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Abstract— The tradeoff between robustness and resilience is a
pivotal design issue for modern industrial control systems. The
trend of integrating information technologies into control sys-
tem infrastructure has made resilience an important dimension
of the critical infrastructure protection mission. It is desirable
that systems support state awareness of threats and anomalies,
and maintain acceptable levels of operation or service in the
face of unanticipated or unprecedented incidents. In this paper,
we propose a hybrid theoretical framework for robust and re-
silient control design in which the stochastic switching between
structure states models unanticipated events and deterministic
uncertainties in each structure represent the known range of
disturbances. We propose a set of coupled optimality criteria for
a holistic robust and resilient design for cyber-physical systems.
We apply this method to a voltage regulator design problem
for a synchronous machine with infinite bus and illustrate the
solution methodology with numerical examples.

I. INTRODUCTION

The migration of many current critical infrastructures such
as power grids and transportations systems into open public
networks has posed many challenges in control systems.
The classical design of control systems takes into account
modeling uncertainties as well as physical disturbances and
encompasses a multitude of control design methods such
as robust control, adaptive control, and stochastic control.
With the growing level of integration of control systems with
new information technologies, modern control systems face
uncertainties not only from the physical world but also from
the cyber space. IT uncertainties are often unanticipated and
more catastrophic as compared to the ones from the physical
world. It is imperative to consider such IT uncertainties in
addition to the physical ones in the controller design. In
[1], [?], the concept of a resilient control system has been
proposed, which emphasizes the control system design in an
adversarial and uncertain cyber environment. A resilient con-
trol system needs to maintain the state awareness of threats
and anomalies and assure an accepted level of operational
normalcy in response to disturbances, including threats of
an unexpected and malicious nature. Traditional concepts
of robustness, reliability and defense in depth need to be
broadened to include the consideration of cyber and physical
security and threats from malicious behaviors.

Resilient control design pivots on the inherent system
tradeoff between robustness and resilience. In [2] and [3],
the distinctions between these two concepts are discussed
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and elaborated in the context of power systems. Robustness
refers to the operation of a system under a given range of
perturbations or disturbances whereas resilience refers to the
restoration of a system under unexpected extreme and rare
events. As pointed out in [2], robustness and resilience are
not general properties of a system but are relative to specific
classes of perturbations. A system that is resilient or robust
to a certain type of perturbations may be brittle or fragile to
another. Centralized systems are often more robust yet less
resilient than decentralized systems. Systems with a global
coordination can withstand a larger range of uncertainties or
disturbances, but may fail to respond to unforeseen attacks
or faults. Such tradeoff is essential to the design of system
architecture and its control.

The metric of robustness in control systems has been well
studied in [4] and [5]. In [5], a game-theoretical approach
has been used to yield a minimax, disturbance attenuating
control by viewing the controller as the cost minimizer and
the disturbance as the cost maximizer. A metric for resilient
control systems has recently been introduced and discussed
in [6], [7]. However, not much effort has been expended
in studying the resilient control design, and almost none on
a holistic approach to resilient and robust control design.
In this paper, we address this design issue using a hybrid
dynamic game-theoretic approach, combining Markov chain
dynamics with continuous-time H∞ control.

The hybrid model provides a holistic and cross-layer
viewpoint to decision-making and design for cyber-physical
systems. The continuous-time dynamics model the physical
layer plant subject to disturbances and control efforts. The
discrete-time dynamics model the cyber layer of the system,
which involves human factors. We use a zero-sum differential
game for the optimal control design at the physical layer
and a stochastic zero-sum game between an administrator
(or defender) and an attacker for the design of the defense
mechanisms. The designs at the physical and the cyber
layers are intertwined. A policy made at the cyber layer
can influence the optimal control design for the physical
system; and the optimal control design at the lower level
needs to be taken into account when security policies are
determined. The overall optimal design of the cyber-physical
system is characterized by a Hamilton-Jacobi-Isaacs (HJI)
equation together with a Shapley-like optimality criterion.
Our framework connects the resilient control for the cyber
system with the robust control for the physical system.

