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Robust and reactive project scheduling: a review and

classification of procedures

WILLY HERROELENy and ROEL LEUSyz*

The vast majority of the research efforts in project scheduling over the past several
years has concentrated on the development of exact and suboptimal procedures
for the generation of a baseline schedule assuming complete information and
a deterministic environment. During execution, however, projects may be the
subject of considerable uncertainty, which may lead to numerous schedule
disruptions. Predictive-reactive scheduling refers to the process where a baseline
schedule is developed prior to the start of the project and updated if necessary
during project execution. It is the objective of this paper to review possible
procedures for the generation of proactive (robust) schedules, which are as well
as possible protected against schedule disruptions, and for the deployment of
reactive scheduling procedures that may be used to revise or re-optimize the
baseline schedule when unexpected events occur. We also offer a framework
that should allow project management to identify the proper scheduling method-
ology for different project scheduling environments. Finally, we survey the basics
of critical chain scheduling and indicate in which environments it is useful.

1. Introduction

The vast majority of the research efforts in project scheduling over the past
several years has concentrated on the development of exact and suboptimal proce-
dures for the generation of a workable baseline schedule ( pre-schedule, predictive
schedule) assuming a deterministic environment and complete information (for an
extensive discussion we refer to Demeulemeester and Herroelen 2002). The project
activities are scheduled subject to technological precedence constraints and resource
constraints under so-called regular objectives (e.g. project duration) or non-regular
objectives (e.g. net present value of the project).

The baseline schedule serves very important functions (Aytug et al. 2003, Mehta
and Uzsoy 1998). The first is to allocate resources to the different activities to
optimize some measure of performance. If developed as a feasible finite capacity
schedule, there exists at least one capacity-feasible resource allocation for the work
planned and the baseline schedule allows one to identify peak and low capacity
requirement periods. The baseline serves as a basis for planning external activities,
such as material procurement, preventive maintenance and committing to shipping
due dates to customers (Wu et al. 1993). Such visibility of future actions is of
crucial importance within the inbound and outbound supply chain. Especially in
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multi-project environments, a schedule often needs to be sought before the start of
the project that is in accord with all parties involved (clients and suppliers, as well
as workers and other resources). It may be necessary to agree on a time window for
work to be done by subcontractors and to organize production resources to best
support smooth schedule execution. Current Internet technology allows companies
to share their production schedules with their suppliers on a continuous basis, with
the expectation that the suppliers will use this information to provide just-in-time
material delivery. A baseline schedule is also vital for cash flow projections and
provides a yardstick by which to measure the performance of both management
and shop floor personnel. Indeed, reliable baseline schedules enable organizations
to estimate the completion times of their projects and take corrective action when
needed. They allow for scheduling and resource allocation decisions that in turn
should allow quoting competitive and reliable due dates.

During execution, however, the project is subject to considerable uncertainty,
which may lead to numerous schedule disruptions. This uncertainty stems from a
number of possible sources: activities may take more or less time than originally
estimated, resources may become unavailable, material supplies may arrive behind
schedule, ready times and due dates may have to be modified, new activities may
have to be incorporated or activities may have to be abandoned due to changes in the
project scope, etc.

The recognition that uncertainty lies at the heart of project planning induced a
number of research efforts in the field of project scheduling under uncertainty (for
an extensive review of the literature we refer to Demeulemeester and Herroelen 2002
and Herroelen and Leus 2003a). One research track involves the development of a
proactive baseline schedule that is protected as well as possible against anticipated
schedule disruptions that may occur during project execution. Reactive scheduling
revises or re-optimizes the baseline schedule when unexpected events occur. The term
predictive-reactive scheduling has been introduced in the literature to denote the case
of a predictive baseline schedule that is developed prior to the start of the project and
that may be updated during the project execution phase (Vieira et al. 2003).

It is the objective of this paper to offer a review and classification of the proce-
dures for proactive and reactive project scheduling. The next section focuses on the
problems and pitfalls of generating deterministic baseline schedules in the presence
of uncertainty. Section 3 provides a classification of the various procedures discussed
in the literature for generating predictive and reactive project schedules. Section 4
presents a framework that should allow project management to identify a proper
scheduling methodology for different project scheduling environments. The last
section offers a summary and conclusions.

2. Deterministic baseline scheduling

The literature on deterministic project scheduling under resource constraints
mainly focuses on the development of a workable schedule that defines the scheduled
start times of the project activities, satisfies both the precedence constraints and the
resource constraints, and ‘optimizes’ the scheduling objective (most often the project
duration). As an illustration, consider the project shown in figure 1 in activity-on-
the-node format (Wiest and Levy 1977). The project consists of eight real activities
(activities 1 and 10 are dummy activities with zero duration). The duration of an
activity is shown above the corresponding node. The number shown below a node is
the requirement per period (in number of units) for a single renewable resource type.
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The arcs in the network denote the finish–start precedence relations with zero time-
lag. Figure 2 shows a minimum duration schedule (by pure luck the project duration
of 11 periods equals the length of the critical path <1,4,7,8,9,10>) that yields a
perfectly levelled resource profile with a constant per period resource requirement of
10 units. Stated differently, the schedule shown in figure 2 represents an optimal
solution for the corresponding resource-constrained project scheduling problem
(minimize the project duration subject to the finish–start precedence constraints
and the resource constraints for the single renewable resource with a constant avail-
ability of 10 units) and the resource levelling problem (generate a levelled schedule
that meets the precedence constraints and completes the project within the given
deadline of 11 time periods).

The schedule of figure 2 shows quite a number of so-called critical sequences or
critical chains. A critical sequence (Wiest 1964) is a sequence of precedence and/or
resource related activities that determines the duration of the corresponding sched-
ule; Goldratt (1997) refers to a critical sequence as a critical chain. The computed
schedule has 16 critical sequences, to wit <1,5,3,6,2,10>, <1,5,3,6,9,10>, <1,5,3,
8,2,10>, <1,5,3,8,9,10>, <1,5,7,6,2,10>, <1,5,7,6,9,10>, <1,5,7,8,2,10>, <1,
5,7,8,9,10>, <1,4,3,6,2,10>, <1,4,3,6,9,10>, <1,4,3,8,2,10>, <1,4,3,8,9,10>,
<1,4,7,6,2,10>, <1,4,7,6,9,10>, <1,4,7,8,2,10>, <1,4,7,8,9,10>.

