthermore,
in-flight meals incur additional costs. Arcs are duplicated in the network
if a meal break can take place during a connection or a flight. One copy of
the arc includes the meal break while the other arc does not. Additional
costs incurred by the meal break can be assigned to the appropriate arc.
Other meal break rules are enforced during the shortest path calculation,

e.g. maximal allowed time between two consecutive meal breaks.

4.3 Operational Robustness

An airline schedule is unlikely to be operated as planned because of disruptions.

Delays occur frequently in airline operations and can for example be caused
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by late passengers, unscheduled maintenance requirements, or bad weather.
Such disruptions cannot be controlled by the airline. Since the aircraft and
crew that operate a delayed flight usually operate further flights that depart
later during the day, these flights may be delayed due to the unavailability of
aircraft or crew. In this section we describe how we minimise such subsequent

delays.

A solution, where effects of potential delays are minimal, is called operationally
robust. The concept of robust solutions is important since an airline is inter-
ested in achieving high on-time performance (OTP), i.e. a high percentage
of all flights in the schedule departs on-time. However, the planned cost of
a more robust solution is usually high since slack is built in the schedule to
compensate for delays. Bad OTP can incur large additional costs (referred
to as recovery costs), caused by additionally required crews, compensation for
passengers affected by delayed or cancelled flights, and damaged reputation
of the airline. These additional costs may be much larger than the savings of
using a solution with less planned cost that is also less robust. We try to iden-
tify solutions with low planned costs which are operationally robust, i.e. where
disruptions will result in minimal recovery costs. Costs listed in this thesis are
generally planned costs. We refer to the sum of planned costs and recovery

costs as operational costs.

Before we describe how to obtain operationally robust solutions, we explain
the concepts of short and restricted connections as introduced in Mercier et al.
[2005]. First, we repeat some definitions from Chapter 2. If two flights can be
operated in sequence by the same crew or aircraft (i.e. there exists a connection-
arc linking both flights), the time between arrival of the incoming and depar-

ture of the outgoing flight is called turn-time for aircraft and sit-time for crew.

The minimal time required for an aircraft or a crew to operate a connection
is called minimal turn-time or minimal sit-time, respectively. The required
minimal sit-time can exceed the minimal turn-time. For example, crew need
enough time to travel from the arrival gate, through the terminal(s), to the
departure gate of the next flight. If crew stay on the same aircraft, the minimal
turn-time for this connection also applies to crew, instead of the minimal sit-

time. A connection between flights ¢ and j is called short if

(minimal turn-time),; < (sit-time),; < (minimal sit-time),;.
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Thus, in a feasible solution, short connections are only allowed if crew stay
on the same aircraft. Since we solve the crew pairing problem for a given air-
craft routing solution this requirement is easily incorporated into the network
construction by not including arcs for short connections that are operated by

different aircraft.

In addition to allowing short connections only when crew stay on the same
aircraft, we also prefer solutions where crew are not changing aircraft when
the turn time is less than some restricted time. A connection between two

flights ¢ and 7 is called restricted if
(minimal sit-time),; < (sit-time),; < (restricted time),;.

In contrast to short connections, crews are allowed to change aircraft if the
connection is restricted, but we try to find solutions in which this occurs as
rarely as possible. If crew change aircraft on restricted connections we refer to

these connections as restricted aircraft changes.

We minimise the number of restricted aircraft changes that are operated to
obtain operationally robust solutions. Minimal turn-times are usually oper-
ated in aircraft routings to keep costs low and connection times attractive for
passengers. Hence, if a flight is delayed, the flight operated next by the aircraft
is probably also delayed. In the aircraft routing chapter we minimise the num-
ber of minimal turn sequences in the solution to keep such subsequent delays
small. If the crew are also changing aircraft on a restricted connection after
the delayed flight, other flights might be affected by the initial delay. Due to
the small buffer to compensate for the delay, the crew are likely to be late for
the next flight they operate. This behaviour can propagate to a large number
of delayed flights within a short amount of time. The solution is expected to
be operationally more robust if crew change aircraft only when the sit-time

provides sufficient buffer to compensate for a delay.

In Figure 4.1 examples of a non-robust (top) and a robust solution (bottom)
are depicted. Flights are represented as rectangles with origin and destination
airports indicated by 3-letter-codes. Aircraft routings are represented as rows
of flights while crew pairings are represented as flights connected by lines.
Dashed rectangles represent flights that are delayed. We can see in the first

scenario that two flights are affected by the initial delay because the crew
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Initially delayed flight
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Figure 4.1. Comparison of a non-robust and a robust solution

operates a restricted aircraft change. In the second scenario only one other
flight is affected by the initial delay.

There are two mechanisms in the crew pairing solver to limit the number of

restricted aircraft changes: AIRCRAFTCHANGECOST and DPACLIM rule.

AIRCRAFTCHANGECOST

Costs can be imposed for crew changing aircraft when the sit-time is below
some threshold (restricted time). By minimising these costs as part of the
objective function we encourage the crew to stay on the same aircraft whenever

the sit-time is small.

The airline does not impose any costs for aircraft changes. In the computa-
tional experiments we analyse the impact of penalising all aircraft changes with
a sit-time exceeding the minimal sit-time by 30 minutes or less. We impose
costs that increase linearly with decreasing sit-time. The cost for changing
aircraft on a restricted connection ij is denoted by c;‘}-cz

céc = (k1 — ((sit-time);; — (minimal sit-time);;)) * ko. (4.3)
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Weights k; and ko are chosen such that ciA}-C equals 7 for a restricted aircraft
change with sit-time equal to the minimal sit-time, 6 for a restricted aircraft
change with sit-time exceeding the minimal sit-time by 5 minutes, and so on
until a weight of 1 is assigned to a restricted aircraft change with sit-time
exceeding the minimal sit-time by 30 minutes. Note that all departure and
arrival times in the schedules we consider are at 5 minute intervals starting
from midnight. A different set of connections (e.g. those with a larger sit-time)
or a different function of the sit-time (e.g. where weights increase exponentially
with decreasing sit-time) could be chosen in a straightforward way. Comparing
the scale of the aircraft change costs, the cost of a single day crew pairing varies
between 500 and 1000.

Let RC' denote the set of restricted connections. For a crew pairing solution
x”, RC(x") is the set of restricted connections used in this solution. If & is
a solution to the aircraft routing problem, then RC(x®) is the set of restricted
connections induced by this solution. With this notation, the aircraft change
cost ¢A¢ of a crew pairing solution is the sum over all restricted aircraft changes

that are contained in the solution:

¢ = Z cfjc Z xy . (4.4)

ij€RC(zR) kyijek
Here, k is used to index crew pairings and ij € k is used to indicate that
connection ¢j is used in crew pairing k. To include this rule in the algorithm,
the costs for changing aircraft are assigned to connection arcs of the column

generation network.

DuTYPERIODAIRCRAFTCHANGELIMIT (DPACLIM)

The limit specifies how often a crew member can change aircraft during one
duty period. The airline introduced this rule in an attempt to increase the
robustness of the solutions. In contrast to penalising aircraft changes, the
DPACLIM rule limits the total number of aircraft changes in a solution, in-
dependently of the sit-time of these aircraft changes. A resource is added to
the labels to enforce this rule during the shortest path calculation. It is pos-
sible to count the number of aircraft changes during a duty period because an
aircraft routing solution is given as input. This rule needs special attention in

Chapter 5 when aircraft routing and crew pairing problems are integrated and
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the aircraft routing solution is no longer fixed. We also analyse the impact of

relaxing this rule in the computational experiments.

4.4 Solution Methods

In this section we describe an efficient solution method for the crew pairing
problem. We use column generation and branch-and-price methods to solve the
problem. We utilise the commercial crew pairing solver that is used by Air New
Zealand. As a consequence, the crew pairing solutions satisfy all operational
rules and requirements that are imposed by the airline. We describe the LP
solution, column generation, and branch-and-price methods of the crew pairing

solver in the following.

4.4.1 LP-Relaxation

The LP relaxation of problem (4.2) is solved by the simplex method with the
ZIP (Zero-One Integer Programming) package (Ryan [1980]) which is written
in FORTRAN. ZIP is a specialised zero-one integer programming solver that is
equipped with many call-back functions to allow the user to control each step
of the simplex algorithm and the branch-and-price process. The user can for
example specify particular rules to determine entering or leaving variables or
how branching is performed to obtain integer solutions. The column generation
routine is called in each pricing step of the simplex algorithm if no entering
column can be found among the non-basic columns of the matrix. We employ

steepest edge pricing in the simplex algorithm.

Quite often crew pairings exist already that cover flights of the scenario period.
These crew pairings may have been generated by solving a scenario for the
same or another period with a very similar schedule. The pairings can be
used to speed up the computation process. The user can specify a list of
previously generated crew pairings that are available to the optimiser. These
crew pairings are checked for feasibility and negative reduced cost and are
added to the matrix AP of the restricted master problem before the column
generator is called. Also, the optimal basis of a previous solution can be used

as an initial starting basis of the simplex algorithm. If some of the columns
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of the previous basis are now infeasible, these columns are treated as artificial

columns in a phase I/II approach.

4.4.2 Column Generation

Column generation is performed on a flight and connection based network.
Crew pairings correspond to paths in this network. Only connection arcs that
satisfy all rules are included in the network. All rules that require taking multi-
ple arcs into account are modelled as resources in the shortest path algorithm.
We use a label setting algorithm as described for the aircraft routing problem
in Section 3.3.3 to find paths with negative reduced costs. Compared with
the aircraft routing generator, many more resources must be considered when
solving the crew pairing problem because of the more complicated rule struc-
ture. The network also consists of many more arcs than the aircraft routing
network because we cannot eliminate arcs based on the number of crew at an
airport. Since crew pairings contain many fewer flights than aircraft routings,
at most six per duty period, the total number of crew pairings we generate
to obtain an optimal solution, is smaller than the total number of generated

aircraft routings.

We use a dominance relazation method to achieve fast solution times for the
resource constrained shortest path calculation. In this method each time the
column generation routine is called, a shortest path algorithm is executed
multiple times in so called stages. Each stage can return crew pairings with
negative reduced costs. A particular stage is only called if all previous stages
did not compute any path with negative reduced cost. In all but the very
last stage only a subset of all resources are considered when dominance is
checked between two labels. In the first stage for example, a pure shortest
path problem could be solved by only keeping the cheapest label at each node.
Since infeasible labels are removed from each node, this stage may not return
a negative reduced cost path even though such a path exists. In subsequent
stages more and more resources are considered in the dominance check. The
user can choose to consider all resources in the dominance check of the last
stage. But the user can also only use a limited number of stages not consid-
ering all resources in the last stage. The latter method cannot guarantee an

optimal solution but may reduce solution times significantly. Care must be
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taken to consider a “good” set of resources when checking for dominance in
order to obtain good quality solutions. This needs to be verified by extensive

computational experiments.

4.4.3 Branch-and-Price

To solve the crew pairing problem, first the LP relaxation of (4.2) is solved
using column generation. Fractional variables in the solution are caused by
different crew pairings competing for the same flights. To eliminate these
fractions and obtain an integer solution for (4.2), a branch-and-price algorithm
with a follow-on branching strategy is used. In this strategy two flights must be
operated consecutively by the same crew in one problem called the 1-branch.
In the O-branch the two flights must not be operated consecutively by the
same crew. The branching restrictions are enforced in the column generation
network by removing arcs from the network. In the first branch only the
forced connection arc leaves the arriving flight node and enters the departing
flight node of the connection. All other arcs leaving the departing flight node
or entering the arriving flight node are removed. In the second branch the

connection arc that represents the follow-on connection is removed.

Since the LP solver in ZIP is integrated into the branch-and-price framework,
enforcing of branching decisions works slightly differently to CPLEX. When-
ever the LP relaxation is solved at a node, the optimal basis of the LP relax-
ation at the node solved previously is used as a starting solution. Since new
branching decisions are made some variables that are part of the previous LP
basis may violate this decision. These variables are forced out of the basis
with a phase I/II approach. Infeasible (with respect to the branch) non-basic
variables cannot enter the basis. Column generation is used to ensure an opti-
mal solution of the LP relaxation at each node of the branch-and-bound tree.

Depth first branching is used to obtain an integer solution.

4.4.4 Cost Constraint Approach

In this section we outline an enhanced solution method for the crew pairing

problem to obtain cost efficient and operationally robust solutions of the crew
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pairing problem. This method is introduced in Ehrgott and Ryan [2002]. In
this approach the crew pairing problem is essentially solved twice. First, the
original crew pairing problem problem (4.2) is solved to crew pairing cost
optimality. Then, a cost constraint is added to the set partitioning formulation
that forces the crew pairing cost ¢’ of the solution to be less than some value
€. The crew pairing problem is solved again with the objective of minimising
aircraft change cost ¢1¢ (4.4) and subject to the set partitioning constraints

and the new constraint limiting the crew pairing cost.

The value € is set to exceed the optimal IP solution value by a specified per-
centage: € = (1 + 0/100) x ¢!P. Here ¥ denotes the optimal IP solution
value and o denotes the percentage increase in the objective one is prepared
to invest to obtain a more robust solution. The cost constraint is added to
the set partitioning formulation as an elastic constraint since a hard constraint
causes computational difficulties in the branch-and-bound process as described
in Ehrgott and Ryan [2002]. With the cost constraint and the objective to

minimise aircraft change costs the crew pairing problem can be formulated as

follows:
Minimise  (¢)" ? + tsy
subject to APzl = b”
. (4.5)
() " + s — s, = €

= ¢ {0,1}"".

The elements 2, ¢”,b” and A" of formulation (4.5) are identical to formu-
lation (4.2). The aircraft change cost 0340 that is assigned to pairing j is the
sum over all restricted aircraft changes contained in the pairing. Non-negative
variables s; and s, represent slack and surplus of the cost constraint. The
surplus variable is penalised in the objective function by parameter ¢ which
represents the trade-off between crew pairing costs and aircraft change costs.
Details on how to obtain values for ¢ are given in Section 4.5.1. The constraint
is only elastic during the IP solution phase. During the LP solution phase the
surplus variable s, is set to 0, i.e. the cost constraint is a hard constraint. The
optimal solution of (4.5) incurs minimal aircraft change costs while the crew
pairing cost of the solution does not exceed the optimal crew pairing costs by

more than a given percentage.
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4.5 Computational Experiments

All computational results in this section are obtained using the unmodified
crew pairing solver of Air New Zealand. We use the results as reference data
for the experiments in the following chapters. For all schedules, crew need to
be assigned to flights that are operated by a single aircraft type. Crew can
travel as passengers on additional flights operated by other aircraft types. We
consider the same schedules discussed in the aircraft routing chapter, summer
2005 (s05), winter 2005 (w05), summer 2006 (s06), and winter 2007 (w07).
For each schedule we again solve periods of 1 day, 3 days, and 7 days. For the
winter 2007 schedule we additionally solve 10 and 14 day periods. We solve
the scenarios for three different crew types, namely captains (¢33), first officers
(£33), and cabin crew (spsr). The cost structure and rules vary for different
crew types and for different schedules. Technical crew, i.e. captains and first
officers are much more expensive than cabin crew. A duty period for technical
crew may contain at most 5 flights, while a duty period for cabin crew may
contain 6 flights (MAXSECTORS rule). No AIRCRAFTCHANGECOST penalties
apply and the DPACLIM is by default set to 1 for technical crew and 2 for
cabin crew, i.e. cabin crew can change aircraft twice during a duty period and
technical crew only once. All crew are located at three bases. The strengths at
each base vary for each crew type and each schedule. All scenarios use a given
aircraft routing solution as input. This aircraft routing solution is constructed
manually by the airline. We do not consider any (lead-in) crew pairings from

previous solutions.