The rest of the paper is organized as follows. In Section
II, we first motivate the combined approach to resilient and
robust control by introducing a hierarchical layered view-
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point of cyber-physical systems. In Section II-A, we present
the hybrid system model, and we describe the optimality
conditions in Section II-B and Section II-C. In Section III,
we characterize the solution for the special class of linear-
quadratic problems. In Section IV, we present an application
in power systems and illustrate with numerical examples. We
conclude the paper in Section V with some general remarks
and identification of future work.

II. RESILIENT AND ROBUST CONTROL

In this section, our aim is to establish a theoretical
framework for designing resilient controllers. To address this
challenge, we first need to understand the architecture of
industrial control systems (ICSs). Here, we adopt a layering
perspective toward ICSs. This view-point has been adopted
in many large scale system designs such as the Internet,
power systems and nuclear power plants. For example, in
smart grids, the hierarchical architecture includes economy
grid, regulatory grid, electricity market grid, transmission
grid and distribution grid, etc. We hierarchically separate
ICSs into 6 layers, namely, physical layer, control layer,
communication layer, network layer, supervisory layer and
management layer.

The physical layer comprises the physical plant to be
controlled. The control layer consists of multiple control
components, including observers/sensors, intrusion detection
systems (IDSs), actuators and other intelligent control com-
ponents. The physical layer together with the control layer
can be viewed as the physical world of the system. On top of
these two layers, the communication layer is where we have
physical communication channels that can be in the form of
wireless channels, the Internet, etc., and the network layer
is where the topology and routing of the architecture live.
The communication and network layers constitute the cyber
world of the system. Supervisory layer coordinates all lower
layers by designing and sending appropriate commands. It
can be viewed as the brain of the system. Management
layer is a higher level decision-making engine, where the
decision-makers take an economic perspective towards the
resource allocation problems in control systems. Supervisory
and management layers are interfaces with humans and hence
they contain many human factors and human-made decisions.

The layered architecture can facilitate the understanding
of the cross-layer interactions between the physical world
and the cyber world. In Fig. 1, we use x(t) and θ(t) to
denote the continuous physical state and the discrete cyber
state of the system, which are governed by the laws f
and Λ, respectively. The physical state x(t) is subject to
disturbances w and can be controlled by u. The cyber state
θ(t) is controlled by the defense mechanism l used by the
network administrator as well as the attacker’s action a. The
hybrid nature of the cross-layer interaction leads to adoption
of the hybrid system model described later through (1) and
(2).

As mentioned earlier, in this section our goal is to establish
a framework for designing a resilient controller for the hybrid

Fig. 1. The interactions between the cyber and physical systems are captured
by their dynamics governed by the transition law Λ and the dynamical
system f .

system model described. We view resilient control as a cross-
layer control design, which takes into account the given range
of deterministic uncertainties at each state as well as the
random unexpected events that trigger the transition from
one system state to another. Hence, it has the property of
disturbance attenuation or rejection to physical uncertainties
as well as damage mitigation or resilience to sudden cyber
attacks. We first derive resilient control for the closed-loop
perfect-state measurement information structure in a general
setting with the transition law dependent on the control
action, and then we simplify the result to the special case
of the linear quadratic problem.

A. Control Framework

We consider a general class of systems subject to two
types of uncertainties: a continuous deterministic uncertainty
that models the known parametric uncertainties and distur-
bances, and a discrete stochastic uncertainty that models the
unknown and unanticipated events that lead to a change in the
system operation state at random times. Let the system state
evolve according to the piecewise deterministic dynamics:

ẋ(t) = f(t, x, u, w; θ(t, a, l)), x(t0) = x0, (1)

where x(t) ∈ Rn, x0 is a fixed (known) initial state of the
physical plant at starting time t0, u ∈ Rr is the control input,
w ∈ Rp is the disturbance. x, u, w are quantities that lie at
the physical and control layers of the entire system.