The schedule of figure 2 may be optimal for a deterministic project setting, but
it is extremely vulnerable to uncertainty. The slightest delay in the starting time of
an activity, and/or the slightest increase in the duration of any activity, for example,
will lead to an immediate increase in the project duration. The true optimality of the
schedule can only be ascertained in conjunction with its execution in the real world.
The proposed schedule, considered to be ‘optimal’ in the project planning phase,
clearly has insufficient built-in ‘slack’, or flexibility for dealing with unexpected
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Figure 1. Project example (Wiest and Levy 1977).
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events. In other words, it is not robust. In the case of figure 2, this lack of robustness
reveals itself as both a lack of stability and of quality. The term stability or solution
robustness refers to the insensitivity of the activity start times to changes in the input
data. The term quality robustness is used when referring to the insensitivity of the
schedule performance in terms of the objective value. Sevaux and Sörensen (2002)
refer to ‘robustness in the solution space’ and ‘robustness in the objective function
space’, respectively. Robustness is closely related to flexibility. A schedule is called
flexible if it can be easily repaired, i.e. changed into a new high quality schedule. The
informal French association of researchers in scheduling GOThA (Groupe de
recherche en Ordonnancement Théorique et Appliqué) has established a ‘Flexibility
working group’ that regularly reflects on how to define, measure and use flexibility,
and maintains a web page listing recent references (http://www.loria.fr/�aloulou/
pages/biblio_gotha.html). In the next section we discuss the basic methodologies for
generating baseline schedules that are quality and solution robust as well as various
dynamic scheduling procedures.

3. Generating predictive and reactive project schedules

Table 1 lists various methodologies for baseline schedule generation and reactive
scheduling that will be reviewed in this section.

3.1. Dynamic scheduling using scheduling policies
The first column in table 1 introduces the question of whether or not a baseline

schedule is used. It might be possible that project management decides that no
baseline schedule should be generated, but a (full) dynamic scheduling procedure is
used during the execution of a project to decide which activity to start as time
evolves. This is the strategy behind stochastic project scheduling. Stochastic project
scheduling does not create a baseline schedule but views the problem of scheduling
projects under precedence and resource constraints (the stochastic resource-
constrained project scheduling problem) as a multi-stage decision process, which
uses so-called scheduling policies (or scheduling strategies) that dynamically make
scheduling decisions at stochastic decision points corresponding to the start of the
project and the completion of activities, based on the observed past and the a priori
knowledge about the activity processing time distributions. The common objective
considered in the literature is to create a policy that minimizes the expected project

baseline schedule during project execution

no dynamic scheduling (scheduling policies)

yes . no anticipation of
variability

. no anticipation of
variability

. proactive (robust)
scheduling

. reactive scheduling
– schedule repair
– full reschedule

. ex post stability

– quality robust
– solution robust

– contingency scheduling
– activity crashing
– sensitivity analysis

Table 1. Methodologies for baseline scheduling and reactive scheduling.
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duration over a class of policies (Igelmund and Radermacher 1983a, b). Fernandez
(1995), Fernandez et al. (1996) and Pet-Edwards et al. (1998) show how to write the
corresponding optimization problem in its general form as a multi-stage stochastic
programming problem. A comprehensive characterization of policies can be found
in Möhring et al. (1984, 1985) and Stork (2001). Branch-and-bound algorithms to
compute optimal policies have been developed by Stork (2001). Heuristic procedures
for solving the stochastic resource-constrained project scheduling problem have been
developed by Pet-Edwards (1996), Golenko-Ginsburg and Gonik (1997) and Tsai
and Gemmill (1996, 1998).

3.2. Generation of a baseline schedule
3.2.1. No anticipation of variability

A common practice in project scheduling is that management decides to generate
a baseline schedule before the start of the project. This can be done using a deter-
ministic project scheduling procedure without any anticipation of variability. Single
point estimates are used to produce deterministic values for parameters such as
activity durations, and the objective is directly related to deterministic project
performance. This is the field of deterministic resource-constrained project scheduling.
For a thorough discussion of the available exact and suboptimal scheduling
procedures, we refer the reader to Demeulemeester and Herroelen (2002).

3.2.2. Proactive (robust) baseline scheduling
Proactive or robust scheduling focuses on the development of a baseline schedule

that incorporates a degree of anticipation of variability during project execution.
The basic idea is to build protection into the pre-schedule. The field has gained from
recent research efforts by both practitioners and theoreticians.

3.2.2.1. Critical chain scheduling/buffer management. Critical chain scheduling/
buffer management (CC/BM) – the direct application of the theory of constraints
(TOC) to project management (Goldratt 1997) – has received a lot of attention in
the project management literature. The fundamentals of CC/BM are summarized
in table 2 (Herroelen et al. 2002).

Aggressive median or average activity duration estimates
No activity due dates
No project milestones
No multi-tasking
Scheduling objectives ¼ minimize makespan; minimize WIP
Determine a precedence and resource feasible baseline schedule
Identify the critical chain
Aggregate uncertainty allowances into buffers
Keep the baseline schedule and the critical chain fixed during project execution
Determine an early start based unbuffered projected schedule and report early completions
(apply the roadrunner mentality)

Use the buffers as a proactive warning mechanism during schedule execution

Table 2. CC/BM fundamentals.
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CC/BM builds a baseline schedule using aggressive median or average activity

duration estimates. Activity due dates and project milestones are eliminated and

multi-tasking (more than one activity is performed by the same resource unit at

the same time) is to be avoided. In order to minimize work-in-progress (WIP), a

precedence feasible schedule is constructed by scheduling activities at their latest

start times based on critical path calculations. If resource conflicts occur, they are

resolved by moving activities earlier in time. The critical chain is then defined as the

chain of precedence and resource dependent activities that determines the overall

duration of a project. If there is more than one such chain, an arbitrary choice is

made. The safety in the durations of the activities that are on the critical chain, which

was cut away by selecting aggressive duration estimates rather than ‘safe’ estimates