We apply model (4.2) to various scenarios and results of the computational
experiments are summarised in Table 4.1. The first two columns list scenarios
and crew types. Schedules summer 2005 and winter 2005 are solved for all
crew types. For schedules summer 2006 and winter 2007 the rules and base
strengths for captains and first officers are identical and we only show results

for first officers. No data is available for cabin crew for schedule winter 2007.

Columns “arcs”, “rows” and “cols” list the total number of arcs in each
network, the number of constraints in each model, and the total number of
columns generated. The next four columns display solution times. All times
are given in seconds. Total solution times (“tot”), LP solution times (“lp”),

branch-and-bound solution times (“ip”), and column generation times (‘“col-
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gen”) are shown. The LP and IP solution times contain the time spent for
column generation and the column generation time is the total time of LP
and IP solution phases. The total solution time contains, besides LP and IP
solution times, pre- and post-processing times. We observe that run times
are much faster for the cabin crew problems than the technical crew problems.
The cabin crew problems are easier to solve because the set partitioning models
contain fewer and less restrictive base-constraints and the crew pairing rules

are easier to satisfy.

Column “BnB-nodes” shows the number of branch-and-bound nodes to obtain
an integer solution. The next three columns (“crew pairing costs”) list the costs
of the LP and IP solution and the gap between the two solutions in percent.
We observe that in most cases the actual gap is much smaller than the stopping

criterion which is set to 2%.

The last set of columns gives details on the number of restricted aircraft
changes of each solution. The last seven columns show the number of aircraft
changes where the sit-time of the connection exceeds the minimal sit-time by
0, 5, 10, 15, 20, 25, and 30 minutes. The total cost (column “cA“”) for these
aircraft changes is obtained by summation (4.4). For the scenarios that span
one week around 30 to 40 crew members change aircraft on a connection with
sit-time equal to the minimal sit-time. The total aircraft change costs vary
from 344 to 639 for weekly scenarios. More restricted aircraft changes are oper-
ated by cabin crew than technical crew because 2 aircraft changes are allowed
for cabin crew during a duty period instead of 1 for technical crew. Note
that aircraft changes are not penalised in the objective function during the
execution of the algorithm and therefore a large number of restricted aircraft

changes is expected.
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Table 4.2 lists detailed results for the first officer schedule of summer 2005. In
these computational experiments we vary DPACLIM and AIRCRAFTCHANGE-
CosST to observe the relationship between these parameters, the crew pairing
costs, and the aircraft change costs of the solutions. We solve periods of 1,
3, and 7 days. We use values of 1, 2, and 4 for the maximal aircraft changes
per duty period (column “DPACLIM”). Note that value 4 disables the rule
since each duty period contains at most 5 sectors. Instead of minimising crew
pairing costs only, we now solve the crew pairing problem with a weighted sum

objective of crew pairing costs and aircraft change costs:
Minimise ¢ + pcAC,

where ¢’ represents crew pairing cost and ¢¢ represents aircraft change cost

[19%%))

of the solution and penalty p € {0, 10,50} which is listed in column “p”.

We list costs for LP and IP solutions. The total costs (column “tot”) are
split into crew pairing costs (“c?’”) and costs caused by crew changing aircraft
times the penalty p (“pe©”). The gap (“gap”) between total LP and IP costs
is listed and given as a percentage. As in Table 4.1 we list the number of
aircraft changes and the costs incurred by them. The last set of columns lists
the total number of duty periods in the solution classified by the number of
aircraft changes within each duty period. Column “tot” lists the total number
of duty periods of the solution. Columns “0”, “17, “27, “3”, and “4” show
the number of duty periods that contain 0, 1, 2, 3, and 4 aircraft changes
(no matter if restricted or not), respectively. We observe that aircraft change
costs ¢ can be decreased by increasing penalty p. If DPACLIM is relaxed,
cheaper solutions can be obtained but they contain many aircraft changes. In

the following we investigate these relationships in more detail.

In Tables 4.3 and 4.4 we display the change in solution quality that results from
varying ATRCRAFTCHANGECOST penalty p and DPACLIM. The first three
columns of each table are identical to Table 4.2. The next two columns list

Pn)

the crew pairing costs (“Ip costs ¢ and the aircraft change costs (“lp costs

A% for the LP solutions, respectively. We use LP solutions since statements
about cost improvements are not reliable for IP solutions because we use a
branch-and-bound stopping gap of 2%. Tables 4.3 and 4.4 are sorted in a

different order in order to compare values of three consecutive rows in each
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table.

In Table 4.3 the increase in crew cost and aircraft change cost for varying
penalty p and fixed DPACLIM rule can be observed in columns six and seven.
In three consecutive rows the change in solution quality is given as a percent-
age for changing penalty p from 0 (the default) to 10 and 50, respectively. We
observe that a decrease of up to 100% of aircraft change cost can be achieved
by penalising aircraft changes. A solution with fewer aircraft changes comes
with the price of an increase in crew pairing costs of up to 3.13%. The second
row of Table 4.3 shows a simultaneous decrease in crew pairing cost and air-
craft change cost. This shows that the solution displayed in row 1 is in fact
slightly sub-optimal. This small error is caused by the heuristic nature of the
dominance relaxed shortest path algorithm (Section 4.4.2). We accept this
error and use the heuristic method rather than an optimal method since the

run time of the latter is very long. We do not observe an error that exceeds
0.1%.

The last two columns of Table 4.4 show the change in solution quality when
varying DPACL1M for fixed penalty p. For each period (1, 3 and 7 days)
the difference is given as a percentage comparing a limit of 1 aircraft change
(the default) with limits of 2 and 4 in three consecutive rows. A decrease in
crew pairing cost of up to 2.27% can be achieved by relaxing the DPACLIM
rule. The cheaper solutions do contain many more aircraft changes if these are
not penalised. By penalising aircraft changes, a decrease in crew costs with
simultaneous decrease in aircraft change costs can be achieved as for example
in the last row of Table 4.4. This solution however contains 21 duty periods
with 2 aircraft changes and 2 duty periods with 3 aircraft changes that are
forbidden by the default settings of the algorithm.

Figures 4.2 and 4.3 show the same solutions as in Tables 4.3 and 4.4 in objective
space for the 7 day scenario of the first officer schedule, summer 2005. On
the horizontal axis the crew pairing costs are depicted while the vertical axis
shows the aircraft change costs. For constant DPACLIM the improvements in
AIRCRAFTCHANGECOST for increasing penalties are shown in Figure 4.2. We
again observe that aircraft change costs can be greatly decreased but this incurs
a crew pairing cost increase. We can also see that increasing DPACLIM from 1

(green) to 2 (blue) greatly reduces costs while a value of 4 (red) does not yield
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significant additional improvements. Figure 4.3 shows improvements in crew
pairing cost for increasing DPACLIM and constant AIRCRAFTCHANGECOST.
If aircraft changes are not penalised aircraft change costs increase significantly
for smaller crew pairing costs (green). If aircraft changes are penalised, aircraft
change costs remain small for decreasing crew pairing costs (blue and red).
For a value of p = 50 we observe that crew pairing costs increase by changing
DPACLM from 2 to 4 but aircraft change costs decrease due to the large

value of p.
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=

—
n O
5 E Ip costs increase (%), DPACLIM fixed

A P cP(x10%) A9 (x10) cf e
1 1 0 347.13 3.40 - -
1 1 10 346.79 1.50 -0.10 -55.88
1 1 50 348.84 0.00 0.49 -100.00
1 2 0 345.53 6.73 - -
1 2 10 346.86 0.60 0.38 -91.09
1 2 50 348.60 0.00 0.89 -100.00
1 4 0 344.95 5.50 - -
1 4 10 346.70 0.90 0.51 -83.64
1 4 50 348.63 0.00 1.07 -100.00
3 1 0 892.95 16.37 - -
3 1 10 894.41 4.28 0.16 -73.88
3 1 50 896.55 1.74 0.40 -89.39
3 2 0 884.09 21.12 - -
3 2 10 885.43 5.49 0.15 -74.02
3 2 50 886.74 2.06 0.30 -90.25
3 4 0 883.80 22.91 - -
3 4 10 885.32 5.65 0.17 -75.34
3 4 50 886.66 2.06 0.32 -91.01
7 1 0 1725.12 34.09 - -
7 1 10 1729.29 14.89 0.24 -56.33
7 1 50 1750.93 4.83 1.50 -85.84
7 2 0 1688.99 57.86 - -
7 2 10 1701.78 20.18 0.76 -65.13
7 2 50 1735.38 3.79 2.75 -93.45
7 4 0 1685.98 63.52 - -
7 4 10 1698.69 19.89 0.75 -68.69
7 4 50 1738.75 3.20 3.13 -94.96

Table 4.3. Improvements of solutions for variation of AIRCRAFTCHANGECOST
penalty p for first officer scenario, summer 2005, 7 days.
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=

S|
e 2 .
= ol Ip costs increase (%), p fixed

A P cP(x10%) cA9(x10) c? cAC
1 1 0 347.13 3.40 - -
1 2 0 345.53 6.73 -0.46 98.04
1 4 0 344.95 5.50 -0.63 61.76
1 1 10 346.79 1.50 - -
1 2 10 346.86 0.60 0.02 -60.00
1 4 10 346.70 0.90 -0.03 -40.00
1 1 50 348.84 0.00 - -
1 2 50 348.60 0.00 -0.07 0.00
1 4 50 348.63 0.00 -0.06 0.00
3 1 0 892.95 16.37 - -
3 2 0 884.09 21.12 -0.99 29.00
3 4 0 883.80 22.91 -1.02 39.95
3 1 10 894.41 4.28 - -
3 2 10 885.43 5.49 -1.00 28.30
3 4 10 885.32 5.65 -1.02 32.10
3 1 50 896.55 1.74 - -
3 2 50 886.74 2.06 -1.09 18.56
3 4 50 886.66 2.06 -1.10 18.56
7 1 0 1725.12 34.09 - -
7 2 0 1688.99 57.86 -2.09 69.71
7 4 0 1685.98 63.52 -2.27 86.29
7 1 10 1729.29 14.89 - -
7 2 10 1701.78 20.18 -1.59 35.93
7 4 10 1698.69 19.89 -1.77 33.57
7 1 50 1750.93 4.83 - -
7 2 50 1735.38 3.79 -0.89 -21.51
7 4 50 1738.75 3.20 -0.70 -33.64

Table 4.4. Improvements of solutions for variation of DPACLiM for first officer
scenario, summer 2005, 7 days.
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4.5.1 Cost Constraint Approach

Table 4.5 summarises results of computational experiments for the cost con-
straint approach. We consider the first officer schedule summer 2005 with
scenarios of 1, 3, and 7 days. Default settings of 0 and 1 are used for AIR-
CRAFTCHANGECOST and DPACLiIM, respectively. The columns “days”, “0”
and “t” show the number of days of the scenario and the applicable values for
o and t (see Section 4.4.4). For each row value t was obtained by using the
2 neighbouring LP solutions (listed in the row above and below the current
row). These solutions are depicted in two dimensional objective space with
one dimension representing crew pairing cost and the other dimension repre-
senting aircraft change cost as in Figures 4.2 and 4.3. The value for ¢ is set to
the negative of the slope of the line connecting the two neighbouring solutions,
hence ¢ is an approximation of the trade-off between crew pairing cost and
aircraft change cost. For the first and last row of each of the three scenarios
t is set to 10. Crew pairing costs (“c””) and aircraft change costs (“cA¢”)
are shown for the LP and IP solutions with the objective to minimise air-
craft change costs. The increase (“increase”) in crew pairing cost and aircraft
change cost is with respect to the minimal crew pairing cost solutions listed in
Table 4.1. We further list the number of restricted aircraft changes of the IP
solutions and solution times in seconds. The total solution time contains pre-

and post-processing times.

Improvements in aircraft change cost of more than 90% can be achieved by
allowing an increase in crew pairing cost of a few percent. Even a small increase
in crew pairing cost, for example of 1.2% in the second row of the 7 day
scenario, enables a large decrease in aircraft change cost (78.49%). We observe
that solution times roughly double compared to the standard crew pairing
approach (Table 4.1). This is partly due to the fact that we solve the LP
twice, once with objective to minimise crew pairing costs and once with the
objective to minimise aircraft change costs. Although we start the second LP
solution process from the optimal basis of the first solve, the second LP does
not solve much faster than the first LP. The reason for this is that the optimal
solutions of the 2 LPs are quite different due to the additional constraint. The
IP is only solved in the latter case and can also be very difficult to solve. For

the last five rows in Table 4.5 for example, the branch-and-bound process is
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stopped after the first integer solution is found and we can observe that the
LP/IP gap is very large for these instances. The gap for the last instance is in
excess of 300%. We stop the branch-and-bound process after the first integer
solution since no significant improvement is made during further exploration of
the branch-and-bound tree. As an example we explore the branch-and-bound
tree up to the node limit of 2000 nodes for the second to last instance. The
integer solution listed in Table 4.5 has an objective value of 14 and is found
after 50 nodes. This solution exceeds the optimal LP solution value by more
than 200%. No further integer solution is found within the node limit and
the computation time is in excess of 4,000 seconds. The difficulties in the
IP solution phase are caused by the cost constraint being active in the LP
solution. Although formulation (4.2) generally yields very small LP/IP gaps,
this property is destroyed by adding the cost constraint to the formulation.
Even with the cost constraint being elastic, the branch-and-bound process is

very difficult and time consuming.
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Chapter 5

Robust and Integrated Aircraft

Routing and Crew Pairing

In this chapter we formulate a model that integrates the two problems aircraft
routing and crew pairing. Integrating the schedule design problem is addressed
in the subsequent chapter. We expect the largest gain in cost and robustness by
integrating these three problems compared to the integration of other airline
scheduling problems. We do not consider the problems fleet assignment or
crew rostering in the integrated approach. The fleet assignment problem is
important for large airlines with many different fleet types. For the problem
instances considered in the context of this thesis the fleet can be regarded as
homogeneous and the fleet assignment problem can be omitted. Note that we
do consider a basic fleet assignment model by including the OVERWATER rule.
We outline below how this can be generalised to consider different fleet types
in our solution approaches. We do not include the crew rostering problem in
our formulation. For the relevant scenarios, the crew rostering problem can be
viewed as a separate optimisation problem. The main objective in rostering
is maximising crew satisfaction rather than minimising cost and therefore the
rostering problem has no influence on the cost of the overall airline scheduling
solution [Butchers et al., 2001].

The goal of the integrated aircraft routing and crew pairing model is to generate
solutions that incur low costs and are also operationally robust. We present
the integrated model and describe three solution methods in the following

sections. We present optimisation methods that are capable of finding optimal
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solutions as well as a heuristic method that finds good quality solutions quickly.
We compare the approaches theoretically and conclude the chapter with a

summary of the results of computational experiments.

5.1 Model

In this section we describe a model that integrates aircraft routing and crew
pairing problems. In Section 4.3 we have seen that for a feasible solution,
short connections are only permitted if crew stay on the same aircraft. This
condition might result in suboptimal or infeasible solutions if the two problems
are solved separately. If the crew pairing problem is solved for a fixed aircraft
routing solution, the feasible set of connections to be used by crew is limited.
But if the aircraft routing problem is solved for a fixed crew pairing solution,
it may be infeasible to operate all required (short) connections with the given

number of aircraft.