The state of the cyber system is described by θ. We model
the process θ(t), t ∈ [0, tf ], by a Markov jump process
with right-continuous sample paths, with initial distribution
π0, and with rate matrix λ = {λij}i,j∈S , where S :=
{1, 2, · · · , s} is the state space; λij ∈ R+ are the transition
rates such that for i 6= j, λij ≥ 0, and λii = 1 −

∑
j 6=i λij

for i ∈ S.
Transitions between the structural states are controlled by

the attacker and the system administrator. An attacker can
exploit the vulnerabilities in the control system software and
launch an attack to bring down the operation. An example
is Stuxnet, a Windows-based worm that was recently dis-
covered to target industrial software and equipment [10]. An
administrator can enforce the security by dynamically updat-
ing the security policy of control systems [11], [12]. Once
an attack occurs, the administrator can restore the system
to normal operation. Different from conventional computer
networks, control systems are reported to experience lower
rates of attacks [7] and the software updates are less frequent
than the ones in computer networks. Hence, the transition
between structural states are on a different time scale from
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the evolution of the physical states. We assume that the
systems have reached their physical steady states when the
structural transition takes place. This assumption can be
validated by two facts. The first is that the attack rate on
control systems is often lower than the one on information
systems, [17], and the second one is that the time scale of
the failure rate of devices and components in control systems
is larger than the one of the system dynamics and operations
[18].

Let k = t/ε, ε > 0, be the time scale on which cyber
events happen, which is often on the order of days, in
contrast to the one of the physical systems which evolve
on the time scale of seconds. Denote by a ∈ A a cyber
attack chosen by the attacker from his attack space A :=
{a1, a2, · · · , aM} composed of all possible actions. l ∈ L
is the cyber defense mechanism that can be employed by
the network administrator where L := {l1, l2, · · · , lN} is
the set of all the possible defense actions. Without loss
of generality, we assume that A and L do not change
in time even though, in practice, they can change due to
technological updates and advances. We consider the mixed
strategies f(k) = [fi(k)]Ni=1 ∈ Fk, g(k) ∈ Gk of the defender
and the attacker, respectively, where fi(k) and gj(k) are the
probabilities of choosing li ∈ L and aj ∈ A, respectively,
where Fk and Gk are sets of admissible strategies, defined
by Fk := {f(k) ∈ [0, 1]N :

∑N
i=1 fi(k) = 1} and Gk :=

{g(k) ∈ [0, 1]M :
∑M
j=1 gj(k) = 1}. The transition law of

the cyber system state θ(k) at time k depends on the actions
of the attacker as well as the defense mechanism employed
by the administrator. More precisely, the rate matrix has the
form

Prob{θ(k+∆) = j|θ(k) = i} =

{
λij(f(k),g(k)), j 6= i,
λii(f(k),g(k)), j = i,

(2)
where ∆ > 0 which is on the same time scale
as k, i.e., in days, and λij(f(k),g(k)) are the av-
erage transition rates in terms of the transition rates
λ̃ij(a(k), l(k)), i, j ∈ S, defined by λij(f(k),g(k)) =∑N
i=1

∑M
j=1 fi(k)gj(k)λ̃ij(ai(k), lj(k)).

B. H∞ Optimal Control

Systems described by (1) and (2) are hybrid ones with
continuous and discrete states and they have been investi-
gated earlier in [8], [9]. Let Ft be the sigma-field generated
by θ[t0,t] := {θ(s), s ≤ t}. Denote by U and W the sets of
admissible controls and disturbance processes, respectively,
which are Ft−measurable, and piecewise continuous. We
assume that f is piecewise continuous in t and Lipschitz
continuous in (x, u, w), for each fixed sample path of θ, with
probability one. The process θ models the unanticipated or
rare uncertainties that arise from cyber attacks or component
failures. These events result in random structural changes
in the dynamics of the system. We consider a closed-loop
perfect state information structure for the control design.
The controller has access to x[t0,t] and θ[t0,t] at time t and
has the form u(t) = µ(t, x[t0,t]; θ[t0,t]), t ∈ [t0, tf ], where
µ is an admissible closed-loop control strategy, piecewise

continuous in its first argument, and Lipschitz continuous
in its second argument. We denote the class of all such
control strategies by MCL. Analogously, denote by NCL
the class of all closed-loop disturbance strategies v(t) =
ν(t, x[t0,t]; θ[t0,t]), t ∈ [t0, tf ]. The performance index for
the hybrid control system is the expected cost over the
statistics of θ, given by