(e.g. 90% quantile), is shifted to the end of the critical chain in the form of a project

buffer (PB). This project buffer should protect the project due date promised to the

customer from variability in the critical chain activities. Feeding buffers (FBs) are

inserted whenever a non-critical chain activity joins the critical chain. Their aim is to

protect the critical chain from disruptions on the activities feeding it, and to allow

critical chain activities to start early in case things go well. Although more detailed

methods can be used for sizing the buffers (e.g. Newbold 1998), the default procedure

is to use the 50% buffer sizing rule, i.e. to use a project buffer of half the project

duration and to set the size of a feeding buffer to half the duration of the longest

non-critical chain path leading into it. Resource buffers (RBs), usually in the form of

an advance warning, are placed whenever a resource has to perform an activity on

the critical chain, and the previous critical chain activity is done by a different

resource.

The CC/BM baseline schedule for the project of figure 1 would allow for the

identification of the 16 critical chains mentioned earlier in section 2. ProChain�, one

of the best-known software packages that can be used for implementing CC/BM,

selects the critical chain <1,4,7,8,9,10>. Using the 50% buffer rule, ProChain�

generates the buffered baseline schedule of figure 3, which has a two-period feeding

buffer to protect the project buffer from variation in activity 2, a three-period feeding

buffer to protect critical chain activity 9 from variation in the path <3,6>, and a

one-period feeding buffer to protect critical chain activity 8 from variation in activity

5. The reader will observe the rather surprising phenomenon that the critical chain is

broken, i.e., it is no longer a contiguous chain that determines the project duration

since it contains gaps. Moreover, there is no apparent reason why the ‘critical chain’

would have a gap between activities 7 and 8 and activities 8 and 9. A resource buffer
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Figure 3. Buffered baseline schedule for the project of figure 1.

1604 W. Herroelen and R. Leus



is inserted in front of activity 7 to give a warning signal to the extra resource

unit needed for the execution of critical chain activity 7, but this is not indicated

in figure 3.
For executing a project, on the other hand, the CC/BM approach does not rely on

the buffered schedule but on a so-called projected schedule. The projected schedule is
precedence and resource feasible, contains no buffers and is to be executed according

to the roadrunner mentality, i.e. the so-called gating tasks (activities with non-
dummy predecessors) are started at their scheduled start time in the buffered schedule

while the other activities are started as soon as possible. Figure 4 shows the projected
schedule corresponding with the buffered schedule of figure 3. As can be seen,

activities 8 and 9 are left-shifted allowing the gaps in the critical chain to be closed,
while the start time of gating task 2 is left unchanged. The projected schedule is

recomputed when distortions occur. Similarly to the unprotected minimum
duration baseline schedule shown in figure 2, this is all but a stable schedule.

Therefore, using the schedule for the purposes we indicated earlier (section 1) will

prove virtually impossible and the same is true for the baseline schedule in figure 3.
Herroelen and Leus (2001) have validated the working principles of CC/BM

through a full factorial computational experiment using the well-known
110 Patterson test problems (Patterson 1984). They reach the conclusion that (a)

updating the baseline schedule and the critical chain at each decision point provides
the best intermediate estimates of the final project duration and yields the smallest

final project duration, (b) using a clever project scheduling mechanism such as
branch-and-bound has a beneficial effect on the final makespan, the percentage

deviation from the optimal final makespan obtainable if information would be
perfect, and the work-in-progress, (c) using the 50% rule for buffer sizing may lead

to a serious overestimation of the project buffer size, (d) the beneficial effect of
computing the buffer sizes using the root-square-error method increases with problem

size, (e) keeping the critical chain activities in series is harmful to the final project
makespan, and (f ) recomputing the baseline schedule at each decision point has a

strong beneficial impact on the final project duration. Herroelen et al. (2002)

have studied the practical implications of the scheduling procedure and warn against
oversimplifications of the approach.

In a multi-project environment, CC/BM relies on the common steps of TOC,
applied as follows:

1. Prioritize the organization’s projects;
2. Plan the individual projects according to the CC/BM fundamentals;
3. Stagger the projects;
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Figure 4. Projected schedule.
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4. Insert drum buffers;
5. Measure and report the buffers;
6. Manage the buffers.

Step 1 aims to avoid multi-tasking among projects. Step 2 calls for the identifica-
tion of the most constraining company resource as the ‘bottleneck’ (strategic or
drum resource). Projects are staggered (Step 3) on the basis of the schedule for the
strategic resource (drum plan). This is done by placing a capacity buffer in front of
a strategic resource activity that is on the critical chain in the strategic resource
schedule. A drum buffer (Step 4) is placed before activities on the strategic resource
to protect the strategic resource from disruptions on non-strategic resources. The
buffers then can be managed more or less the same way as done in the single-project
case (Steps 5 and 6).

3.2.2.2. Robust precedence feasible schedules
1. Solution robust schedules in the absence of resource constraints. Herroelen and

Leus (2003b) develop mathematical programming models for the generation of
stable baseline schedules under the assumption that the proper amount of resources
can be acquired if booked in advance based on the pre-schedule and that a single
activity disruption (duration increase) may occur during schedule execution (see also
Leus 2003 who discusses extensions to the multiple disruption case). They use as
stability measure the expected weighted deviation of the start times in the schedule
realized after project execution from those in the pre-schedule. They derive a linear
programming model, the dual of which corresponds to a minimum cost network flow
problem, which can be solved efficiently.