In order to obtain an optimal solution for the aircraft routing and crew pairing
problem we need to formulate an integrated model. We enumerate all short
connections that can be operated by crew and define a binary m? x n® matrix
BP where m? is the number of short connections. Each pairing is associated

with one column of BY, where

(b)" 1 if short connection ¢ is contained in pairing j
ij) =

0 otherwise,

with 1 <i < mP,1 < j < nPf. For aircraft, a binary m? x n® matrix B is

defined in an analogous way.

With this matrix representation the integrated aircraft routing and crew pairing

problem can be formulated as follows:

Minimise () & + (c®) xR
subject to AP P = bF
AfgR = 1

BPx? — BRxR < 0,

(5.1)
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where 2" € {0,1}"" and 2® € {0,1}"" are binary variables. The first two sets
of constraints are identical to the original single problem formulations. The
third set of constraints ensures that short connections which are operated by

some crew are also operated by some aircraft.

Since we are not only interested in minimal cost but also robust solutions we
need to minimise the number of restricted connections in the solution (see
Section 4.3). If the two problems are solved in sequence, the overall solution
can be suboptimal, i.e. another solution may exist with equal or less cost
that contains fewer restricted aircraft changes. It is possible to improve both
objective simultaneously compared to a solution of a sequential approach. In
a sequential approach the solution space of the problem solve last, and hence
the overall solution space, is limited by the problem solved first, leading to
globally suboptimal solutions. In order to integrate restricted connections into
our formulation we enumerate all restricted connections. Analogously to short
connections, we define a binary m” x n matrix D” where m” is the number

of restricted connections:

()" 1 if restricted connection ¢ is contained in pairing j
ij) =
0 otherwise,

with 1 <i < mP,1 < j <nP. For aircraft, a binary m” x nff matrix D¥ is

defined in an analogous way.

With this matrix representation the robust and integrated aircraft routing and

crew pairing problem [see also Mercier et al., 2005] can be formulated as follows:

Minimise  (cF) z? + () @R + per©)'d

subject to AP P = b”
ARgh =1 (5.2)
BPglP — Blgh < 0
Dfx? —  DEgR — d < 0,

where z” € {0,1}"", % € {0,1}"", and d € {0,1}™" are binary variables,
¢ ¢ ]RTD are positive penalties for changing aircraft, and value p € R,

is a weight to adjust the scale of the aircraft change cost compared to crew
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pairing and aircraft routing costs. Variable d; equals 1 if restricted connection
¢ is operated by a crew but no aircraft and 0 otherwise. The first three sets
of constraints are identical to problem (5.1). The last set of constraints pro-
vokes additional aircraft change cost in the objective function if a restricted

connection is operated by a crew but not by an aircraft.

The model yields an optimal solution for given aircraft change penalties ¢4¢.

The model assumes that the DPACLIM rule is relaxed. We describe below
how the DPACLIM rule can be considered in each solution approach.

For the schedule data sets considered in this work, it can be assumed that the
minimal sit-time of the crew is equal to the minimal turn-time of aircraft for all
connections. Hence no short connections are taken into account and we remove
the short connection constraints from the model. Short connections could be
treated in a similar way to restricted connections. Instead of penalties ¢,
we could use very large penalties, effectively forbidding short aircraft changes

in any solution.

Aircraft routings and crew pairings must obey the rules listed in Sections 3.2

and 4.2, respectively.

5.2 Solution Methods

In this section we describe two new solution methods for the robust and inte-
grated aircraft routing and crew pairing model: the iterative approach which is
an optimisation based heuristic approach and a Dantzig-Wolfe decomposition
approach which is an optimisation method. We also describe the currently
most successful solution method in the literature which is a Benders decom-
position approach as in Mercier et al. [2005]. We compare the characteristics
of the different methods.

As described in the introduction, the goal of this thesis is to solve the ro-
bust and integrated aircraft routing and crew pairing problem without poten-
tially damaging the set partitioning structures of the individual problems. The
structure of the problems can therefore still be exploited to solve the problems
efficiently. From a practical point of view, only minimal changes are required

for existing crew pairing and aircraft routing solvers to be incorporated in such
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an approach.

There are five existing solution approaches for the integrated aircraft routing

and crew pairing problem (see Section 2.2):

1. Direct solution method [Cordeau et al., 2001]

2. Benders decomposition with aircraft routing as the master problem [Cordeau
et al., 2001]

3. Plane-count method [Klabjan et al., 2002]
4. Extended crew pairing method [Cohn and Barnhart, 2003]

5. Benders decomposition with crew pairing as the master problem [Mercier
et al., 2005

Cordeau et al. [2001] show that their Benders decomposition approach is su-
perior to a direct solution method for the integrated model. Mercier et al.
[2005] in turn show that the Benders decomposition approach with the crew
pairing problem as the master problem is superior to the approach with the
aircraft routing as the master problem [Cordeau et al., 2001]. In the plane-
count constraint approach by Klabjan et al. [2002] feasibility of the aircraft
routing problem cannot be guaranteed. Since we consider aircraft routing costs
(see Section 3.2) we cannot find an optimal solution with this approach. Cohn
and Barnhart [2003] propose to extend the crew pairing problem with an ad-
ditional aircraft routing column generation problem but Mercier et al. [2005]
show that this approach is computationally expensive. This leaves the Benders
decomposition approach by Mercier et al. [2005] as the best approach in the

literature to solve the integrated aircraft routing and crew pairing problem.

In all these approaches inequalities are added to the original set partitioning
formulations of the aircraft routing or crew pairing problem. From our experi-
ence, adding base-constraints and the cost constraint to the crew pairing prob-
lem, greatly increases the complexity of the problem (see Section 4). Without
these constraints the problems have “almost” integer properties. The LP/IP
gaps are usually very small and integer solutions can be obtained quickly with
a branch-and-bound method. After adding the constraints the gaps can be

substantial and it can be very difficult to find an integer solution.
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For these reasons we propose two solution methods that do not add additional
constraints to the set partitioning formulation, the iterative approach and a
Dantzig-Wolfe decomposition approach. Lagrange decomposition could also
be used as a solution method but is not considered in this thesis. Cordeau
et al. [2001] believe that Benders decomposition is superior to Lagrange relax-
ation since their approach is very fast. However, Lagrange relaxation could
be investigated as a further approach that does not alter the structures of the

subproblems.

5.2.1 Iterative Approach

In this section we describe an optimisation based heuristic solution method
for the robust and integrated aircraft routing and crew pairing problem. The
two individual problems are alternately solved to optimality. Each problem
receives input from the previously solved problem. This process continues
until a stopping criterion is reached. A predefined solution quality cannot be
guaranteed but a lower bound for the optimal solution value is provided so

that the quality is known once the algorithm terminates.

We assume that MINTURNSEQ costs are the only aircraft routing costs and
the majority of the costs of the integrated solution are crew pairing costs. In
the following we denote the sum of crew pairing costs and MINTURNSEQ costs
simply by costs of the integrated solution ¢/¥7. We consider a connection to
be restricted, if the sit-time does not exceed the minimal sit-time by more than
30 minutes. The aircraft change cost ¢A¢ of an integrated solution is the sum

over all restricted aircraft changes (see Section 4.3):

AY = Z cf}c Z xl (5.3)

JERC(zR)  hijek

where RC(x®) is the set of restricted connections induced by the aircraft
routing solution x®. Value k is used to index crew pairings and ij € k is
used to indicate that connection ¢j is used in crew pairing k. The smaller the
aircraft change cost ¢A¢ of a solution the more robust we expect the solution
to be.

INT

We search for an integrated solution with small cost ¢ and small aircraft
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change cost ¢A¢. We do not attempt to solve the integrated problem to opti-
mality. Instead we propose to solve the crew pairing problem and the aircraft
routing problem iteratively. Initially, we solve the crew pairing problem to
cost optimality without considering any aircraft routings. This results in the
generation of a larger set of feasible crew pairings since feasibility parameters
are relaxed, treating every connection in the crew pairing problem as a follow-
on connection. Since this reduces the minimal sit-time on these connections
there exist many more feasible arcs. The solution is likely to be infeasible for
any aircraft routing solution. This initial solution yields a lower bound on
the crew pairing cost of a feasible integrated solution. Then, in each iteration
the aircraft routing problem is solved first. We consider all restricted con-
nections operated in the current crew pairing solution and force the aircraft
routing solution to contain as many of those connections as possible. This will
force the “aircraft to follow the crew” as much as possible if the connection
is restricted. In other words, we solve the aircraft routing problem using the

following objective function:

Minimise (cR)Ta:R - Z cf}c Z xf, (5.4)

{JERC(zP)  kyjjek

where RC(x") is the set of restricted connections operated in the current crew
pairing problem solution. Vectors ¢f* and & are defined as in (3.1). The first
term of objective function (5.4) minimises the number of consecutive minimal
turns and the second term maximises the number of restricted connections
that are operated by crew in the aircraft routing solution. This is in contrast
to the aircraft change cost (5.3) where we minimise the number of restricted
aircraft changes. Next we solve the crew pairing problem to optimality for
the current aircraft routing solution with a weighted sum objective function of

crew pairing costs and aircraft change costs:
Minimise (¢”) @” + pei€, (5.5)

where ¢ xF p, are defined as in (5.2) and ¢ is defined as in (5.3). The
solutions of the two problems solved in each iteration yield a feasible solution
to the integrated problem. We start with penalty p equal to 0 and increase the
penalty in each iteration in order to increase the robustness of the solutions

we generate. Note that we do not change the ratio of weights between costs
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Algorithm 2 Iterative Algorithm
1: set p=10
2: solve crew pairing problem with objective function (5.5){Since no aircraft
routings are taken into account a larger set of feasible pairings is gener-
ated.}
3: while p < p,0. do
solve aircraft routing problem with objective function (5.4){Minimise
cost and maximise the number of restricted connections contained in the
aircraft routing solution that are operated in the current crew pairing
solution. }
5. solve crew pairing problem with objective function (5.5){Minimise cost
and the number of restricted aircraft changes.}
6:  break if robustness cannot be improved
7:  increase p
8: end while

>

cand ), RO(aP) ¢ in the aircraft routing problem. Here the ratio is set
to reflect the importance of the two robustness measures aircraft change cost
(X ijerc@r) ¢;¢) and consecutive minimal turns (¢”) and there exists no trade-

off with a monetary cost objective as in the crew pairing problem.

Algorithm 2 shows the steps of the iterative approach, see also Figure 5.1
for a schematic overview. For the schedules we consider the minimal sit-time
is equal to the minimal turn-time for all connections, and, hence, no short
connections are taken into account. Since we always solve the crew pairing
problem for a given solution of the aircraft routing problem, short connections
can be considered by removing connections in the underlying network of the
crew pairing problem. If short connections are present in the problem, e.g. in
problem instances of American or European airlines, Step 2 of Algorithm 2

generally yields an infeasible solution that violates the short connection rules.

For our problem instances the interdependence between aircraft routings and
crew pairings stated above is extended by the DPACLIM rule. Since the crew
pairing problem is solved for a given aircraft routing solution, this rule can
simply be embedded in the resource constrained shortest path algorithm of

the crew pairing problem (see Section 4).

The cost of the crew pairing solution in Step 2 yields a lower bound on the
crew pairing costs of a feasible integrated solution since no aircraft routings

are taken into account. In our experiments, no aircraft routing solution for
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Figure 5.1. Schematic view iterative approach.

the crew pairing solution of Step 2 could be found to satisfy the DPACLIM
rule. Hence, Step 2 usually yields an infeasible crew pairing solution to the
integrated problem. If the DPACLIM rule is relaxed we can find an aircraft
routing solution to form a feasible solution to the integrated problem. For the
test instances, such an integrated solution contains a large number of restricted

aircraft changes and hence accounts for large aircraft change costs.

After the initial steps of the algorithm, we obtain a feasible solution to the in-
tegrated problem in each iteration by solving the crew pairing problem (Step
5) for a given aircraft routing solution (Step 4). Once the integrated solu-
tion converges to a stable solution, i.e. all successive iterations yield identical
aircraft routing and crew pairing solutions, the algorithm stops. Hence, the
aircraft change cost cannot be improved. The value of p,,,, is chosen such that
the aircraft change costs dominate the crew pairing costs in function (5.5) in

the sense that no restricted aircraft changes are contained in the optimal solu-
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tion if such a solution exists. The sequence of values p we use in this thesis is
p ={0,2,5,10,20, 50,100, 500, 1000}. In practice, we stop the algorithm once

the aircraft change costs are below some threshold, e.g. less than 10.

Once the algorithm terminates, a number of different solutions to the robust
and integrated aircraft routing and crew pairing problem are provided. The
trade-off between cost and robustness varies between solutions and the airline

can choose which solution to operate (see Figure 5.3 below).

Implementation

Note that the only modification of the aircraft routing and crew pairing algo-
rithms presented above are different costs in the objective functions. Hence,
the modifications can easily be applied to existing aircraft routing and crew
pairing solvers an airline may possess. In each iteration the costs are assigned

to the appropriate arcs of the column generation networks.

Non-linear Programming Formulation

It is noteworthy that characteristics of the iterative approach are similar to
solution approaches in non-linear programming. Model (5.2) without the short
connection constraints is equivalent to the following non-linear non-convex
integer optimisation problem:

Minimise (cP)TwP + (cR)T:cR + p Z (Z :ka> (1— Z ka)

ijeRC \k,ijek kijek
subject to APl = "

AR R =1

where RC' denotes the set of all possible restricted connections. Formulation
(5.6) can be solved by sequential linearisation methods, solving a sequence of
linear approximations. We refer to Arora et al. [1994] and Li and Sun [2006]
for details on non-linear programming and sequential LP solution methods. It
is an interesting topic of future research to compare the performance of such

a solution method with the methods proposed in this thesis.
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Figure 5.2. Schematic view iterative approach with two crew groups.

Iterative Approach for Multiple Crew Groups

The crew for an aircraft usually consists of multiple crew groups. Our data
sets consist of three crew groups, namely captains and first officers (technical
crew) and flight attendants (cabin crew). Different rules, base strengths and
pay structures apply to each group. A robust aircraft routing and crew pairing
solution for one crew group may enforce many restricted aircraft changes in
a crew pairing solution for another crew group. Hence, considering aircraft
and one crew group might lead to a suboptimal solution. Ideally we want to
consider all crew groups and aircraft simultaneously. To incorporate multi-
ple crew groups into the iterative approach we simply solve the crew pairing
problem in Steps 2 and 5 for each crew group separately but use the same
common aircraft routing solution. To obtain penalties for the restricted con-
nections for the subsequent aircraft routing problem we scale the penalties for
the restricted connections of the different crew pairing solutions according to

weights (w; and wq in objective function (5.6) in an example with two crew
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groups) chosen by the airline. The aircraft routing objective function in Step

4 for two crew groups is changed to:

Minimise (cR)Ta:R — w Z cf}c Z xf — w, Z céc Z xf,
ijeRC(zE,) kijek ij€RC(zL,) kjijek

(5.6)
where RC(zL,), RC(xE,) are the restricted connections contained in crew
pairing solutions of crew group 1 (G1) and crew group 2 (G2), respectively.
Indices k£ and ij are defined as in Section 5.2.1. Non-negative weights w; and
wq can be chosen to reflect the ratio of crew pairing costs between both crew
groups. We then generate a new aircraft routing solution as before. The results
of the iterative algorithm with multiple crew groups are presented in Section
5.3.3. More than two crew groups can be considered in a straightforward ex-
tension. Figure 5.2 shows a schematic overview of the iterative algorithm with

two crew groups, captains and flight attendants.