J(u, v) := Eθ{L(x, u, w; θ)}, (3)

with the cost function L given as

L(x, u, w; θ) = q0(x0; θ(t0)) + qf (x(tf ); θ(tf ))

+

∫ tf

t0

g(t, x(t), u(t), w(t); θ(t))dt, (4)

where qf is continuous in x, and g is jointly continuous
in (t, x, u, w). In the infinite-horizon case, qf is absent and
tf → ∞. The objective is to find a minimax closed-loop
controller µ∗CL ∈ MCL that infimizes the supremum of J
over all closed-loop disturbance policies:

sup
ν∈NCL

J(µ∗CL, ν) = inf
µ∈MCL

sup
ν∈NCL

J(µ, ν). (5)

A cost structure of interest is the separable one:

g(t, x, u; θ) = g0(t, x, u; θ)− γ2r(w; θ). (6)

The solution of (5) parameterized in γ is denoted by µ∗γ and
γCL is the smallest value of γ > 0 for which the right hand
side of (5) is bounded. Then µ∗

γ,CL is the H∞ controller for
the hybrid system, with respect to the performance index:

sup
w∈W

{
Eθ{qf (xf ; θ(tf )) +

∫ tf
t0
g0(t, x(t), u(t); θ(t))dt}

Eθ{‖w‖2 + q0(x0; θ(t0))}

}
,

where ‖·‖ denotes the L2-norm of w for each sample path of
θ. The minimum value of the performance index is γ2CL. It
defines a measure of disturbance attenuation in the nonlinear
hybrid system. Note that in (5), we have considered x0 as
part of disturbance.

Consider the differential game described by (5). Let V (·) :
R × Rn × S denote the cost-to-go function associated with
this differential game, i.e., V (t, x, i) is the upper value of
a similar game defined on the shorter interval [t, tf ], with
initial state x, and initial structure θ(t) = i. We assume that
the differential game defined by (5) has an upper value V
for every initial time t, state x(t), and structure θ(t), which
is jointly continuously differentiable in (t, x). Under this
assumption, we have the associated Isaacs equation:

−V it (t, x) = inf
u∈Rr

sup
w∈Rp

{V ix(t, x)f(t, x, u, w, i)+

g(t, x, u, w, i) +
∑
j∈S

λijV
j(t, x)}, (7)

V i(tf , x) = qf (x(tf ); i); i ∈ S. (8)

Any control u ∈ Rr that achieves the minimum on the
right hand of (7) correspond to a control policy that is a
memoryless function of (x, θ). Denote any such control law
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by µF ∈MCL and (7) can be rewritten as

−V it (t, x) = sup
w∈Rp

{V ix(t, x)f(t, x, µF(t, x, i), w, i)

+g(t, x, µF(t, x, i), w, i) +
∑
j∈S

λijV
j(t, x)}.

Furthermore, if Isaacs condition holds and if there exists a
disturbance policy, νF ∈ NCL, that achieves the maximum
in (7), then νF is also a Markov policy, and (µF, νF) are in
saddle-point equilibrium. In this case, the upper value is also
the value function, satisfying the PDE:

−V it (t, x) = sup
w∈Rp

{V ix(t, x)f(t, x, µF(t, x, i), νF(t, x, i), i)

+g(t, x, µF(t, x, i), νF(t, x, i), i) +
∑
j∈S

λijV
j(t, x)}.

The optimal cost V i(t0, x0) generates a measure on the
resilience and robustness of the system. It is desirable that the
costs on faulty structure states are kept relatively lower than
the normal operation states. The tradeoff between resilience
and robustness can be seen from the two-fold controller
design in which one goal is to spend control effort to bring
the system back to normal operation mode following the
occurrence of unanticipated events and the other goal is to
yield optimal performance for the control system in each
operating state.