The procedure can be applied to the project network of figure 1, assuming, for
example, the following parameters: a project deadline of 14 periods (for comparison
reasons set equal to the CC/BM project length shown in figure 3), equal disruption
probabilities for the activities, and disruption scenarios specifying that when an
activity is disrupted there is 50% chance that its duration is increased by 1 period
and 50% chance that its duration is increased by 2 periods. The resulting proactive
baseline schedule is shown in figure 5. The schedule is solution robust to the described
disruption setting (the weighted expected deviation between the activity start times
in the baseline schedule and the schedule realized during project execution has
been minimized). It has been generated under the assumption that a proper resource
allocation can be performed that provides sufficient resource units to execute the
activities planned in each period of the schedule horizon, and that on schedule

1 10

0  1      2 3     4       5   6     7 8      9 10    1 1   12   13  14 time

2

3

4

5

6

7 8 9

Figure 5. Solution robust baseline schedule without resource constraints.
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implementation, activities are not started earlier than planned, in order to respect
the initial schedule as much as possible, in order to maximally exploit its advantages
set out in the introduction. If the 10 unit resource constraint mentioned earlier were
invoked for the project, the schedule would not be resource feasible (there would be
a peak resource requirement of 19 resource units in periods 7 and 8).

We notice that a stable schedule attempts to spread out the activities across the
scheduling horizon, such that small disruptions in activity durations are smoothed
out and do not propagate through the network, and the basic functions of a schedule
as described in section 1 can be optimally exploited. The corresponding objective
function value for the CC/BM based projected schedule in figure 4 will be at least
twice the value of the schedule in figure 5, in light of the choice for project end at
time 12 and the evolution of the curve in figure 6. We now ask the reader to have a
look at figure 7: these are the observed density functions of the project makespan on
simulation of the project, when the initial schedule is either figure 4 or figure 5 and
the actual activity durations are stochastic variables that behave according to a
triangular distribution with mode equal to the initial deterministic duration estimate,
minimum equal to half this value, and maximum equal to twice the initial estimate.
The maximum makespan is seen to be 22, the minimum is 10. We disregard resource
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Figure 6. Evolution of the expected weighted deviation objective as a function of the
deadline, as a percentage of the score for the case where the deadline is 11 (critical
path length).
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constraints for the moment. Protection of a committed makespan of 20 time units as

provided by the end of the project buffer in figure 3 is not severely compromised by

switching from figure 4 to figure 5, but we nevertheless notice that the probability

mass of the stable schedule is shifted to the right (higher makespan) compared with

the projected schedule. We are therefore faced with a trade-off between makespan

and stability of a schedule. We will provide guidelines for resolution of this trade-off

in section 4.

Tavares et al. (1998) study the risk of a project as a function of the uncertainty of

the duration and the cost of each activity and the adopted schedule. They increase

the earliest activity start times by the product of the total float of the activity and a

float factor �, 0��� 1, and prove that the adapted start times yield a feasible

schedule. Herroelen and Leus (2003b) have adapted the float factor model allowing

the float factor to vary among the project activities, in order to pursue stability in the

schedule. They have also adapted the linear programming based heuristic (LPH),

developed by Mehta and Uzsoy (1998) to insert idle time in a job shop schedule, to a

project environment. They demonstrate that both the adapted float factor and LPH

procedures are clearly outperformed by the network flow based procedure discussed

earlier.

The discussion in this section so far only concentrated on one type of schedule

disruption that may occur during project execution, to wit an increase in the

duration of project activities. Obviously, other types of schedule disruptions do

exist and should be anticipated in a proactive baseline schedule: decreases in activity

duration (activities finish earlier than predicted), changes in the execution mode of

the activities (planned or unplanned activity pre-emption, choice of a different method

or technique for executing one or more activities having a duration impact), delays in

the starting times of activities, modification of the structure of the project (e.g. new

activities have to be inserted in the baseline schedule, changes in the structure of the

precedence relations), etc. Incorporating these different types of schedule disruptions

in the analysis constitutes a viable area of future research. The discussion so far also

assumed that the generation of the baseline schedule could be done without taking

into consideration the requirements and availabilities of various types of resources.

The generation of resource feasible proactive baseline schedules will be discussed in

section 3.2.2.3.

Moreover, the stability measure referred to in this section – the expected

deviation in activity start times in the baseline schedule and the schedule realized

during project execution – is only one possible stability measure. Other metrics for

measuring the deviation between a baseline and realized schedule may be used:

the number of activities that were distorted, the number of times that an activity

is re-planned, etc. Again, the generation of solution robust project schedules under

various stability metrics constitutes a viable area of future research.

2. Quality robust schedules. The discussion in (1) above focused on the genera-

tion of stable or solution robust schedules. Quality robust schedules aim at max-

imizing quality robustness, i.e. the insensitivity of the schedule to disruptions that

affect the value of the performance metrics used to evaluate the quality of the

schedule. The metrics may relate to the average quality robustness, i.e. the expected

difference between the optimal value of the objective function (e.g. the optimal

makespan) realized on the problem instance and the makespan realized by the appli-

cation of the proactive and reactive scheduling algorithms. The average quality
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robustness metric may be adapted to express the expected quality robustness that
holds for all possible reactive scheduling algorithms applied to a given proactive
baseline schedule. Expected quality robustness does not guarantee the schedule
performance for each realization of the schedule. Worst case quality robustness is
an absolute guarantee that a schedule performance will be obtained (GOThA 2002).
The worst case robustness metric may be the maximum deviation over all possible
schedules obtainable for a proactive scheduling algorithm between the performance
of the proactive schedule and the optimal performance of the realized schedule
measured over all possible reactive scheduling algorithms. The worst case
metric may relate to the deviation between a negotiated performance value and
the performance obtained by the proactive and reactive scheduling algorithms, or
it may relate to the probability that the performance (e.g. makespan) obtained by a
predictive-reactive schedule stays below a certain threshold value.

For the case without resource constraints, optimizing the average expected
makespan as well as the worst case makespan performance is easy because the
solution is always the earliest start schedule.

3.2.2.3. Solution and quality robust schedules in the presence of resource
constraints. Consider the baseline schedule of figure 8 derived for the problem
example of figure 1 under the renewable resource availability constraint of 10 units
per period, a project deadline set to 14 and the same disturbance scenario as
mentioned above. The schedule is precedence and resource feasible.

In comparison with the buffered CC/BM schedule of figure 3 and the projected
schedule of figure 4, the schedule has gained stability (solution robustness). For
example, a distortion in activity 3 in the schedules of figures 3 and 4 has an immedi-
ate impact on the start time of activity 6, while this is not the case in the schedule of
figure 8: activity 3 can be right-shifted two periods without violating the precedence
and/or resource constraints. Similarly, while a distortion of activity 4 or 5 in the
schedule of figure 4 immediately affects the start times of activities 3 and 7, this will
not be the case in the protected baseline schedule of figure 8: both activities can have
a one-period precedence and resource feasible right-shift.