Iterative Approach for Multiple Aircraft Types

Since we use a path based formulation for the aircraft routing problem, multiple
fleet types can be considered in the aircraft routing problem in a straightfor-
ward way. If crew can only operate a subset of fleet types (which is common for
pilots for example), the subsequent crew pairing problems are solved over sub-
sets of flights determined by the aircraft routing problem. With this strategy
the iterative approach partially integrates fleet assignment, aircraft routing,

and crew pairing problems.

5.2.2 Dantzig-Wolfe Decomposition Approach

First we repeat the formulation of the robust and integrated aircraft routing

and crew pairing model we try to solve:

Minimise  (cF) z? + () @f + pci©)'d
subject to AP P =
AR R =1

DPxP — DEgR  — d < 0.
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Here we omit the short connection constraints because the scenarios we con-
sider do not contain any short connections as explained in Section 5.2.1. The
third set of constraints of formulation (5.2) can be considered in a similar way

to the restricted connection constraints, as illustrated in the following.

We use Dantzig-Wolfe decomposition (see Section 1.5.1) to re-formulate (5.7)
as one master problem and two sub-problems. The only constraints of the
original formulation that are present in the master problem are the restricted

connection constraints:

Minimise  (c?)TVFA + (e®)TVEu + p(cr€)'d

subject to JIED =1 — b
(5.8)

I =1 — i

DPVPA —  DREVERy, — d <0 —m

where A € {0,1}V" € {0,1}V* and d € {0,1}™”. The columns v’ and v?

of matrices VF = [v! ol .-+ [ vF]and VT = [vf vt .- vE span the respec-
tive polyhedra P” = {z” € R |APz" = b"}, PP = conv ({v!,...,v}) and
PR ={af e R7|Afzf = 1}, PR = conv ({vf,...,v}). Dual values 7" and

7R are associated with crew and aircraft convexity constraints, respectively.

The entries of vector 7 are the dual values corresponding to the restricted con-
nection constraints. The convexity constraints ensure that exactly one aircraft
routing solution and exactly one crew pairing solution is chosen in an optimal

integer solution.

The two subproblems contain all other constraints of the original formulation.
The crew pairing subproblem is identical to the original crew pairing problem

except for the objective function:

Minimise  ((ef')T — «? DP)x?
subject to APzeP = " (5.9)
= e {01},
It is important to note that this crew pairing subproblem assumes no aircraft

routing solution. All connections are follow-on connections and minimal sit-

time rules are relaxed. Similarly, the aircraft routing subproblem is identical
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to the original aircraft routing problem except for the objective function:

Minimise  ((e®)” + w7 D®)z?
subject to ABRgR = 1 (5.10)
z? e {0,1}"".

The solution process works as described in Section 1.5.1. The LP relaxation of
the restricted master problem is solved and the optimal dual values are passed
as input to both subproblems. These are solved and one column is generated
from each subproblem solution and added to V¥ or V' of the master problem,
respectively, if the reduced costs are negative. The process iterates until no
columns with negative reduced cost are returned by either subproblem or a

specified optimality gap is reached.

In each iteration we solve both subproblems and generate one column for V¥
and one column for VF from these solutions. Note that the subproblems
are not necessarily solved to IP optimality but stopped when a specified LP
bound-gap is achieved. In a first phase the master problem is only solved to
LP optimality. During this phase an optimality gap can be obtained from
the LP optimal solution values of the subproblems. Since the right-hand-side
by of the second set of constraints of formulation (1.7) is equal to 0, a lower
bound for an optimal LP solution of (5.7) is provided by the sum of the costs
of optimal LP solutions of the two subproblems (see last paragraph of Section
1.5.1). We can get an improved lower bound for the optimal solution value of

(5.7) if we solve the subproblems to IP optimality.

If fractional solution variables are contained in the optimal solution of the lin-
ear relaxation of (5.7) we branch on the restricted connections to obtain an
integer solution. Since each restricted connection is associated with a connec-
tion arc ¢ in the flight network, the branching decisions are easily incorporated
into the subproblems by forcing or banning arcs to be contained in a solution.
We can stop the algorithm after the LP solution phase (or at any time) pre-
maturely and determine the best integer solution found by solving the master

problem to IP optimality over the columns generated so far.

In our computational experiments we stop the algorithm after the linear re-

laxation of (5.7) is solved to optimality or within a specified optimality gap.
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We do not use the Dantzig-Wolfe decomposition approach to obtain integer
solutions to (5.7) since the integer solutions obtained by iterative approach
are usually within the specified bound-gap of 2% of the LP solution. Hence,
there is no additional benefit of running the IP solution phase. We refer to the

computational experiments (Section 5.3) for more details.

Note that we do not include the DPACLIM rule in this solution approach.
The consideration of this rule requires linking particular routings and pairings
which could be enforced by additional constraints or a branching strategy.
This, however, is computationally difficult and inefficient to enforce. For the
iterative approach on the other hand, enforcing the rule is very easy. Since the
crew pairing problem is always solved for a given aircraft routing problem, the
DPACLIM rule can be enforced during the shortest path calculation.

We expect that an operationally robust solution will “almost” satisfy the DPA-
CL1M rule. Since the DPACLIM is an artificial rule to enforce robustness (see
Section 4.3), a slight violation of the rule can be tolerated. We can enforce
the rule heuristically by using the aircraft routing solution of the optimal in-
tegrated IP solution and generating a DPACLIM rule feasible crew pairing

solution as in the iterative approach.

Implementation

Similar to the iterative approach, only small changes are required to existing
aircraft routing and crew pairing algorithms. Again, in each iteration, costs
are assigned to the appropriate arcs of the column generation networks. We
also modify the crew pairing algorithm so that each connection is treated as a
follow-on connection, i.e. minimal sit-times are relaxed. Note that the rows of
matrices D and DY are not generated a priori for all connections. Instead,
the rows are populated during the algorithm for connections that are part of

a solution that is returned by the crew pairing subproblem.

5.2.3 Benders Decomposition Approach

Currently, the most successful approach in the literature to solve the robust

and integrated aircraft routing and crew pairing problem seems to be Benders
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decomposition (see Mercier et al. [2005]). In this section we outline their
solution approach. We again consider problem (5.7) where short connection
constraints are omitted. Such constraints can be considered in a similar way
to restricted connection constraints.

First, for a given LP solution " € {a : APx” = b" ¥ > 0} of the crew
pairing problem, the LP relaxation of (5.7) reduces to a primal subproblem

that contains only aircraft routing variables:

Minimise (cf) & + p(eA©)’d
subject to ARl =1 (5.11)

DEzR d > Dz’

with 2% > 0 and d > 0. Note that the primal subproblem is always feasible if
a feasible aircraft routing solution exists. Otherwise (e.g. if short connection
constraints are included), feasibility can be achieved by adding artificial vari-

ables with large costs. Next, we formulate the dual of the primal subproblem:

Maximise af1 + g'DPz”
subject to aTAR 4+ gTDE cf (5.12)

B < pet€,

IN

with B8 > 0 and dimensions of a and 3 as appropriate. Since a = 0 and
B = 0 is a feasible solution for the dual subproblem, both primal and dual
subproblems have bounded and feasible solutions. Let A denote the polyhe-
dron defined by the constraints of (5.12) and let Pa be the set of extreme points
of A. The LP relaxation of (5.7) can be reformulated as a master problem

containing only crew pairing variables:

Minimise 2 + (cf) aP

subject to APzl b"
z — B'DPx" > a1  (a,B) € Pa

0.

(5.13)

mP

v

The free variable z is restricted to be larger than the optimal value of the dual

subproblem for any &'. In general, the master problem contains more con-
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straints than formulation (5.7). As the variables in the Dantzig-Wolfe decom-
position, these constraints are not enumerated a priori. Instead, an initially
empty restricted master problem is solved and the optimal solution is used as
input to the primal subproblem. If the optimal solution value of the subprob-
lem is larger than the value of z, the constraint formed by the dual variables
of the optimal subproblem solution is violated by the current solution of the
master problem. It is therefore added to the master problem and the master
problem is re-solved. If the objective value of the subproblem is equal to (or
within a specified gap of) z, the algorithm stops with a (close to) optimal
solution for the LP relaxation of problem (5.7).

To obtain integer solutions to problem (5.7), the Benders decomposition is
embedded in a 3 phase approach by Mercier et al. [2005]. In the first phase
all integer requirements are dropped and master problem and subproblem are
solved to LP optimality with the use of column generation. The first phase of
the algorithm can be stopped when the gap between lower and upper bound
of the LP solution is sufficiently small. In the second phase the master prob-
lem is solved to integer optimality with a branch-and-bound method and the
subproblem is solved to LP optimality at each node. In the final phase in-
tegrality conditions are enforced on the subproblem and this is solved once.
Since the subproblem is always feasible, the algorithm stops with a heuristic
integer solution. However, the objective value of this solution may violate
the cost constraint of the master problem. If the master problem contains
not only optimality constraints for restricted connections, but also feasibility
constraints for short connections, the heuristic integer solution may in fact
be infeasible. In this case a constraint must be added to the master problem
forbidding the set of short connections. With this new constraint the problem

must be re-solved starting from phase 2.

Implementation

As in the Dantzig-Wolfe decomposition, the DPACLIM rule is relaxed in the
Benders decomposition approach. The following changes to the algorithms that
solve the individual problems are required. An additional set of constraints
must be added to the aircraft routing problem. On each iteration the right-

hand sides of these constraints must be changed. On each iteration a new
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constraint is added to the crew pairing problem. Finally, the variable z must

be added to the crew pairing model.

Identifying Strong Cuts

Mercier et al. [2005] improve their algorithm by modifying the subproblem
to generate strong cuts. If the primal subproblem is degenerate, more than
one optimal solution to the dual subproblem may exist. Although all of these
solutions generate valid cuts, some may be stronger than others. A cut gener-
ated from the optimal solution (e, 3) dominates another cut generated from
solution (o', 3') if and only if a1 + B'D"x” > /71 + B D z" for all
xf € {xf . AP2” = b” 2" > 0}. A cut that is not dominated is called
Pareto optimal. The authors solve a dual auxiliary subproblem to obtain a

Pareto optimal cut:

Maximise —a’1 + B'DPx{

subject to a1l + BTDPE’ = ou(@E’
j B (") (5.14)
aTAR + ﬁTDR < CR
B < petf,

with B8 > 0. Vector @} is chosen in the relative interior ri(X*) of X" =
{xf . APz = b” x¥ > 0} (see below how to choose such an xf). Vector

P ¢ XIP is a given solution for which the primal subproblem is feasible

T
and value v(Z") denotes the optimal value of the primal subproblem. Only
the first constraint is added to the original dual subproblem (5.12) to obtain
(5.14). This constraint ensures that the solution will be an extreme point of
the set of optimal solutions of the original dual subproblem. In the objective
function the strengths of the cuts are compared with respect to some primal

feasible point &!’. The Pareto optimal cut is added to the master problem.

One can solve the primal version of the dual auxiliary problem instead of the
dual problem. Since the master problem is solved by column generation, an
interior point @y € ri(X") may not be available. Other points can be chosen
for £’ and the dual auxiliary problem still yields a valid cut since the choice
of ! only changes the objective function. The choice may, however, affect the

strength of the cut. The authors arbitrarily fix the coefficients of 3 close to 0
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to generate strong cuts.

The primal auxiliary subproblem is solved to obtain a strong cut once the
primal subproblem is solved in phase one of the algorithm. All other steps
of the algorithm remain unchanged. We do not implement the strong cut
approach. The main purpose of our implementation is to obtain a lower bound

for the optimal solution value and speed of the algorithm is not very important.

5.2.4 Discussion of Approaches

In both optimisation approaches, Dantzig-Wolfe and Benders decomposition,
a weight must be attached to aircraft change cost a priori. This weight rep-
resents the trade-off between costs and operational robustness and is difficult
to estimate. In the iterative approach the user can choose a solution after
the algorithm terminates depending on the trade-off observed between crew

pairing cost and aircraft change cost, no weight is needed a priori.

All solution methods previously discussed in the literature, including Benders
decomposition, add constraints to the set partitioning polytopes of the air-
craft routing and crew pairing problems. These additional constraints can
cause computational difficulties. In the iterative approach and the Dantzig-
Wolfe decomposition approach the original set partitioning structures are not
disturbed by additional constraints. Apart from the computational difficulties
there are two further advantages of such an approach. Firstly, it is possible to
solve aircraft routing and crew pairing problems efficiently with the methods
described in Chapters 3 and 4. In both approaches only the objective func-
tion is changed to influence characteristics of the solutions. The calculation
of objective function coefficients is easily implemented into the shortest path
computations of the column generators for both problems. An airline usu-
ally uses aircraft routing and crew pairing solvers as part of the traditional
sequential solution approach. Existing solvers can be used with only minor
modifications. For both approaches only a master problem needs to be added,
that controls the two subproblems. Secondly, in both approaches the aircraft
routing and crew pairing problems must be solved repeatedly. The solution of
a previous iteration can be used as a starting basis for the simplex algorithm.

If only the objective function changes, the previous solution is still feasible
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and we expect that only very few iterations are needed until the new optimal

solution is found.

The iterative approach and the Dantzig-Wolfe decomposition approach are
structurally very similar. In both approaches identical subproblems are solved.
Only additional aircraft routing information is used in the crew pairing sub-
problem of the iterative approach. The penalties used in the iterative approach
to penalise aircraft changes can be thought of as duals 7w corresponding to the
restricted connection constraints in the Dantzig-Wolfe master problem. This
in fact gives the motivation for the iterative approach: instead of using optimal
duals from an LP solution, heuristically constructed duals are used to guide

the solution process of the subproblems in the iterative approach.

We think it is not possible to efficiently integrate the DPACLIM rule into
the Dantzig-Wolfe or Benders decomposition approaches. This would require
comparing particular pairs of routings and pairings and is computationally

expensive.

All three approaches provide lower bounds on the optimal solution. For the two
decomposition approaches the optimal solution values of the LP relaxations of
the subproblems provide lower bounds on the objective value of an optimal
solution. In the iterative approach a lower bound for the crew pairing cost is
calculated in the very first iteration. The minimal aircraft routing costs can be
added to obtain a lower bound for the cost of an integrated solution. Benders
and Dantzig-Wolfe decomposition provide a guarantee of the solution quality

of the LP relaxation of problem (5.7) while the iterative approach does not.

In practice, it is beneficial to combine the iterative approach and the Dantzig-
Wolfe decomposition approach. An initial solution is found by the iterative
approach. The solution is added to matrices V¥ and V# of the Dantzig-Wolfe
decomposition approach. This approach can then be used to obtain a lower
bound for the solution and to improve the solution quality. The weight p of the
iterative approach starting solution is used as weight p in the objective function
of the decomposition approach. Using a starting solution can significantly

speed up the solution process of the optimisation approach.

Mercier et al. [2005] show that in the Benders decomposition approach only
very few iterations are required to obtain optimal LP solutions. In their compu-

tational experiments they do not consider base-constraints except for limiting
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the total number of duties. They also use an approximation of the crew cost
function. In our experience, such relaxations greatly simplify the crew pairing

problem.

Finally, FAM can easily be partially integrated into the iterative approach.
For Dantzig-Wolfe and Benders decomposition methods, additional constraints
are needed to ensure that crew with the correct qualifications operate on each

aircraft type.

5.3 Computational Experiments

In this section we compare computational results of our implementations of
the iterative approach, the Dantzig-Wolfe decomposition approach, and Ben-
ders decomposition approach. All program code is written in C, C++, and
FORTRAN. We use basic implementations of Dantzig-Wolfe and Benders de-
composition without any speed-up procedures. We also solve both optimisation
approaches to LP optimality only and compare the results and run times with

the iterative approach.