C. Optimal Defense

The defense against attacks happens on a longer time
scale and involves decision-making at the human and cyber
levels of the system. Using time-scale separation, the optimal
defense mechanism can be designed by viewing the physical
control system at its steady state at each cyber state θ at
a given time k. The interaction between an attacker and
a defending administrator can be captured by a zero-sum
stochastic game with the defender aiming to maximize the
long-term system performance or payoff function and the
attacker aiming to minimize it [13]. We use a discounted
payoff criterion Vβ(s, f ,g), defined as

Vβ(i, f(k),g(k)) :=

∫ ∞
0

e−βkEf(k),g(k)
i V i(k, f(k),g(k))dk,

where β is the discount factor. The operator Ef ,g
i is the ex-

pectation operator and V i(k, f(k),g(k)) is the value function
at state i with starting time at k in (4) and its dependence
on f(k),g(k) is from the state transition between states
in (2). We consider a class of mixed stationary strategies
f i ∈ F i and gi ∈ Gi, i ∈ S, that are only dependent
on the current cyber state i. Let F = {fi}i∈S ∈ FS
and G = {gi}i∈S ∈ GS , where FS :=

∏
i∈S F i and

GS :=
∏
i∈S Gi. The following theorem characterizes the

stationary saddle-point equilibrium of the stochastic zero-
sum game in a similar fashion as in [13], and [14].

Theorem 1: Assume that λij(k) are continuous in f i and
gi and the value functions V i(k) are bounded. There exists
a pair of stationary strategies (F∗,G∗) ∈ FS×GS such that,

for all i ∈ S, the following fixed-point equation is satisfied.

βv∗β(i) = V i(F∗,G∗) +
∑
j∈S

λij(F
∗,G∗)v∗β(j) (9)

= sup
F∈FS

{V i(F,G∗) +
∑
j∈S

λij(F,G
∗)v∗β(j)}

= inf
G∈GS

{V i(F∗,G) +
∑
j∈S

λij(F
∗,G)v∗β(j)}

= sup
F∈FS

inf
G∈GS

{V i(F,G) +
∑
j∈S

λij(F,G)v∗β(j)}

=: Lβ(i)

= inf
G∈GS

sup
F∈FS

{V i(F,G) +
∑
j∈S

λij(F,G)v∗β(j)}

=: Uβ(i)

where vβ(i) = Vβ(i,F,G) and Lβ(i), Uβ(i) are defined
to be the lower value and the upper value of the game.
In addition, (F∗,G∗) from (9) is a pair of saddle-point
equilibrium strategies and the value of game v∗β(i) is unique
and has the property that v∗β(i) = Lβ(i) = Uβ(i).
The saddle-point equilibrium strategies can be computed
using a value iteration scheme [13]. Let {vnβ (i)}∞n=1 be a
sequence of values of the game which obeys the following
update law:

vn+1
β (i) = V i(F∗n,G

∗
n) +

∑
j∈S

λij(F
∗
n,G

∗
n)vnβ (j) (10)

= sup
F∈FS

{V i(Fn,G∗n) +
∑
j∈S

λij(Fn,G
∗
n)vnβ (j)},

= inf
G∈GS

{V i(F∗n,Gn) +
∑
j∈S

λij(F
∗
n,Gn)vnβ (j)}.

It is clear that if this set of update laws converges from
every starting point, then the limit is the unique saddle-point
solution of the game.

D. Coupled Design

The design of robust and resilient control system needs to
adopt a holistic viewpoint in which the physical layer robust
control design needs to consider the cyber layer security
mechanism, and the cyber defense protocol design needs to
take into account the physical layer control performance.

Definition 1: Under the information structures specified
in Sections II-B and II-C, a robust and resilient control
for the cyber-physical system described by (1) is a set of
optimal control policies {(F∗,G∗), (µ∗, ν∗)} that satisfy the
optimality criterion (9) coupled with HJI conditions (7).

The optimality criterion (9) in Theorem 1 together with
HJI equation in (7) defines a set of coupled optimality
conditions for cyber-physical systems that we need to solve
to obtain the cyber policy F∗ and the robust controller u and
its associated performance index γ∗.