Simulation can again be invoked to compare different schedules as done in sec-
tion 3.2.2.2, but in the presence of stringent resource constraints, a number of
assumptions need to be submitted with regard to the reactive policy that will be
adhered to during project execution (cf. section 3.3). The same is true in fact for the
unconstrained case, where we implicitly assumed a simple right-shift policy as best
alternative.
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Figure 8. Resource feasible, protected baseline schedule.
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Given a protected precedence and resource feasible baseline schedule such as the
one shown in figure 8, a crucial issue remains to be solved: the precise resource allo-
cation among the various activities. Leus and Herroelen (2003) have studied the
problem of generating a robust resource allocation under the assumption that a fea-
sible baseline schedule exists and that some advance knowledge about the probability
distribution of the activity durations is available. It is also assumed that the
resource allocation is not changed during project execution. They explore the fact
that checking the feasibility of a resource allocation solution can easily be done
using maximal flow computations in a transformed precedence network and develop
a branch-and-bound procedure enhanced with constraint propagation that solves
the robust resource allocation problem in exact and approximate formulations.

In the schedule of figure 8, activities 4 and 5 are scheduled in parallel using six
and four resource units in each of the periods 1 and 2, respectively. Activity 3 needs
three resource units in periods 3 and 4, while activity 7 needs seven resource units in
periods 4 and 5. Management should now study the uncertainty involved in the
execution of activities 4 and 5. If activity 4 is deemed less risky than activity 5, it
should pass upon its completion three of its six allocated resource units to activity 3
and the remaining three resource units to activity 7, which receives the remaining
four resource units from activity 5. If activity 5 is deemed less risky than activity 4, it
should on its completion pass three of its resource units to activity 3 and the remain-
ing unit to activity 7. The latter activity can then obtain six remaining units from
activity 4 upon the completion of that activity. A similar argument can allow for a
proper resource allocation from activities 6 and 8 to 2 and 9. If the anticipated risk
of activity 6 is deemed smaller that the risk associated with activity 8, it should
pass eight resource units to activity 2 so that this activity can obtain the remaining
resource unit from activity 8, which passes its other resource unit to activity 9.

The remarks made in the previous section on the use of other solution and
quality robust metrics and different types of schedule disruptions also hold for the
resource-constrained environment discussed in this section.

3.3. Reactive scheduling
Reactive scheduling refers to the schedule modifications that may have to be made

during project execution. The use of a baseline schedule in combination with reactive
scheduling procedures is sometimes referred to as predictive-reactive scheduling, which
is to be contrasted with completely reactive scheduling discussed in section 3.1,
which dispatches activities on-line or real-time and does not use a pre-schedule.
The reactive scheduling action may be based on various underlying strategies.
At one extreme, the reactive effort may rely on very simple techniques aimed at a
quick schedule consistency restoration. We refer to these approaches as schedule
repair. At the other extreme, the reactive scheduling approach may involve a full
scheduling pass of that part of the project that remains to be executed at the time the
reaction is initiated. Such an approach is referred to as ( full ) rescheduling.

3.3.1. Schedule repair
Schedule repair may involve simple control rules such as the well-known right-

shift rule (Sadeh et al. 1993, Smith 1994). This rule moves forward in time all the
activities that are affected by the schedule breakdown because they were executing on
the resource(s) causing the breakage or because of the precedence relations. It should
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be clear that this reactive strategy can lead to poor results, as it does not re-sequence
activities.

3.3.2. Rescheduling
Rescheduling may use any deterministic performance measure, such as the new

project makespan (in manufacturing systems, this approach is sometimes referred to
as (complete) regeneration). In a sense, schedule repair can be viewed as a heuristic
rescheduling pass. An extensive simulation experiment exploring the advantages of
project rescheduling for makespan minimization is described in Yang (1996).

Artigues and Roubellat (2000) study the case where, in a multi-project, multi-
mode setting with ready times and due dates, it is desired to insert a new unexpected
activity into a given baseline schedule such that the resulting impact on maximum
lateness is minimized. The authors perform a clever rescheduling pass in which they
restrict the solution to those schedules in which the resource allocation remains
unchanged. Using a resource flow network representation they develop a stepwise
procedure for generating a set of dominant insertion cuts for the network. From
each dominant insertion cut, they then derive the best execution mode and valid
insertion arc subset included in the dominant insertion cut. The procedure strikes a
balance between simple schedule repair and full rescheduling. The authors have
validated their polynomial insertion algorithm on the 110 Patterson test problems
(Patterson 1984) against complete rescheduling using the MINSLACK priority rule
within a serial schedule generation scheme. In terms of computational burden the
insertion method clearly outperforms the rescheduling method. The mean increase of
the makespan of the schedule with the inserted activity above the makespan of the
baseline schedule stays below the duration of the activity to be inserted. Moreover,
the mean makespan increase is smaller for the insertion algorithm.

In case of rescheduling, the new schedule can differ considerably from the base-
line schedule and this is not always desirable, a fact that was already referred to
before. Frequent schedule regeneration can result in instability and lack of continuity
in detailed plans, resulting in increased costs attributable to increased shop floor
nervousness. Some sources prefer heuristic repair actions that change schedules
locally to global regeneration of the schedule, because only limited changes are
applied to the input schedule. Alternatively, the rescheduling pass can explicitly
aim to generate a new schedule that deviates from the original schedule as little as
possible. Such a minimum perturbation strategy aims at ex post stability, and relies on
the use of exact or suboptimal algorithms using as objective the minimization of a
function of the differences between the start time of each activity in the new and
original schedule (El Sakkout and Wallace 2000), or the minimization of the number
of activities to be performed on different resource units (Alagöz and Azizoglu 2003),
etc. Calhoun et al. (2002) make a distinction between re-planning (fixing the schedule
before the start of the work period) and re-scheduling (re-assigning tasks and
resources during the work period). The overall problem is formulated as a goal
programming model for the generalized multi-mode resource-constrained project
scheduling problem, where goal i corresponds to scheduling the activities in priority
class i with the available resources and within the generalized precedence constraints,
and minimizing the makespan is added as the lowest priority goal. They use a
heuristic to provide an initial solution that is subsequently improved using a tabu
search procedure. Adding the minimum number of changed activities as an extra
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goal they offer a tabu search procedure for re-planning and for re-scheduling the
activities that are not locked in time.