5.3.1 Iterative Approach for a Single Crew Group

Figure 5.3 displays a typical set of results of the iterative approach. As in the
crew pairing chapter, the horizontal axis displays crew pairing costs and the
vertical axis shows aircraft change costs. The costs of the solution operated by
the airline and the solutions generated by the iterative algorithm are compared
for the first officer schedule, summer 2005. The green diamond shows the ob-
jective value of the crew pairing solution that was manually generated and
operated by Air New Zealand. This solution is obtained by using the aircraft
routing solution that was operated by the airline and generating a cost min-
imal crew pairing solution with the traditional method described in Chapter
4. The lower bound for the crew pairing cost is shown which is obtained from
the initial step of the iterative approach. The blue squares show the objective
values of the solutions generated by the iterative approach. The labels show
the iteration in which the solution is obtained. Starting with very cheap so-

lutions the solutions become more robust during the algorithm and also more
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expensive. The first six solutions are all cheaper and more robust than the
solution obtained by the traditional approach. These results are remarkable
since Air New Zealand is using sophisticated optimisation methods for crew
planning, described in detail in Butchers et al. [2001], a finalist entry for the
Franz Edelman Award in 2000.
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Figure 5.3. Iterative approach solutions for first officer scenario, summer 2005,
7 days.

In Table 5.1 results of the iterative approach are listed in detail for one, three,
and seven day scenarios of the first officer schedule, summer 2005. The first
column lists the scenario name. The next column lists the iteration in which
the results are obtained. For comparison we list the solution obtained by
the traditional sequential approach as “airline” (see Chapter 4). Column p
shows the value of p that applies to the iteration. The next four columns show
LP and IP values of crew pairing costs, the gap between LP and IP solution
values (“gap”) as a percentage, and the improvement of LP solutions (“impr.”)
compared to the sequential “airline” solution. The aircraft routing costs are

displayed in column “c*”

cLCACn

. The IP costs of aircraft changes are listed in column
and the improvements compared to the “airline” solution are listed in

the following column (“impr.”) as a percentage. All restricted aircraft changes
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are listed in the following columns. Finally, the total time elapsed since the
start of the algorithm is shown for each iteration in seconds. We do not show
any aircraft change costs for the lower bound solution of iteration 0 since we
cannot find an integrated solution satisfying the DPACLIM rule and hence

this solution is infeasible.

Note that in the crew pairing problem a weighted sum objective of crew pairing
costs and aircraft change costs is used. The ratio of crew pairing costs and
aircraft change costs in the solution value of LP and corresponding IP solution
can differ. Since we only display crew pairing costs we may observe smaller
IP solution values than the corresponding LP solution values. Since the ratio
also differs from iteration to iteration we observe that crew pairing costs are

not strictly increasing during the iterative algorithm.

The cost of the crew pairing solution obtained in Step 2 of Algorithm 2 (it-
eration 0) is a lower bound for the crew pairing cost of the optimal solution
value. In Table 5.1 we can observe for the 7 day first officer solutions, that
this lower bound solution incurs up to 2.34% less crew pairing cost than the
airline solution (LP). The solution is infeasible since we cannot find aircraft
routings to satisfy the DPACLIM rule.

The cheapest feasible solution we find (iteration 1) incurs 2.32% less cost than
the airline solution (LP) and its cost is almost at the lower bound (0.02%
gap). Also, the aircraft change cost of this solution is only 289 compared to
344 for the airline solution which is an improvement of 15.99%. The most
robust solution that is still cheaper than the airline solution improves the
aircraft change cost by 86.63% (iteration 6). Note that for all technical crew
DPACLIM is set to 1 for the airline approach while for the iterative algorithm
DPACLIM is set to 2. Different settings are investigated below (see Figure 5.4)
where we show that for setting DPACLIM to 1 the solutions of the iterative

approach are also cheaper than the airline solution.

In Tables 5.2 and 5.3 we present further results for first officer schedules of
winter 2005 and summer 2006, respectively. The overall trend is similar to the
solutions for summer 2005 shown in Table 5.1. We find solutions that incur up
to 2.23% (w05, 7 days, iter. 1) less crew pairing cost than the corresponding
airline solution. For all 7 day scenarios we obtain solutions with no increase of

crew pairing cost but a decrease of aircraft change cost exceeding 90% (w05,
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R remain on

7 days, iter. 7 and s06, 7 days, iter. 7). Aircraft routing costs ¢
a similar level during the iterations of the algorithm. This is caused by the
constant ratio of ¢® and ¢¢ in the objective function of the aircraft routing
problem. Note that for the summer 2005 scenarios the aircraft routing costs
are much higher for the airline solutions than for all other scenarios. For these
scenarios the airline did not take the objective of minimising minimal turn

sequences into account when constructing the aircraft routings.

In Tables 5.4 and 5.5 we list results for the summer 2005 schedule for captain
and cabin crew groups, respectively. For the captain scenarios, results look very
similar to the first officer scenarios. We achieve a decrease in crew pairing cost
of up to 2.1% with a simultaneous decrease of aircraft change cost of 13.44%.
We observe that for cabin crew scenarios the airline crew pairing cost is very
close to the LP lower bound. The reason for this is that a relaxed DPACLIM
rule of 2 is used for all cabin crew scenarios in airline and iterative approach
solutions. Nevertheless, we obtain a decrease of almost 60% in aircraft change

cost without an increase of crew pairing cost.

Although the integer bound gap is set to 2.0% for all scenarios the average

bound gap observed over all solutions of the iterative approach listed is 0.44%.

Finally, we observe that the total running time of the iterative approach for a
scenario of one week ranges in between 570 seconds for the easier cabin crew
problem up to 2172 seconds for the captain problem. These running times are
very reasonable for the types of planning problem we try to solve. Note that
the increase of weight p during the algorithm is chosen to be conservative. A
faster increase of p will decrease the number of iterations and hence the running
time of the algorithm considerably. We choose to generate many solutions to
allow for better judgement of the trade-off between crew pairing costs and

aircraft change costs.
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Figure 5.4 shows the impact of the DPACL1M rule for the first officer scenario,
schedule summer 2005, 7 days. Relaxing the rule from 1 to 2 for the airline
approach results in a solution with less crew pairing costs but many more
restricted aircraft changes and hence it is less robust. In the iterative approach
cheaper solutions can be generated if the DPACLIM rule is relaxed from 1 to 2.
Here the solutions are equally robust for both settings since restricted aircraft
changes are penalised in both approaches. Since the DPACLIM rule is only
used by Air New Zealand to increase the robustness of the solutions the rule is
relaxed to 2 for the iterative approach since robustness is achieved by means
of aircraft change costs. From a practical point of view, multiple aircraft
changes can be tolerated if this does not affect robustness, i.e. the aircraft
changes occur on connections with long ground times. Note that because
of the LP/IP gaps, LP values are displayed in Figure 5.4 to obtain a more

consistent representation.

Table 5.6 lists some more details about the characteristics of the solutions.
Statistics are shown for setting DPACLIM to 1 and 2, respectively. We list the
airline solutions as well as the solutions generated by the iterative approach.
For DPACLIM equal to 1 we list the total number of duty periods in the
solution (“all”). We show the number of duty periods with 1 aircraft change
(“1 ac”) and the number of restricted aircraft changes (“(rac)”) within these
duty periods. Column ¢ shows the aircraft change cost for each solution.
For a DPACLIM setting of 2 we again show the total number of duty periods.
Additionally, we list the number of duty periods with 1 (“ac 1”) and 2 (“ac
27) aircraft changes and the number of restricted aircraft changes contained
in both types of duty periods, respectively. Finally, column ¢4¢ again displays
the aircraft change costs of the solutions. We observe that the relaxation of
the rule has no negative impact on the aircraft change cost of the solutions
of the iterative algorithm. The reduction in crew pairing cost is achieved by
increasing the number of duty periods with two aircraft changes. However, the
aircraft change costs of these solutions do not increase significantly. In iteration
3 for example, aircraft change costs are almost identical but we observe (see
Figure 5.4) a decrease in crew pairing cost of 0.77 % for setting DPACLIM to 2.
This cheaper solution does contain 16 duty periods with 2 aircraft changes but
only 11 restricted aircraft changes. This demonstrates that we can achieve a

better crew pairing cost and a more robust solution if we allow a small number
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of duty periods to contain two aircraft changes.
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Figure 5.4. Variation of DPACLIM for first officer scenario, summer 2005, 7
days.

DPACLM 1 DPACLM 2
no. duty periods no. duty periods
iteration all  lac (rac) A€ all  lac (rac) 2ac (rac) cA¢
airline 210 115 72 344 206 74 52 56 76 558
0 204 101 54 255 202 7 46 25 24 289
1 203 98 52 217 202 81 43 17 14 191
2 205 83 35 149 202 83 40 21 19 188
3 204 86 34 123 202 76 26 16 11 126
4 204 81 17 59 203 73 24 16 10 90
5 205 7 14 39 205 60 12 12 3 46
6 205 81 5 10 206 69 5 10 1 14
7 207 83 1 2 207 66 1 17 0 1

Table 5.6. Variation of DPACLi1M for first officer scenario, summer 2005, 7
days.
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5.3.2 Comparison of Iterative Approach and Optimisa-
tion Approaches

In this section we use Dantzig-Wolfe and Benders decomposition methods to
solve the LP relaxation of the robust and integrated aircraft routing and crew
pairing problem. The purpose of the computational experiments is twofold.
Firstly, we want to establish lower bounds for the solution values of the inte-
grated problem. We compare the integer solutions of the iterative approach
with the LP lower bound from the decomposition methods. Secondly, we
compare the running times of Dantzig-Wolfe and Benders decomposition ap-
proaches for solving the LP relaxation to establish which algorithm performs
better.

For each of the scenarios investigated in the previous section we apply each
decomposition approach twice. In one run we set weight p equal to 2 and in
the other run we set weight p equal to 20. This corresponds to the value of

weight p in iterations 2 and 5 of the iterative approach.

In the Benders decomposition approach the master problem and subproblem
are only solved to LP optimality. In the Dantzig-Wolfe approach the master
problem is solved to LP optimality and integer solutions for the subproblems
are found. Both decomposition approaches provide lower bounds for the op-
timal solution of the optimal LP solution (see Section 1.5). Once the gap
between the lower bound and the best LP solution value found is below 0.5%

we stop the algorithm.

Table 5.7 summarises the results of the experiments. We list crew group,
scenario name, solution method and value of p for all experiments we perform.
In the next two columns the number of iterations and running time needed
to reach the stopping criterion are listed. If the optimality gap of 0.5% is
not reached in 50 iterations, we stop the algorithm and report the gap that
is obtained after 50 iterations. For each optimisation run we list lower and
upper bound of the optimal LP solution and the gap between the two values.
Note that because of the heuristic nature of the crew pairing solver (i.e. the
dominance relaxed shortest path) that is used, we can sometimes observe two
different intervals for the same optimal solutions that are not overlapping (see
for example Table 5.7 scenarios 33, s05, 7 days, p = 20 and ¢33, s05, 7 days,
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p = 20). Of course, this cannot occur if the solution approach for the crew
pairing problem is truly optimal. The observed gaps between two intervals for
the same optimal solution is usually very small (< 0.1%). In two instances,
however, the observed gap is 0.32% (¢33, s05, 7 days, p = 20) and 0.33% ({33,
s05, 7 days, p = 20), respectively. For the iterative approach, we show the best
solution that is found with respect to the objective function that is used in
the optimisation approaches. We apply this objective function to the integer
solutions of the iterative approach and display the objective value and the gap
with respect to the lower bound obtained by the optimisation approach. We

also list the time needed for the iterative approach to obtain the solution.

Note that the lower bound LP relaxation solutions do not necessarily satisfy the
DPACLIM rule restrictions since the rule is not integrated into the model. The
LP/IP gaps observed are partially caused by the violation of the DPACLIM
rule. Also, more than two aircraft changes in a duty period are not desirable
for the problem instances we consider. Hence, the iterative approach has
the advantage of easily satisfying the DPACLIM rule while the optimisation

approaches cannot guarantee to satisfy the rule.

The average gap between iterative approach solution and LP lower bound is
very small (0.9%). In most cases this integer solution is found before the
stopping criterion of either optimisation approach is reached. The observed
gap is also well below the branch-and-bound gap of 2%. Using the iterative
approach, we always find an integer solution within the 2% gap and hence, we
do not solve the optimisation approaches to IP optimality. The additionally
required run time cannot result in significantly improved solution quality. In
two cases the Dantzig-Wolfe decomposition indicates a gap exceeding 2% but
the gap is smaller than 2% for the lower bound of Benders decomposition in

both cases.

In terms of run time, Benders decomposition seems to be superior to Dantzig-
Wolfe decomposition. However, integer subproblems are solved for the Dantzig-
Wolfe decomposition approach while the subproblem is only solved to LP op-
timality for Benders decomposition. It is noteworthy that the contribution by
Mercier et al. [2005] indicates fewer iterations and much faster run times for
Benders decomposition than observed in our computational experiments. We

believe that this is caused by the authors solving a slightly relaxed problem,
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while in our approach a real world application is addressed together with all
applicable rules. It also seems to be much harder to obtain an optimal solution
for both decomposition approaches when the weight p is large. For Benders
decomposition, this is caused since larger costs are associated with the sub-
problem and hence the subproblem must not only transfer feasibility but also
optimality information back to the master problem. The Dantzig-Wolfe de-
composition is also more difficult when p is large since the sum of crew pairing
cost and aircraft routing cost as naturally available lower bound for the ob-
jective value of the relaxed master problem is further away from an optimal

solution than for small values of p.

Note that both optimisation approaches are implemented in a basic fashion.
No dual stabilisation method is used to speed up Dantzig-Wolfe decomposition,
and Benders decomposition is not enhanced with stronger cut generation. We
omit these improvements since we do not believe that the run times of the
optimisation approaches can be improved sufficiently to compete with those
of the iterative approach. We use the results of the optimisation approaches
to verify the quality of the solutions of the iterative approach. In practice we
suggest only running the decomposition approach to verify the solution quality
of the iterative approach. If this is only done rarely and run time is not very
important then Dantzig-Wolfe decomposition can be chosen as the solution
method since it is much easier to implement into existing aircraft routing and

crew pairing optimisation algorithms than Benders decomposition.

We investigated hot-starting the Dantzig-Wolfe decomposition approach by
generating columns for the restricted master problem from all solutions of the

iterative approach but this procedure did not improve run times significantly.
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5.3.3 Iterative Approach for Multiple Crew Groups

In this section we show results for considering two crew groups in the iterative
approach instead of one. We extend the iterative algorithm to solve the aircraft
routing problem together with the crew pairing problems for technical crew and
flight attendants. The goal is to show that the benefits of solving one crew
group together with the aircraft are not lost if we add another crew group.
Clearly, using a solution that is very robust for one crew group but results
in many restricted aircraft changes for another crew group is not desirable.
Figures 5.5 and 5.6 summarise the results. Note that LP solution values are

displayed in both figures to obtain a more consistent overview.