III. LINEAR-QUADRATIC PROBLEM

In this section, we consider a special case of lin-
ear quadratic problem in which λij’s are constant in
x, u but can be time-varying, and f(t, x, u, w; i) =
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Aix + Biu + Diw, qf (tf ; i) = |x(tf )|2
Qi

tf

, q0(x0, i) =

|x0|2Qi
0
, g0(t, x, u, i) = |x|2

Qi
tf

+ |u|2Ri , r(w; θ) = |w|2,

where i ∈ S, |·| denotes the Euclidean norm with appropriate
weighting, Ai, Bi, Di, Qi, Ri are matrices of appropriate
dimensions, whose entries are continuous functions of time
t. Qi(·) ≥ 0, Ri(·) > 0, and Qi0 is a positive-definite matrix
and Qif is a constant nonnegative-definite matrix. We con-
sider an infinite horizon case with the cost function defined
by L(x, u, w; θ) =

∫∞
t0

(|x(t)|2Qi + |u(t)|2Ri − γ2|w(t)|2)dt.
Before stating Theorem 2, we make the following assump-
tions:
(A1): Matrix functions Ri and Qi0 are positive definite for

i ∈ S.
(A2): The Markov chain θ is irreducible for any admissible

strategies.
(A3): The pair (Ai, Bi) is stochastically stabilizable.
(A4): The pair (Ai, Qi) is observable for each i ∈ S.

Theorem 2 ([8]): Consider the soft-constrained zero-sum
differential game with perfect measurements in the infinite-
horizon case. Let assumptions (A1)-(A4) hold. Then,
γ∗CL,∞ < +∞, and for any γCL > γ∗CL,∞, there exists a set
of minimal positive definite solutions Zi, i ∈ S, to GAREs,

Ai
′
Zi + ZiA

i − Zi
(
Bi(Ri)−1Bi

′
− 1

γ2
DiDi′

)
Zi

+Qi +

s∑
j=1

λij(F,G)Zj = 0; i ∈ S. (11)

which further satisfy the condition

γ2CLQ
i
0 − Zi ≥ 0, i ∈ S, (12)

and a strategy µ∗γ∞ for P1 that guarantees the zero upper
value is:

u∗γ∞(t) = µ∗γ∞(t, x(t), θ(t)) = −(Ri)−1Bi
′
Zix(t). (13)

For almost all γ > γ∗∞, the jump linear system driven by
both the optimal control and the optimal disturbance,

ẋ(t) =

(
Ai −

(
Bi(Ri)−1Bi

′
− 1

γ2
DiDi′

)
Zi

)
x(t) (14)

is also mean-square stable, i.e., limt→∞ E{|x(t)|2} = 0.
For γ < γ∗CL,∞, on the other hand, either condition (12) is

not satisfied or the set of GAREs does not admit nonnegative
definite solutions, and in both cases, the upper value of the
game is +∞.

On a longer time scale, the continuous-time zero-sum
game between the attacker and the administrator has the sta-
tionary saddle-point equilibrium characterized by Theorem 1.
More specifically, the fixed-point equation (9) can be written
as

βv∗β(i) = x′0Zi(F
∗,G∗)x0 +

∑
j∈S

λij(F
∗,G∗)v∗β(j). (15)

The optimal control u∗ and the optimal defense strategy
F∗ need to be found by solving the coupled equations
(15) and GAREs in Theorem 2. A demonstration of this

TABLE I
TABLE OF PARAMETERS

Symbol Meaning

kc = 1 Gain of the excitation amplifier
D = 5.0 Per unit damping constant
H = 4.0 Per unit inertia constant
ω0 = 100π Synchronous machine speed
Pm = 0.9 Mechanical input power
Td0 = 6.9 Direct axis transient short circuit time constant
Vs = 0.91 Infinite bus voltage
xd = 1.863 Direct axis reactance of the generator
x′d = 0.257 Direct axis transient reactance of the generator
xT = 0.127 Reactance of the transformer
xL = 0.4853 Reactance of the transmission line

is provided in the next section within the context of an
application to power systems.