In pursuit of re-scheduling stability, algorithms have also been proposed that
use a match-up point, i.e. the time instance where the state reached by the revised
schedule is the same as the initial schedule (Akturk and Gorgulu 1999, Bean et al.
1991, Wu et al. 1993). The idea is to follow the pre-schedule if no disruption occurs.
The goal is to match up with the pre-schedule at a certain time in the future,
whenever a deviation from the initial parameter values (mainly deviations from
the activity duration projections) arise.

3.3.3. Contingent scheduling
It may happen in practice that management makes manual changes to the

schedule during project execution. A number of algorithms have been developed
to aid the manager in making this type of decision. Billaut and Roubellat (1996a,
b) suggest generating for every resource a so-called group sequence, i.e. a totally or
partially ordered set of groups of operations, and to consider all the schedules
obtained by an arbitrary choice of the ordering of the operations inside each
group. In this way the decision maker is not provided with one feasible schedule
but with several ones. The hope is that during the real-time execution of the schedule,
it becomes possible to switch from one solution to the other in the presence of a
disruption without any loss in performance. Maugière et al. (2002) and Aloulou
et al. (2002) explore this sequence flexibility idea in the context of single machine
scheduling. Briand et al. (2002) extend the methodology used by Billaut and
Roubellat (1996b) to the case of multi-mode scheduling with minimal and maximal
time-lags. Artigues et al. (1999) study multi-mode project scheduling problems where
the projects have a release date and a due date. They propose a generation procedure
for finding group sequences based on a new priority rule. They also propose and test
an efficient local search procedure to improve the feasibility of a group sequence.

3.3.4. Activity crashing
It should be mentioned that during project execution corrective actions may be

taken by crashing some (or maybe all) activity durations. A number of exact and
sub-optimal procedures have been developed for solving the associated time/
cost trade-off and time/resource trade-off problems, as well as the multi-mode and
multiple crashable modes problems and mode identity problems (for an extensive
discussion we refer to Chapter 8 in Demeulemeester and Herroelen 2002).

3.3.5. Sensitivity analysis
An interesting area of research is the sensitivity analysis of project schedules.

Sensitivity analysis addresses ‘What if. . .?’ types of questions that arise from param-
eter changes. Hall and Posner (2000a, b) have studied polynomially solvable and
intractable machine scheduling problems and try to answer a number of fundamen-
tal questions such as (a) what are the limits to the change of a parameter such that
the solution remains optimal?, (b) given a specific change of a parameter, what is the
new optimal cost?, (c) given a specific change of a parameter, what is a new optimal
solution?, etc. An interesting area of further research is to pose similar questions in
a project scheduling environment.

Another interesting research track is the establishment of sensitivity guarantees of
scheduling algorithms. Penz et al. (2001) determine the sensitivity guarantee of
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off-line single and parallel machine scheduling algorithms. For a problem instance I
and a minimization objective function f, the performance guarantee of scheduling
algorithm ALG for problem instance I, �ALG ¼ supI{�ALG(I )}, where �ALG(I ) ¼

fALG(I ) / fOPT(I ) is the theoretical or off-line performance ratio of algorithm ALG for
problem instance I, and fALG(I ) and fOPT(I ) represent the objective value achieved
on problem instance I by algorithm ALG and the optimal objective value, respec-
tively. Variability in the project environment will inevitably influence the activity and
problem characteristics and is captured in vector ~"". The effective performance ratio
obtained after schedule execution is then �~""

ALGðIÞ ¼ f ~""ALGðIÞ=f
~""
OPT ðIÞ: The numerator

and denominator in the right-hand side of the expression represent the objective
value with perturbations ~"" of the ALG schedule for I, and the optimal value ex
post, with perfect knowledge, respectively. The sensitivity guarantee of an off-line
algorithm ALG is a function sALG(") such that for any off-line instance I and any
perturbation ~"" with ~""

�
�
�
� � ", sALG(") is the smallest real value satisfying

�~""
ALGðIÞ � sALGð"Þ�ALGðIÞ:
Sotskov (1991) and Sotskov et al. (1997) consider the problem of scheduling a job

shop with minimum makespan and other objectives. A schedule is represented by an
orientation of arcs in the disjunctive graph representation and it is studied for what
deviations in activity durations the chosen orientation of arcs remains optimal, ex
post. The distance between duration vectors d1 and d2 is assessed by means of the
Chebyshev metric r(d1,d2) ¼ maxi|d1i-d2i|. The stability radius of an optimal solution
s for durations d is then defined as the maximum value of the radius � such that
s remains optimal for all duration vectors d’ with r(d,d’)� �. The authors give
computational results on small job shop instances and conclude that calculation
of the stability radius is very complicated and time consuming. We point out to
the reader that the term ‘stability’ has a different meaning in this context.

Finally, we should point out that the use of sensitivity analysis for general
decision making under uncertainty has been the subject of critique. We refer the
reader to Wallace (2000), who stresses that flexibility options are not appropriately
recognized when using deterministic models with sensitivity analysis. Wallace
points out that the technique is appropriate when analysing allowable variation in
controllable parameters.

4. Different approaches to the multi-project scheduling problem

The generation of quality and solution robust schedules is crucial in a multi-
project environment. The state of the art was reviewed in the previous section.
Clearly no single best method for managing an arbitrary multi-project organization
exists: the best way to coordinate and schedule resources and control schedule
performance depends on the project environment. While it may not make sense to
identify one specific scheduling methodology based on limited information, table 3
does compile some hints with respect to how to handle the project scheduling
problem. We distinguish two key determinants: the degree of general variability in
the work environment and the degree of independence of the project.