In Figure 5.5 the results of applying the iterative algorithm to first officers only
are shown as blue squares. Similarly, in Figure 5.6 the results of considering
cabin crew only are also marked as blue squares. Additionally, we solve the
first officer scenario as before and in each iteration use the aircraft routing
solution to generate solutions for the cabin crew problem. This corresponds to
setting w; = 1 and we = 0 in objective function (5.6). The results are shown
as red diamonds in Figure 5.6. The solutions incur more crew pairing cost
and more aircraft change cost than the solutions obtained from focusing on
cabin crew and aircraft only. But the solutions follow the same pattern and
are of good quality compared to the airline solution. Hence we do not need
to sacrifice solution quality of the cabin crew problem in order to improve the
first officer solution and hence improve the overall solution to the integrated
problem. Note that rules for captains, the third crew group, are very similar
to the first officer scenario and hence we expect to obtain almost identical

solutions for captains compared to first officers.

In a second experiment we again solve two crew pairing problems in each it-
eration but we now use feedback information from the first officer problem as
well as the cabin crew problem to generate the aircraft routing solution. In
the aircraft routing problem we scale the penalties for the restricted connec-
tions of the first officer solution and of the cabin crew solution with the same
weight. This corresponds to setting w; = 1 and wy = 1 in objective function
(5.6). We then generate aircraft routings subject to this objective function.
The resulting solutions are represented as light blue triangles in both figures.

In Figure 5.5, we observe that the first officer solutions do not deteriorate sig-
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Figure 5.5. Results for first officer scenario, summer 2006, 7 days, with cabin
crew solved simultaneously.
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Figure 5.6. Results for cabin crew scenario, summer 2006, 7 days, with first
officers solved simultaneously.
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nificantly. In Figure 5.6, the solutions for cabin crew are not as good as the
best cabin crew solutions (squares), but better than the solutions generated
without using any feedback from the cabin crew solutions (diamonds). Note
that for the more robust of these solutions, both crew groups rarely change
aircraft if the connection is restricted. This also implies that both crew groups
usually stay together on restricted connections, which is of great advantage
not only from a robustness point of view but also from an operational point of
view since keeping the crew as one unit greatly simplifies business procedures.
The solutions satisfy this property without the need to focus on the property

in the algorithm.

We only use two basic configurations of the weights ((1,0) and (1,1)) to scale
the penalties. The weights can be adjusted according to the airline’s pref-
erences, e.g. relative to the cost incurred by each crew group. We can now
generate solutions for the aircraft routing and the two crew pairing problems
in one integrated procedure. Likewise, additional crew groups or multiple air-

craft types can be added in a straightforward way.

5.4 Simulation

In this thesis we consider sequences of minimal turns within an aircraft routing
and aircraft change costs as two measures of the operational robustness of
the integrated solution. We use simulation to estimate whether more robust
solutions with respect to our measures are indeed solutions where disruptions
are less likely to propagate onto other flights causing additional delays. The
final test of robustness of the improved solutions can only be made once the

solutions are operated in practice.

The aircraft routing solution and two crew solutions, one for technical crew and
one for cabin crew, are used as input for the simulation. We assume that the
two technical crew group solutions, for captains and first officers, are identical.
During the simulation we loop over all flights which are ordered by increasing
departure time. For each flight a possible initial disruption delay is generated
randomly depending on origin and hour of departure. The distribution that is
used to calculate delays is derived from actual delay data over two years. A

simple push-back recovery is used: each delayed flight departs as soon as the
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aircraft and both crew types are available to operate this flight. The time at
which aircraft and crew are available depends on the actual departure times
of the flights they are operating prior to the current flight. For each flight the
actual delay is calculated as the maximum of three values: delay caused by
waiting for technical crew, delay caused by waiting for cabin crew, and the
sum of delay caused by waiting for aircraft and new initial disruption delay.
The delay is added to the original departure time of the flight to obtain the
actual departure time. Iteratively, all flights are considered in the same way.

We repeat this simulation 1000 times with different random seeds.

As a result, we obtain estimates of the on-time performance (OTP) of the
solutions, i.e. what percentage of the flights depart within 10 minutes of the
originally scheduled departure time, and the number of minutes of delay. In
Table 5.8 we display the simulation results for the “airline” solution and for
the solutions from iterations 2 and 5 of the iterative approach. We use the
iterative approach for two crew groups with identical weights wy, ws for both
crew groups as in the previous section to obtain the solutions. For each solution
we list crew pairing costs and aircraft change costs for both crew groups,
technical crew (“33”) and cabin crew (“spsr”). We also display aircraft routing
costs. The last column shows the OTP percentage. For the airline solution
78.34% of all flights depart within 10 minutes of the scheduled departure time.
For iteration 2 and 5 the values are 80.03% and 81.16%, respectively. All three
robustness measures are better for the iterative approach solutions compared
to the airline solution. This increase in robustness is reflected in better OTP,
where the OTP value increases by up to 3.6%. We only list results for a single

data set, results are very similar for all scenarios considered in this chapter.

£33 Spsr
iteration cf(x10?) cAC cf(x10?) cAC clt OTP (%)
airline 1673.21 385 706.56 591 1890 78.34
2 1624.29 198 713.37 389 1540 80.03
) 1627.32 85 713.07 191 1460 81.16

Table 5.8. On-time performance for iterative approach solutions, first officer
and cabin crew scenarios, summer 2006, 7 days.

Table 5.9 lists the minutes of delay that occurred for the different solutions.

We list the number of minutes of delay that are occurring during a week.
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Delays are listed for new initial disruptions (“new”), delays caused by waiting
for aircraft, delays caused by waiting for technical crew (“f33”), and delays
caused by waiting for cabin crew (“spsr”). The final column of Table 5.9
shows the total number of passenger delay minutes (“PDM”) per year. The
values are obtained by multiplying the occurring delays by average passenger
numbers for every pair of origin and hour of departure. We observe a significant
decrease in all reactionary delay figures. These delays are all delays caused by
waiting for aircraft and crew. The annual passenger delay minutes decrease by
more than 4.2 million minutes or almost 14%. All values are average numbers

over all simulations performed.

weekly annual
iteration new aircraft £33 Spsr total PDM
airline 2456.76 2551.12 382.84 413.07 30360061.95
2 2454.06 2473.75 137.76 228.88 27838728.10
5 2456.88 2304.04 68.18 131.70 26143271.69

Table 5.9. Minutes of delay listed by reason for iterative approach solutions,
first officer and cabin crew scenarios, summer 2006, 7 days.

5.5 Visualisation

We use a visualisation GUI to compare solutions and verify the solution quality.
The visualisation GUI is implemented in MATLAB 7.3.0 (The MathWorks
Inc. [2003]). Aircraft routings for all aircraft for the whole solution period
are displayed together with crew pairings of one crew pairing solution. It is
possible to view selected pairings or pairings originating from particular bases.
Minimal aircraft turns, restricted aircraft changes, and various statistics can

also be displayed. It is also possible to print solutions over any time period.

In the following screen-shots a single day of solutions of the first officer schedule
of summer 2006 is shown. Each flight is represented by a rectangle associated
with flight number, origin, destination, departure time, and arrival time. Air-
craft routings are displayed as rows of flights. Crew pairings are represented as
red lines connecting flights. The crew pairings are labelled with id numbers,
the start (“ST”) and end (“ET”) of the crew pairings are identified as well

as overnight rest breaks (“R”). If a crew pairing starts with a blue line, the
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crew is passengering on the blue flights until the red line of the pairing starts.
Similarly, if the crew pairing ends with a green line, the crew is passengering

at the end of the pairing back to their home base.

Screen-shot 5.7 displays an aircraft routing solution only, for Tuesday, July 25,
2006. All times are given in local Auckland time. The difference between a
robust and non-robust solution becomes obvious in screen-shots 5.8 and 5.9.
Figure 5.8 displays the solution that is generated by using the traditional se-
quential approach which is an aircraft routing solution that was operated by
Air New Zealand. Figure 5.9 shows the solution of iteration 5 of the iterative
approach for the same day. Only very few aircraft changes can be observed in
the second Figure. Aircraft changes can easily be identified in this representa-
tion as diagonal lines connecting one aircraft with another in a different row
of flights.
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Figure 5.7. Screen-shot of aircraft routing solution for first officer scenario,

summer 2006.
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officer scenario, summer 2006.
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Chapter 6

Robust and Integrated Aircraft
Routing and Crew Pairing with

Time Windows

In this chapter we describe a robust and integrated model for aircraft routing
and crew pairing problems that also allows re-timing of departure times of
flights in the schedule. The problem is called the time window problem because
the departure time of each flight can vary within some specified interval, i.e. a
time window. We formulate a model that integrates the three problems of
aircraft routing, crew pairing, and time windows and propose two different
solution approaches. We present computational experiments for both solution

approaches and highlight problems and challenges.

In contrast to the robust and integrated problem described in the previous
chapter, the type of problem considered in this chapter is a long term planning
problem. The schedule is usually published at least six months or even a year
prior to operation. Once the schedule is published only minor adjustments to
the schedule can be made because passengers start booking flights and rely on
the published departure times of the flights, e.g. because of business travel or
international connections. The aircraft routing and crew pairing problems are
solved much closer to the day of operations, e.g. two months in advance. We
cannot change departure times of the flights at this time. Instead, we solve
the robust and integrated problem with time windows at the time the schedule

is constructed as a long term planning problem. We try to explore benefits



174 6.1 Model

in cost or robustness of slightly modified schedules compared to the originally
proposed schedule. We expect the modified schedule to possess characteristics
that will enable low cost and robust crew pairing and aircraft routing solutions.
These solutions will be constructed with the iterative approach shortly before

the day of operations, as discussed in the previous chapter.

6.1 Model

The robust and integrated aircraft routing and crew pairing problem with
time windows is a generalisation of model (5.2). Flexibility is added to the
departure times (and hence arrival times) of the flights in the schedule, i.e. the
departure time of each flight can vary within some lower and upper bounds.
We are solving the robust and integrated aircraft routing and crew pairing
problem, and the model must ensure that the same departure time is assigned
to the same flight in both problems. As in all previous models a dated schedule
is considered. Although the schedule is different on each day of the week, a
number of flights are offered by Air New Zealand at the same time each day,
e.g. a business flight between the same origin and destination each morning at
7 o’clock. Some flights are repeated on every day of the schedule while others
are only operated on some days, e.g. only on weekdays. As a requirement to
the model, every flight that repeats throughout the schedule must depart at
the same time. For example, the model may change the departure time of the
business flight above to depart at 7:05 a.m., but it must do so on each day the
flight is operated. We refer to these requirements as schedule synchronisation
constraints. Additionally, we must ensure all departure times are within the
applicable lower and upper bounds and all minimal turn-time and minimal

sit-time requirements are met.

To incorporate departure time flexibility into the model, we add a set of vari-
ables t to the formulation: variable t; represents the departure time of flight
1. Variable t; is limited by the lower and upper bound of the departure time
window:

i < gy < e (6.1)

Since we assume fixed flying time, the departure time also determines the

arrival time of each flight. If connection 7; is operated in the solution by
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some aircraft, we need to enforce the following inequality to ensure minimal

turn-time restrictions are satisfied:
t; + (flightTime; + minTurnTime;;) < t;. (6.2)

Equivalently, the same restrictions need to be satisfied for crew connections.

If connection ¢5 is operated by some crew, the following inequality must hold:
ti + (flightTime; + minSitTime;;) < t;. (6.3)

To integrate these constraints into our model, we define an integer m? x nft
matrix 7%. The value m” is the number of all possible connections in the
schedule and n* the number of all feasible aircraft routings. Each column in

matrix T corresponds to exactly one column of matrix A%, where

flightTime; + minTurnTime;; if connection ij is contained in
(tTj,k)R = routing k

—-M otherwise,

with 1 <1357 <m”,1 <k < n'fl. Note that we use value 75 to identify the single
row of matrix 7% that is associated with connection ij. A large constant M
(called big-M) is chosen such that the inequality t; — M < t; holds for all
feasible connections ¢j, independently of the values of ¢; and ¢;. This ensures
that if a connection ij is not part of the solution, constraints (6.2) are always
satisfied. If connection ij is part of the solution, constraints (6.2) ensure that
the MINTURNTIME rule is satisfied.

We also define an m” x m node-arc incidence matrix 7', where m is the number
of flights. Each row of matrix T represents a possible connection and each
column represents a flight. Each row has exactly two non-zero entries: the
value 1 in the column of the arriving flight and the value —1 in the column of

the departing flight of the connection:

1 if k=1, ie. flight k is the arriving flight of connection ¢
(tx) = —1 if k =j, i.e. flight k is the departing flight of connection 4

0  otherwise,
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with 1 <47 < m”,1 < k < m. For crew, we define an m” x n” matrix T*

analogously to T%:

flightTime; + minSitTime;; if connection 4j is contained in
(tfj,k)P = pairing k

—-M otherwise,

with 1 <ij <m”,1 <k <nPf. Constant M ensures that constraints (6.3) are
satisfied if connection ij is not part of the solution, otherwise the constraints

ensure that the MINSITTIME rule is satisfied.

In order to satisfy the schedule synchronisation constraints, we partition the
flights in the schedule into groups of flights G that must depart at the same
time. We add one departure time variable 7, for each group of flights g € G
determining the departure time of all flights in the group and we add the

following constraints to the model:
ti=14, forallge Gandallieyg.

We define an m x |G| matrix S that maps the time variables to the appropriate

group:
1 if flight ¢ is in group j
(sij) = .
0 otherwise,
with 1 <i <m,1 < j < |G|. With this matrix representation the robust and

integrated aircraft routing and crew pairing problem with time windows can be
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formulated as follows:

Minimise (¢”) & + () zf + (cP)'d

subject to  AfzP =1
Al gk =1
BPxP —  BEgh < 0
Dfz? —  DEgR — d < 0 (6.4
TPz — Tt < 0
Thgh — Tt < 0
t — St =0
gmin < ¢ < gmaz

9

where ¥ € {0,1}"", ® € {0,1}"", d € {0,1}™" are binary variables and
t € 7™ and T € 7% are integer departure time variables. All departure times

are represented as minutes from the start of the day.

The first four sets of constraints and associated variables are identical to those
in Model (5.2). Constraint sets five and six ensure that minimal turn-time and
minimal sit-time requirements are met, respectively. Constraints seven are the
schedule synchronisation constraints and the last set of constraints enforces

the lower and upper bounds on all departure time variables.

Variables 7 are included in the model for simplicity and can be removed from
the formulation and expressed by variables t. The time variables can be disag-
gregated from one variable for each flight to one variable for each connection
to avoid the big-M constraints, see van Eijl [1995]. We do not present this
formulation since the big-M constraints are not included in our solution ap-
proaches; as discussed in Section 6.3. Instead, the constraints are implicitly
satisfied in the pairing and routing generation subproblems. Note that other
departure time dependant restrictions such as maximal duty time limits are

also implicitly satisfied in the column generation problems.

6.2 Rules

The following restrictions for re-timing flights are imposed:
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o AKLWLG

Departure times for all flights between the airports Auckland and Welling-
ton (in both directions) are fixed to the original departure time. This
restriction is a requirement imposed by Air New Zealand. All other
flights are allowed to be re-timed within a window of + 10 minutes of
the original departure time. All departure times occur at 5 minute in-

tervals starting from midnight.

FOLLOWTHROUGH

A pair of follow-through flights must be re-timed by the same amount.
The turn-time between two follow-through flights is usually equal to the
minimal turn-time and must remain constant because passengers expect

minimal turn-times between follow-through flights.

SYNCHRONISATION

Flights with the same flight number and origin must depart at the same
time on each weekday. On the weekend, however, the flights with the
same flight number and origin are allowed to depart at different times.
We refer to a group of flights that must depart at the same time on
different days as a departure time group. Additionally, aircraft, operating
crew, and passengering crew that operate the same flight must all depart
at the same time. Since the departure time of a flight is only determined
by the routing and pairing that contain the flight, we must make sure
that all routings and pairings use the same departure time for all flights

in the same departure time group.

The departure time flexibility is incorporated into the shortest path algorithms

of aircraft routing and crew pairing problems. The departure time of each flight

contained in a routing or pairing is determined by the labelling algorithm:

an attribute is associated with the departure time of each flight. Similarly

to deciding when a meal break occurs during a pairing, it is decided in the

labelling process which departure time attribute is chosen for each flight. The

attributes that are stored at a label determine the departure times of all flights

contained in the path that is associated with the label.

The algorithm finds re-timings for all flights in the routing or pairing that result

in the most negative reduced cost. Different routings or pairings covering the

same flight may assign different departure times to the flight. Additionally, a
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pairing that contains a crew that is passengering on a flight may determine
a different departure time for that flight than a pairing in which the flight is
operated. We propose two solution methods that ensure that the departure
times determined by a solution are the same for all flights in the same departure

time group.

6.3 Solution Methods

Solving the robust and integrated model with time windows is challenging for
the problem instances we consider. The main reason is that synchronisation
constraints are needed to ensure the same departure time for all flights in the
same group on different days. Since the schedule is different on every day, a
particular re-timing may yield an improvement of crew pairing cost or robust-
ness on one day, but may worsen the solution or render the solution infeasible
on another day. Clearly, a daily problem is much easier to solve because such
constraints are not needed. In this section we present two optimisation based
heuristic solution approaches: time window branching approach and re-timing

of flights for fixed aircraft routings and crew pairings approach.

Other recent approaches considering time windows include loachim et al. [1999]
and Mercier and Soumis [2007]. Ioachim et al. [1999] solve the fleet assign-
ment and aircraft routing problem with time windows and synchronisation con-
straints. They use stepwise linear cost functions on the time windows for the
shortest path calculations and find that this approach works better than dis-
cretised departure times for very large time windows (100 minutes and more).
For small time windows however, faster solution times are achieved with dis-
cretised departure times. Mercier and Soumis [2007] include time windows in
their integrated aircraft routing and crew pairing model. They consider time
windows of + 5 minutes around the original departure time and add binary
variables that indicate if the flight leaves 5 minutes earlier, later, or at the
same time as originally scheduled. Synchronisation constraints are added to
the model of Cordeau et al. [2001] to ensure the same departure time is used for
aircraft, crew, as well as deadheading crew. Because of the additional binary
variables the number of short connection constraints is much larger than in the

original formulation. Mercier and Soumis [2007] propose an equivalent model



180 6.3 Solution Methods

aggregating the short connection constraints but in our opinion the feasible
solution space is reduced by the aggregation. They do not consider robust-
ness in the approach and solve a daily problem, so no further synchronisation
constraints are needed to ensure the same departure time of flights that are
repeated on multiple days. They use Benders decomposition and the three
phase solution approach as described in Cordeau et al. [2001] and Mercier
et al. [2005] to solve the problem.

6.3.1 Time Window Branching Approach

Starting from a solution of the iterative approach, we allow time windows for
departure times of the flights and solve crew pairing and aircraft routing in-
dependently. This yields a new (possibly infeasible) integrated solution with
un-synchronised departure times. In each routing or pairing that is covering a
flight, the departure time for the flight is determined by the particular routing
or pairing. Hence, departure times may be different for aircraft, operating
crew, and passengering crew as well as for flights of the same departure time
group on different days of the week. We penalise deviations from the original
departure times of the flights in the objective function by linearly increasing
penalties. We hereby avoid a large number of unnecessarily re-timed flights
that do not yield an improvement in crew pairing cost or aircraft change cost.
The ratio of weights between crew pairing cost and robustness in the objective
function remain the same as used for the iterative approach starting solution.
The un-synchronised solutions usually show significant gains in cost and ro-

bustness compared to the starting solution of the iterative approach.

If in an un-synchronised solution, departure times are different for flights within
the same departure time group, we employ a branching scheme on the time
windows to synchronise the departure times, but only in the aircraft routing
problem, i.e. we force all departure times for flights in the same departure time
group to be equal in the aircraft routing solution. We guide this branching
procedure in the aircraft routing problem by the departure times of the oper-
ating crew: for each departure time group we find the departure time that is
preferred by crew, that is the departure time over all flights of the group that
is used the most by crew. In case of a tie, we choose the departure time that is

closest to the original departure time. We then force this common departure
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time for all flights of the group by setting the time window bounds accordingly.
All other flights are allowed to be re-timed but each re-timing is penalised in
the objective function. We solve the aircraft routing problem for the new time
windows. If no feasible solution can be found, we increase the time windows of
the flights with fixed departure time in 5 minute steps until we find a feasible
aircraft routing solution. Subsequently, we branch on time windows for which
the aircraft routing solution uses different departure times for flights of the

same departure time group.

Once all departure times for all groups are synchronised, we use this aircraft
routing solution and solve the crew pairing problem once. All departure times
in the crew pairing problem are fixed to the departure times used in the aircraft
routing problem. Once the crew pairing problem is solved, we obtain a robust
and integrated aircraft routing and crew pairing solution where some of the

departure times of flights may differ from the original departure times.

We use this heuristic procedure because branching on time windows is difficult
and time consuming. We would prefer to incorporate both the aircraft routing
and crew pairing problems within the time window branching process and ex-
plore the branch-and-bound tree until an optimal solution is found. However,
this is very time consuming for two reasons. Firstly, each iteration takes a
considerable amount of time. Note that because of the departure time flexi-
bility the run times of the column generation problems increase greatly since
many more labels exist at each node. Secondly, branching on time windows is
difficult, especially when time windows are large, and leads to a large number
of branch-and-bound nodes that must be explored. Ideally, we want to make
only few branching decisions that lead to a good quality solution. We discuss

some difficulties with such a branching procedure in the following:

e [t is not obvious what a good branching strategy might be. In the fol-
lowing examples each table lists the departure times of flights of one
departure time group. The top line of each table shows the possible off-
sets in minutes from the original departure time, while the bottom line
displays how many flights of the departure time group depart with each
offset. Suppose 7 flights depart 15 minutes earlier and 1 flight departs 10
minutes earlier than originally scheduled. Then, the table showing the

offsets has the following form:
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offset | ~15 | ~10| 5|0 |5 |10/ 15
fighs| 7| 1] ofofo| of o

In this case the branch is explored first where all flights must depart 15
minutes earlier than originally scheduled. However, if departure times are
obtained as in the following examples, the branching decision becomes

much more difficult:

offset | —15|—10|—5|0[5]10]15
flights| 0| 5| 0]0|2]| 2| 2

offset | =15 | —-10| =50 |5 |10 |15
flights 1 1 1(1]1( 1] 1

offset | —15|—-10| 5|0 |5 |10 15
flights 1 0 0j|0j0] 1| 1

A sensible branching strategy in order to divide a time window into 2
smaller intervals might be the following. For each possible partition of
the time window calculate the ratios between the number of departures
in a sub-interval and the number of different offsets that contribute to
the sub-interval for each side of the partition. The sub-interval with the

largest ratio over all possible partitions is explored first. The example

offset ‘—15‘—10‘—5‘0‘5‘10‘15
ﬁights‘ O‘ 0‘ 5‘0‘0‘0‘3

shows that one has to decide if the contributing offsets of the sub-interval
for the ratio calculation is determined from the beginning and end of the
time window or if one starts counting from the first nonzero entry in the
partition. In the first case the 6 possible partitions result in the ratios
(0/1,8/6),(0/2,8/5),(5/3,3/4), (5/4,3/3),(5/5,3/2) and (5/6,3/1) and,
hence, the preferred branch is the second interval of

offset ‘ —15 ‘ -10 ‘ -5 ‘ 0 ‘ 5 ‘ 10 offset | 15

and
ﬂights‘ O‘ 0‘ 5‘0‘0‘ 0 flights | 3

In the latter case, however, the preferred branch is the first interval of
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offset ‘0‘5‘10‘15
ﬂights‘O‘O‘ O‘ 3

offset ‘ —15 ‘ -10 ‘ —
flights ‘ 0 ‘ 0 ‘

5
and
5

with a largest ratio of 5/1. Note that branching on time-windows is
equivalent to branching on special ordered sets. Special ordered sets are
introduced in Beale and Tomlin [1970] and are used to branch on sets
of variables rather than on individual variables. The departure time
variable of a single flight can be expressed as a special ordered set of
binary variables, each representing a single departure time. For a feasible
solution, exactly one variable must have value 1 and all other variables
must have value 0. During each branching decision a subset of these
variables is set to 0. Because of these similarities the extensive literature
on special ordered sets should be analysed thoroughly in a future research

project in order to improve the branching decisions on the time-windows.

e [t is unclear how to decide how restrictive the branches should be, i.e. how
small the time window in the preferred branch should be. More restric-
tive branching quickly leads to infeasibility in the aircraft routing or crew
pairing problem. If less restrictive branches are employed branching mul-
tiple times on the same time window may be necessary resulting in many
nodes that must be explored. Note that for a weekly schedule, there are
around 120 departure time groups that contain more than 1 flight and
hence many nodes must be explored even if there is only a single branch

required for each time window.

e It is very difficult to predict the impact on crew pairing cost and air-
craft change cost an imposed branch may have. Re-timings that yield
improvements on some days of the week may cause much worse or infea-
sible solutions on other days of the schedule. To keep crew pairing costs
low, the branching decisions could take only (or mostly) crew pairing so-
lutions into account. However, in our experiments this strategy quickly

leads to infeasibility of the aircraft routing problem.

e After solving the un-synchronised problem, one can shrink the time win-
dows to only include departure times that are actually used by the solu-
tion. This decreases the number of branches required but quickly leads

to infeasibility.
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To overcome these difficulties the following two strategies seem to be useful:

e We introduce costs on the time windows to guide the branching process.
If 0; denotes the difference in time compared to the original departure
time of flight 4, costs can be used to discourage any re-timing (cost = k
abs(o;)) for some positive constant k or to force all flights in a departure
time group to depart at a certain time ¢ within the window (cost =
k % abs(o; — t)). This strategy proves to be very useful in finding good
quality solutions quickly because it results in less re-timings and the

re-timings are more homogeneous across the same departure time group.

e Only considering the aircraft routing problem within the time window
branching process is promising. For our problem instances the aircraft
routing problem is easier and hence faster to solve than the crew pair-
ing problem. Also, the aircraft routing problem is much more likely
to become infeasible within the branching process than the crew pair-
ing problem because of the limited number of available aircraft. If the
branching decisions are guided by the crew pairing departure times of the
un-synchronised version, the synchronised and re-timed solution of the
aircraft routing problem generally leads to a crew pairing solution with
low crew pairing cost and aircraft change cost. This, however, cannot be

guaranteed.

Implementation

Compared to the approaches described in previous chapters, significant changes
are made to aircraft routing and crew pairing algorithms to implement the time
window branching approach. A large amount of code development is needed to
allow flexible departure times in crew pairing and aircraft routing optimisers.
All data structures and functions of the commercial crew pairing solver were
based on the assumption that the departure time of a flight is determined by
the flight itself. This assumption is no longer valid in our implementation of the
algorithm. Instead, the departure time of each flight is determined in the label
setting resource constrained shortest path algorithm. Each path represents a
pairing and contains the sequence of flights as well as the departure time for

each flight. These departure times must be considered in many rule and cost
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calculations which requires code changes to most parts of the commercial crew
pairing optimiser. All restrictions on the departure times are satisfied by the

shortest path algorithm.

6.3.2 Re-timing of Flights for Fixed Aircraft Routings

and Crew Pairings

In this section we describe how to find a re-timed solution that incurs minimal
aircraft change cost for fixed aircraft routings and crew pairings of a solution
of the iterative approach. We do not change the sequences of flights in the
routings and pairings and hence we do not alter the total number of aircraft
changes in the solution but improve aircraft change costs by increasing buffer
times. Whenever it is possible to re-time a flight before or after a restricted
aircraft change, we re-time this flight in order to improve aircraft change cost.
If the crew pairings are still feasible, the crew pairing cost of the re-timed
solution only changes very slightly as long as the changes in departure times

are not too large.

Re-timing flights for fixed aircraft routing and crew pairing solutions to im-
prove aircraft change cost is very easy compared to the problem formulated
in the previous section. As all connections operated by crew and aircraft are
given, the effects of re-timing a particular flight on all other flights in the sched-
ule can easily be calculated. We formulate the problem of finding a re-timing
of flights that incurs minimal aircraft change costs for given and fixed aircraft

routings and crew pairings as an integer program in the following way.

We define integer variables o for the offset from the original departure time
for each departure time group. Each variable o; is bounded by the time win-
dow imposed on departure time group ¢ and must be an integer multiple of 5
minutes. Additional binary variables ¢ are used to penalise restricted aircraft

changes.

The constraints are constructed by considering all connections operated by
aircraft and crew in the given solution: for all departure time groups ¢ and j

operated in sequence by some aircraft we add a constraint

0; = 0j + (connectionTime;; — minTurnTime;;),
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if connection ij is a follow-through connection (as we are not allowed to change

the duration of this connection) and
0; < 0; + (connectionTime;; — minTurnTime;;),

otherwise. The value of connectionT'ime;; refers to the connection duration
without re-timings. Time (connectionTime;; — minTurnTime;;) > 0 is the
buffer by which we can shorten connection 77 without violating the minimal
turn time. Note that ¢ can be followed by multiple departure time groups j

because different connections may be operated by aircraft on different days.

For all departure time groups ¢ and j operated in sequence by some crew we

add the following constraints if connection 4j is an aircraft change:
!
0; = 0j + (connectionTime;; — minSitTime;;) — Z Ixq
k=0

and
!

d gl =1,

k=0

Binary variables qzj are used to penalise the aircraft change in the objective
function if the connection time is smaller than the restricted time. The coeffi-
cients are defined by fi = 5k since all departure times occur at 5 minute inter-
vals. Index k € {0,...,[} is used to determine by how many minutes (5k) the
minimal turn-time is exceeded. The constant [ is determined a priori such that
5l is equal to the maximal possible duration (in minutes) of any aircraft change
connection: | = (abs(min(o;)) + abs(max(o;)) + restrictedTime)/5+ 1. Func-
tions min(o;) and maz(o;) determine the minimal and maximal possible value
of o;, respectively. The GUB constraint Zig:o q,ij = 1 ensures that exactly one
variable q,’j, for some k" € {0,...,1} equals 1 and all others are equal to 0. This
is equivalent to the duration of the re-timed connection exceeding the minimal
sit time by 5k’ minutes. We add positive (linearly decreasing with increasing
time) cost czj to the objective function for each q,ij if 5k < restrictedTime,

otherwise the cost cﬁgj of qu is set to 0.

If connection ij is not an aircraft change we add constraint

0; < 0; + (connectionTime;; — minSitTime;;),
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similarly to aircraft connection constraints.

All constraints combined form the re-timing problem as follows:

!
... ij ij
Minimise E E Cr. i

ije ACT k=0
subject to 0; — 0j — (ct;; — mitt;;) =0 Vij € TCE
0; — 0j — (Cti]’ - mtt”) S 0 VZJ € OR \ TCR
l
0; — 0j — (Ctij — mstij) + Z fquj =0 VZ] € ACP
k=0
l ..
d gl =1 Vij € ACP
k=0
0; — 05 — (Ctij — mstij) S 0 \V/lj € CP \ ACP,

where C'F is the set of all connections operated in the solution by an aircraft
and TC* the set of follow-through connections. Sets C* and ACT denote
all connections operated by crew and all aircraft change connections, respec-
tively. Values ct;;, mtt;;, and mst;; denote the connection time, minimal turn
time and minimal sit time of connection 77, respectively. All other parameters
and variables are defined as above. The objective minimises the total aircraft
change cost of the solution. The first set of constraints ensures that the con-
nection times of all follow-through connections remain constant. The second
set ensures that the minimal turn time rule is obeyed for all other aircraft
connections. Constraint sets three and four impose a penalty in the objective
function for aircraft change connections where the sit time is less than the re-
stricted time and the last set of constraints ensures that the minimal sit time

rule is obeyed by all connections operated by crew.