4.1. Dependency versus variability
The variability factor involves a joint impression of the uncertainty and

variability associated with the size of the project parameters (time, cost, quality),
uncertainty about the basis of the estimates (activity durations, work content),
uncertainty about the process (what is to be done, how, when, by whom and at
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what cost), uncertainty about the objectives, priorities and acceptable trade-offs,
and uncertainty about fundamental relationships between the various project parties

involved (responsibilities, communication, contractual conditions and effects,
mechanisms of coordination and control). Ward and Chapman (2003) suggest that
management should strive for a shift from a threat focus towards greater concern with
understanding and managing all sources of uncertainty, and explore and understand

the origins of uncertainty before seeking to manage it.
Projects are said to be dependent if they need to coordinate with non-project

parties, be they internal or external to the organization. This refers to both shared
resources as well as dependence on outside contractors. The degree of shared resources

has been referred to by Hendricks et al. (2002) as the project scatter factor: it measures
to what extent projects consist of full-time members and the project team constitution
is fixed. Hendricks et al. point out that the resource dedication profile (the degree of
specialization of the resources, from all-round employees to experts in a certain

matter) strongly influences the project scatter factor. Complementarily, we see depen-
dence as the degree in which free dispatching or scheduling of activities is possible.
Therefore, the use of a certain number of intermediate milestones in the project also
increases dependence (tight due dates), and so does the dependency on unreliable

suppliers (uncertain or tight ready times). We refer to drum activities as all activities
that are dependent: either they are performed by shared internal or external resources,
or their start or completion time is constrained. In the following, we refer to the
remaining project activities as the remainder.

It is imperative that the reader bear in mind that we assume that swift project
completion is always a key objective for the project. At the same time, on a higher
level, it is profitability, manageability and control of the portfolio of projects that is
an objective for senior management, and this will sometimes preclude scheduling or

dispatching solely with makespan objective. Let us now turn to some case by case
comments, referring to the labelled cells in table 3.

1. Low variability, totally independent project. In this extreme case, a project can
be executed with fully dedicated resources and without outside restrictions.
A deterministic schedule generated under well-known regular (e.g. makespan)
or non-regular deterministic project scheduling objectives (e.g. net present
value) can be used as the baseline schedule (see section 3.2.1). This baseline
schedule will be the subject of only minor disruptions.

2. High variability, totally independent project. A detailed schedule covering the
entire project will be subject to a high degree of uncertainty during execution.
The project can be executed according to some scheduling policy (comparable

totally
dependent

rather
dependent

rather
independent

totally
independent

low
variability

7
stable plan;
satisficing

5
stable drum;
efficient remainder

3
efficient drum;
efficient remainder

1
deterministic

high
variability

8
process mgmt.;
rough plan with
sufficient slack

6
stable plan
with queuing

4
stable drum;
dispatch or
predictive-reactive

2
dispatch or
predictive-
reactive

Table 3. Different approaches to the (multi-)project scheduling problem.
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with the ‘roadrunner’ mentality): the resources are always 100% available to
the project, so dispatching is possible in order to complete the project as
quickly as possible (see section 3.1). Alternatively, a predictive-reactive
approach can be followed (sections 3.2.2 and 3.3). Dispatching is preferable
in cases of very high uncertainty; for moderate uncertainty we advise a
predictive-reactive method.

3. Low variability, rather independent project. If a regular objective such as
project duration is used, a feasible schedule for the drum activities is gener-
ated, and in this drum plan, no large provision for uncertainty needs to be
made. The drum activities can be scheduled for efficiency and solution quality.
The remaining (independent) tasks can then be planned around this drum
plan, for example with minimal makespan as primary objective. If uncer-
tainty and complexity are limited, one scheduling pass per project can suffice.
Since projects are normally added to the portfolio dynamically over time and
have to be aligned with the existing schedules of the current portfolio, a single
integrated multi-project scheduling pass will sometimes already produce
difficulties.

4. High variability, rather independent project. The drum plan should now be
generated for robustness in light of the high amount of variability. The
remaining activities can be dispatched as a function of the progress on the
drum, or a predictive-reactive approach can be followed; the same remark as
in case 2 can be made with regard to the choice between these two
approaches.

5. Low variability, rather dependent project. In this type of environment, a large
number of resources are shared, and/or a large number of activities have
constrained time windows. A robust plan should be set up for these activities,
such that small disruptions do not propagate throughout the overall plan.
The remainder should be planned in as efficiently as possible.

6. High variability, rather dependent project. Given the high variability and the
high degree of dependence, a robust drum plan should be set up that is not
overly detailed, thus leaving sufficient opportunity for adapting to uncertain
events. The bottleneck resources will probably have a queue of jobs waiting
to be processed. The ‘independent’ activities are now completely dependent
on the (uncertain) execution time of the drum activities.

7. Low variability, totally dependent project. Since the degree of uncertainty
in this type of environment is not very high, the generation of an aggregate
plan seems to be sufficient to handle this type of situation. The goal of
resource allocation will be to obtain a feasible plan with a minimal
number of conflicts (a ‘satisficing’ pass). Where possible, small amounts of
slack should be integrated into the plan, in order to smooth out small
disruptions.

8. High variability, totally dependent project. This extreme environment refers to
a situation that is best dealt with from a process management viewpoint: the
resources are often workstations that are visited by (or visit) work packages
and pass these on to the appropriate successor resources after completion.
A rough ballpark plan can be constructed to come up with intermediate mile-
stones, which can be used for setting priorities for the resources in choosing
the next work package to consider.
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When variability is low, an integrated deterministic plan is set up, while high
variability makes it difficult to predict the exact starting times of (a number of)
activities before the start of the project. Single-project management techniques can
be applied in cases 1 and 2. The majority of the project scheduling research efforts
relate to these categories. In cases 6 and 8, tight milestones will induce a permanent
‘fire-fighting’ mode, since lead times are hard to estimate and strongly depend on the
current organizational load. The size of the projects can influence the appropriate
methodology: when individual projects are large and complex, the organization will
tend to operate within an environment that is described in the left columns of the
table. Lack of coordination or insufficient stability will entail ‘switching’ from the
top row to the bottom row, since management is unable to control the variability in
the organization.