By substituting variables o with o = o7 — 07,07 > 0,07 > 0 we can add
linearly increasing penalties to the objective function for increasing deviation
from original departure times. The model then yields a solution with small

aircraft change cost that also only re-times as few flights as possible.

Since the only rules considered by the re-timing IP involve minimal turn-times
and minimal sit-times, we must make sure that other rules such as meal breaks
or maximal duty time limits are not violated. We check the solutions with the

crew pairing solver for feasibility (the re-timings are guaranteed to be feasible
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for the aircraft routing problem). In our experiments all solutions turn out
to be feasible crew pairing solutions. If this is not the case, we change the
re-timing limits for an infeasible crew pairing, re-solve the re-timing IP and
check the new solution for feasibility. Meal break rules and duty time limits

can be added as constraints to the IP if necessary.

Implementation

This simple approach proves to be very effective. Very little implementation
effort to construct the re-timing IP is needed in order to improve the robustness
of the solutions by orders of magnitude. Note that no time window coding is
necessary in the crew pairing solver or the aircraft routing optimiser. We find
solutions that are optimal for a weighted sum objective function of aircraft
change costs and penalties for re-timing flights for given aircraft routings and
crew pairings. Note that there is hardly any computation time needed to solve
the re-timing IP to optimality (with CPLEX). As a drawback we do not know
the solution quality compared to a globally re-timed optimum where aircraft

routings and crew pairings are allowed to be changed.

6.4 Computational Experiments

In this section we present computational experiments of solving the time win-
dow problem. We show results of applying the time window branch-and-bound
approach and the re-timing approach to the first officer scenarios of schedule

winter 2005 and summer 2006.

Figure 6.1 shows the results for re-timing solutions of the iterative approach
for the first officer scenario, schedule summer 2006, 7 days. Original iterative
approach solutions without re-timing are represented as blue squares. Red
diamonds show a solution with identical aircraft routings and crew pairings but
with an optimal re-timing with respect to a weighted sum objective function of
aircraft change cost and re-timing penalties. Departure times for all AKLWLG
flights are fixed while all other flights can be re-timed by + 10 minutes around
the original departure time. The aircraft change cost decreases by around 30%

for all solutions (e.g. from 93 to 62 for the solution of iteration 4). Only a
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modest amount of re-timings (e.g. 46 flights in 23 departure time groups in

iteration 4) is required to achieve this improvement.
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Figure 6.1. Re-timed solutions of iterative approach, AKLWLG flights fixed,
410 minute windows, first officer scenario, summer 2006, 7 days.

To estimate the full potential of this method we relax the AKLWLG rule and
allow +10 minute time windows for these flights as well. The results are shown
in Figure 6.2. The robustness of all solutions improves dramatically. Aircraft
change costs are roughly reduced by a factor of 3 (e.g. aircraft change cost
decreases from 93 to 27 for the solution of iteration 4). Since the AKLWLG
rule was imposed by Air New Zealand in an attempt to describe important
flights which cannot be re-timed, this rule could be revised. As an example
we could only fix business flights in the morning and the afternoon or assign

a different time window to each individual departure time group.

Tables 6.1 and 6.2 list statistics for re-timed solutions with and without the
possibility of re-timing AKLWLG flights for summer 2006 and winter 2005
scenarios. The first column displays the iteration number of the iterative
approach. The next two columns show crew pairing costs (“c?”) and aircraft

uCACw)

change costs ( for the iterative approach and the airline integer solutions.

The next four columns show results for the scenario when departure times for
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Figure 6.2. Re-timed solutions of iterative approach, AKLWLG flights flexible,
410 minute windows, first officer scenario, summer 2006, 7 days.

AKLWLG flights are fixed. Column “cA¢” shows the aircraft change cost
and columns “groups”, “flights”, and “mins.” display the number of re-timed
groups and flights, and the sum of re-timing minutes over all flights for each
solution, respectively. The same values are shown in the next four columns
for the scenario when AKLWLG can also be re-timed within a window of £ 10
minutes around the original departure time. We observe that aircraft change
costs can be reduced significantly by only re-timing a small number of flights
by a few minutes. Results look similar for both scenarios for fixed AKLWLG
flights. Results are not as good for the winter 2005 scenario since for flexible
AKLWLG flights, a much larger number of flights is re-timed in this scenario

to reach a similar level of robustness as in the summer 2006 scenario.

Figure 6.3 shows two solutions for the time window branch-and-bound ap-
proach for the scenario of 2006. We run the approach twice, starting from
solutions of iterations 3 and 5 of the iterative approach and hence the value
of p is set to 5 and 20, respectively. Solution 3 of the time window branch-
and-bound approach incurs 1.83% less cost than the solution of the iterative

approach with the lowest crew pairing cost. The gap for the corresponding LP
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iter. approach AKLWLG fixed AKLWLG flexible

' AY AY groups flights mins. ¢A¢  groups flights mins.
airline 1673.21 385 - - - - - - - -
1 1625.28 364 279 47 139 1110 190 36 127 990
2 1631.20 212 147 45 131 1075 95 26 81 655
3 1620.44 107 72 27 62 495 32 14 38 275
4 1619.53 93 62 23 46 375 27 14 34 285
5 1621.36 68 43 21 42 335 15 10 21 155
6 1634.23 28 11 18 31 245 0 5 8 55
7 1638.29 21 9 13 26 205 0 4 7 45
8 1681.33 1 1 0 0 0 0 0 0 0

Table 6.1. Results for re-timed solutions of iterative approach for first officer
scenario, summer 2006, 7 days.

iter. approach AKLWLG fixed AKLWLG flexible

' AY AY groups flights mins. ¢A¢  groups flights mins.
airline 1684.42 374 - - - - - - - -
1 1636.52 289 226 45 139 1120 152 114 350 2630
2 1630.94 205 156 38 130 990 93 104 333 2595
3 1629.31 165 130 24 75 5b5 68 80 233 1780
4 1634.70 112 80 24 7 580 37 75 225 1610
5 1645.23 58 42 16 43 315 15 42 113 840
6 1654.36 47 35 12 44 325 13 33 105 810
7 1670.09 17 13 4 8 45 3 16 40 310
8 1700.83 1 1 0 0 0 0 1 1 5

Table 6.2. Results for re-timed solutions of iterative approach for first officer
scenario, winter 2005, 7 days.
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Figure 6.3. Time window branch-and-bound solutions of iterative approach
solutions (iterations 3 and 5), AKLWLG flights fixed, £10 minute windows,
first officer scenario, summer 2006, 7 days.

solution values is even bigger with 2.4%. The value of the un-synchronised TP
solution incurs 2.3% less cost than the best solution of the iterative approach.
When we solve the aircraft routing problem where departure times are driven
by the departure times that are operated by the majority of the crew, no
branching on time windows is necessary in the aircraft routing problem since
all departure times are equal for flights within the same group. This is caused
by penalising deviations of departure times in the aircraft routing problem
from the departure times that are operated mostly by the crew. The running
time is 1325 seconds. Only four departure time groups are re-timed for this
solution, two groups containing five flights where each flight is re-timed by 10
minutes, and two groups containing two flights where each flight is re-timed
by only 5 minutes. The cost saving results from four duty periods that are

required less in the re-timed solution.

The results for the winter 2005 scenario are not as promising. Although the un-
synchronised solution incurs 2.2% less cost than the minimal crew pairing cost

solution of the iterative approach, no solution with synchronised departure
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times can be found that incurs less costs than the solutions of the iterative
approach. The time window branching procedure evaluates 13 nodes before
the departure times in the aircraft routing problem are synchronised. The crew
pairing problem for this set of re-timed flights does not yield any improvements
in crew pairing cost. The departure times the crew would “like” to operate
are infeasible from an aircraft routing perspective and hence it is difficult
to find departure times in the aircraft routing problem that are “similar” to
the ones preferred by crew. The set of re-timings finally determined in the
aircraft routing problem does not allow a cost decrease for the crew pairing
solution. For a single day however, crew pairing costs can be reduced by
4.6% compared to the best solution of the iterative approach. This is achieved
by re-timing one flight by 5 minutes and five flights by 10 minutes. The
improvement is enabled by only solving a single day and hence not needing
any further synchronisation constraints. This demonstrates the difficulties
caused by synchronisation constraints for solving the time window problem

over multiple days for a varying schedule.

These results show that solutions can be greatly improved by changing the
departure times of only very few flights. This, however, can only be achieved if
the departure times that are preferably operated by the crew are likely to result
in a feasible (or almost feasible) aircraft routing solution. If departure times
of many other flights must be changed to enable a feasible and synchronised
aircraft routing solution it is likely that the positive effects on the crew pairing
costs of some days are annihilated by negative effects on other days. If no
improved synchronised solution can be found, the un-synchronised solution
can nevertheless give good insights into the structure of a schedule that is

efficient to operate from a crew pairing cost and robustness perspective.

Figure 6.4 shows one day of solution 3 of the time window branch-and-bound
approach with AKLWLG flights fixed, 10 minute windows, for the first officer
scenario, summer 2006. As described above, 2 time groups are re-timed by 10
minutes in this solution, resulting in 10 re-timed flights, 2 on each weekday.
The screen-shot displays the 2 flights that are departing 10 minutes later than
originally scheduled in pink. The re-timing enables a feasible crew connection
between flight 402 from WLG (Wellington) to AKL (Auckland) and flight 513
from AKL to CHC (Christchurch). Screen-shot 6.5 shows the solution without
re-timing. Flight 402 is connected to flight 415 which results in a very short
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and, hence, inefficient crew pairing. Additionally, the crew must stay overnight

in Wellington before operating flight 402. The same behaviour can be observed

on 4 of the 5 weekdays.

By re-timing the flights as shown in Figure 6.4 the

short and inefficient crew pairing can be eliminated from the solution and hence

the solution requires 4 man days less to operate the schedule. This example

demonstrates clearly how the cost of the solution can be improved by almost

2% by making only minor adjustment to the schedule.
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Conclusion

We present a model and two new solution methods to solve the robust and
integrated aircraft routing and crew pairing problem. We propose an iterative
approach that is coupling the two problems heuristically and can quickly gen-
erate a series of solutions with low crew pairing costs and low aircraft change
costs. We therefore expect the solutions to be operationally robust. Addition-
ally, no monetary value needs to be attached to robustness a priori. Instead,
the trade-off between costs and robustness can be observed and a preferred
solution can be implemented. Although optimality of the solutions cannot be
guaranteed, a lower bound on the optimal crew pairing cost is provided by
the algorithm. We obtain solutions that incur less crew pairing costs and are
significantly more robust than solutions currently used in practice. This is a
great improvement compared to the sequential method where the crew pairing
problem is solved for a fixed aircraft routing solution. We have seen in Chapter
4 that in such a solution approach robustness can only be improved by accept-
ing an increase in crew pairing cost. In an extension of the iterative approach,

we are able to consider multiple crew groups with only minor modifications.

We propose a Dantzig-Wolfe decomposition approach to solve the robust and
integrated aircraft routing and crew pairing problem to optimality. Solving
the problem to optimality is computationally expensive. Also, to identify
a robust solution in the approach, we need to associate a monetary value
with non-robustness. The run times of an optimisation approach are much
longer than the run times of the iterative approach. This is the case even
though only a single problem is solved in the optimisation approach with fixed
weights for cost and robustness while the iterative approach generates multiple
solutions with varying trade-off between cost and robustness. The optimisation

approach is useful in determining that the iterative approach solutions are of
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very good quality with an average optimality gap over all problem instances
of less than 1%. The iterative approach can be substituted by an optimisation
approach once run times decrease due to improvements in the optimisation
algorithm or computer hardware. It remains complicated to incorporate a rule
such as limiting the number of aircraft changes per duty period (DPACLIM
rule) into any optimisation approach because the rule requires to compare
individual routings and pairings. Due to the results presented in this thesis
the rule was relaxed by Air New Zealand and robustness is now ensured by
imposing penalties for restricted aircraft changes. We observe that there is
no significant disadvantage in using Dantzig-Wolfe decomposition compared
to Benders decomposition in terms of running time. We also show that the
problem becomes much harder to solve if the weight for robustness is increased

in the objective function.

In Chapter 6 we enhance the formulation by allowing flexibility for the de-
parture times of some flights. We show that large additional gains in crew
pairing cost and robustness can be made when aircraft routing and crew pair-
ing problems are considered in the schedule design phase. A slightly perturbed
schedule can lead to significant improvements of aircraft routing and crew pair-
ing solutions. This problem is complex due to the requirement to synchronise
departure times on different days of the schedule. We therefore propose two
heuristic solution methods that provide good solutions to the problem. When-
ever the problem is very hard to solve, the heuristic may fail to improve solu-
tion quality. Nevertheless, an un-synchronised solution is useful in indicating

possible improvements in crew pairing cost.

We demonstrate in the computational experiments of Chapters 5 and 6 that
it is indeed possible to solve the integrated formulations without disturbing
the set partitioning structures of the individual problems. We therefore can
employ existing and efficient solution methods to solve the individual problems

in an integrated model.

As the main focus of this thesis is to solve a real world application, data sets
provided by Air New Zealand were used to measure the performance of the
solution approaches. All rules imposed by Air New Zealand are satisfied in the
solutions we generate. At the time this thesis is finalised, Air New Zealand

is using the iterative approach in their production environment. This enables
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them to operate highly efficient schedules without facing the risk of a major
operational breakdown as experienced by Easyjet in 2002. The implementation
would not have been possible without considering all rules of a real world appli-
cation in this research project. If instead a mathematical model is considered
that simplifies some of the restrictions, an actual implementation in practice
becomes much more difficult. Until optimisation methods are improved, we
need to use sensible heuristic decision making methods to some extent in com-
bination with optimisation methods in order to include all restrictions. Despite
using data from a New Zealand domestic schedule, the proposed methods are
general enough so that we expect similar results for other airlines that operate
in a similar environment, i.e. a domestic schedule with routings and pairings

containing many flights per day and many short turn times.

Future research includes the integration of other airline scheduling problems,
i.e. fleet assignment and crew rostering into an integrated problem. Most
importantly, passenger flow should also be considered in an integrated model.
Often, an aircraft is delayed because of passengers connecting to the flight are
arriving on a delayed flight. Considering passenger flow in the model therefore

may greatly improve the robustness of the solutions.

We consider two different robustness measures in this thesis: consecutive min-
imal turns operated by the aircraft and aircraft changes operated by the crew
when turn time is below some restricted time. Simulations show that these
measures are good indicators for on-time performance of the operated sched-
ule. It can be useful to consider additional robustness measures such as the
number of move-up crews. More sophisticated measures could be considered

that take complicated recovery procedures into account.

Finally, the operational counterpart of the problem should be investigated.
Since the iterative approach is very fast, it can be used to calculate alterations
of routings and pairings once disruptions occur in practice and the planned so-
lutions become invalid. In such a case decisions on how to change the schedule
to recover from the disruption must be made quickly. Ideally, the approach
could be used to simultaneously re-route aircraft, crew, and passengers in an

automated fashion.
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