4.2. The role of CC/BM
Critical chain project management (CC/BM), the application of the theory of

constraints to project management, has been discussed in section 3.2.2.1. It is an
integrated methodology for project planning and execution, combined with a
number of related work-organization issues. The methodology has become a
scheduling hype but certainly needs to be credited for the attention it draws to
duration estimation problems, Parkinson’s law, the student syndrome and multi-
tasking. For a single-project environment, the methodology seems practical and
well thought-out. It has been devised for application especially in environment 2 in
table 3, but it imposes extra constraints on project execution in order to facilitate
makespan estimation, avoid undesirable behaviour of workers and assist in problem
detection. Nevertheless, for single projects, the unconditional focus on a ‘critical
chain’ seems useless to us: it obscures extra scheduling options, and enforces a
rigid focus on what was critical at the start of the project but may no longer be
crucial after a certain lapse of time. Makespan estimation is approximate anyway
because of the merge bias and the simplification of the resolution of resource
conflicts. Practical makespan estimations can be obtained based on scenario analysis,
and/or the incorporation of an aggregate protection measure under the form of a
project buffer alone. The experience of the scheduler will have the final word. The
durations are often based on the behaviour of human resources, so one should not
rely on overly sophisticated statistical techniques for modelling them (for one,
because their variability can be influenced by management).

Rescheduling is disapproved of by the majority of CC/BM adepts. In part, this is
because the combinatorial aspects of scheduling are not always understood: CC/BM
resorts to ‘levelling’ and ‘shifting’ for elimination of resource conflicts, and the use of
‘as late as possible schedules’ for initial planning and ‘as soon as possible schedules’ for
project execution does not facilitate interpretation. It is also claimed that scheduling in
itself is not necessary, because of the ‘dispatching’ character of CC/BM. Nevertheless,
multiple CC/BM sources, not in the least the software vendors, speak of ‘scheduling
driven management’ and ‘aggressive schedules’, which is confusing. Rescheduling
is said to be harmful to stability, but it follows from an investigation of the detailed
techniques of CC/BM, both from the available literature and from the existing
software, that a ‘projected schedule’ (section 3.2.2.1) is unavoidable, which needs
to be rescheduled anyway. Stability within separate projects is far from guaranteed,
given the fact that CC/BM boils down to dispatching based on a constantly
rescheduled projected schedule, althoughmany of the proponents of the methodology
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do not see this and startle at the term ‘reschedule’, condemning it for introducing
system nervousness.

Being based on dispatching and thus geared towards high uncertainty, CC/BM
seems nevertheless not adapted to environments with very high uncertainty such as
new product development, because of the iterative nature of many tasks (so called
‘loops’) or the unforeseen addition of new tasks: this uncertain evolution structure of
the projects certainly requires frequent baseline rescheduling.

On the other hand, the drum schedule as conceived in multi-project CC/BM does
introduce a certain degree of stability across the various projects in progress.
Resource allocation implemented as permanent additional precedence constraints
(Leus and Herroelen 2003) does make sense for bottleneck resources and other
shared resources in multi-project environments. Nevertheless, the critical chain
approach falls short of covering the scheduling needs of every multi-project organi-
zation; it applies especially to environment 4 in table 3. Raz and Barnes (2001) state
that CC/BM ‘deals with a multi-project environment by staggering the projects
around the constraining resource. In principle, at any given point in time, there
could be several constraining resources, each leading to a different schedule.
The premise that there is a single constraining resource seems more applicable to
manufacturing and operations environments than most project environments.’ It
would make sense to distinguish the shared resources with high load, of which
there will regularly be more than one type, and build a stable schedule for these
first. In this schedule, different projects can be prioritized, in order to avoid multi-
tasking at project level. The drum resources should be booked ahead of time based
on time windows for their approximate period of need, which in turn can be based
on ‘rough cut’ single project schedules. This may be based on ‘backward’ scheduling
from a due date, but much detail may not be needed. In the presence of a single
bottleneck, this description roughly follows the multi-project CC/BM approach: the
goal of the drum buffer seems to be to assure stability. Afterwards, the individual
projects can be fine-scheduled, and the objective then will mostly be to minimize
makespan. However, the single projects need not necessarily contain a ‘critical
chain’. This second scheduling pass deserves more attention than the simple ‘stagger-
ing’ advocated by CC/BM, which may well result in low throughput if gone about
overly simplistically. In the critical chain methodology, the result of as late as
possible baseline scheduling and as soon as possible execution is that tasks are
left-shifted within the original schedule horizon, and subsequent staggering aims
to avoid multi-tasking at project level. Nevertheless, especially in low variability
environments, it may make sense for both stability and throughput reasons to
spread out those tasks further, and disregard the ‘latest’ safe start dates for the
gating tasks altogether. Additionally, a considerable number of internal process-
and product-development projects will not have clear due dates, and they will
need to be scheduled in a ‘forward’ manner right from the start. Thus we increase
throughput of projects by multi-tasking those projects, which is not bad per se, only
should it be avoided to overload the system, since then throughput times increase in
a non-linear fashion. Decisions about the resolution of multitasking should be made
in function of system capacity and degree variability.

5. Summary and conclusions

It was the objective of this paper to review the methodologies for proactive and
reactive project scheduling and to present some hints that should allow project
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management to identify a proper project scheduling methodology for different

project scheduling environments. Research efforts aimed at generating solution

and quality robust schedules in combination with an effective reactive scheduling

mechanism are still in the burn-in phase. The generation of solution robust schedules

in the absence of resource constraints and the allocation of resources has been

achieved for activity duration disruptions under the objective of minimizing the

expected deviation in planned and realized activity start times. The critical chain

scheduling methodology has attracted a lot of attention, is definitely an important

eye-opener, but suffers from a serious oversimplification of the issues involved and is

not universally applicable. Our on-going research involves the extension of the

methodology for generating quality robust schedules to other types of schedule

disruptions and other stability measures in the presence of resource constraints.

The literature on the generation of precedence and resource feasible schedules that

are both solution and quality robust is void, and constitutes an important area of

future research.
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