IV. APPLICATION TO POWER SYSTEMS

In this section, we apply the framework in Section II
to the voltage regulation problem of a power generator
subject to sudden faults or attacks. A power system has
multiple generators interconnected through a large dynamic
network. A common approach to designing control systems
for generators is to model the dynamics of a single generator
and to approximate everything else as an infinite bus, i.e., the
voltage and the phase of the entire network are not affected
by the input power or field excitation of the generator. We de-
sign a stabilizing control, called the power system stabilizer
(PSS), used to damp out the low-frequency oscillations for a
single-machine infinite-bus (SMIB) system [16]. A fault can
occur as a result of an unexpected cyber attack. For example,
an attacker can break into the IT system and damage the
circuit breakers in a power grid, leading to an operation under
a faulty state. It is important that we design a controller to
regulate the system to equilibrium as quickly as possible if
such a failure occurs [15], and at the same time a defense
mechanism to protect the systems from possible attacks. We
define a two-state operation: one is under the normal state
(θ = 1) and the other is the post-attack state (θ = 2).

Denote by δ the power angle, ω the relative speed, Pe
the active electrical power delivered by generator; and uf
the input of the amplifier of the generator as the control
variable. The system equations to model SMIB are:

δ̇(t) = ω(t);

ω̇(t) = − D

2H
ω(t) +

ω0

2H
(Pm(t)− Pe(t));

Ṗe(t) = − 1

T ′d0
Pe(t) +

1

T ′d0

{
Vs
xds

sin(δ(t)) [kcuf+

T ′d0(xd − x′d)
Vs
x′ds

ω(t) sin(δ(t))

]
+T ′d0ω(t)cot(δ(t))}+ w,

where w is the disturbance, T ′d0 =
x′
ds

xds
Td0; xds = xT +xL+

xd; x′ds = xT +xL+x′d; the main parameters listed in Table
I and their values are chosen based on [16].

Under normal operation (θ = 1), the control objective is to
regulate the synchronous machine state x := [x1, x2, x3]′ =

4070



Fig. 2. Evolution of state x2(i.e., ω) with failure happening at t = 10.

[δ, ω, Pe]
′ to the level of [δ0, 0, Pm]′. We can linearize the

system around the desired levels to achieve the goal.

The transition rates λ̃ij , i, j = 1, 2, take the following
parametrized form: λ̃12 = p, λ̃11 = −p, λ̃21 = λ̃22 = 0,
where we have assumed that the operation after the attacker
cannot immediately be recovered. At the cyber layer, the
administrator (or the defender) can take two actions, namely,
to defend (l1 = D) or not to defend (l2 = ND). The attacker
can also take two actions, i.e, to attack (a1 = A) or not to
(a2 = NA). The parameter p determines the transition law
with respect to pure strategies and its values are tabulated as
follows.

A NA
D 0.1 0.05

ND 0.95 0.05

In the above table, we have assumed a higher transition rate
to a failure state if the attacker launches an attack while
the cyber system does not have proper measures to defend
itself. On the other hand, the rate is lower if the cyber system
can defend itself from attacks. In the above table, we have
assumed a base transition rate 0.05 to denote the inherent
reliability of the physical system without exogenous attacks.
We use the fixed-point equation (15) and GAREs in Theorem
(2) to obtain the discounted value functions v∗β(i), i = 1, 2,
with the discount factor chosen to be β = 1. We set x0 =
[δ0, 0, Pm]′ and obtain V 2 = 7.2075×104 independent of the
parameter p. Hence, v∗β(2) = V 2 and v∗β obeys the following
fixed-point equation v∗β(1) = val {H− v∗β(1)G}, where

H =

[
1.4396 0.9994
8.4867 0.9994

]
× 104,G =

[
0.1 0.05
0.95 0.05

]
,

where “val” is the value operator for a matrix game [13].
Using value iteration with initial value of v∗β(1) set to 0, we
find v∗β(1) = 1.3087× 104 and the corresponding stationary
saddle-point strategy f∗ = [1, 0]′,g∗ = [0, 1]′, which is
a pure strategy leading to an optimal value of p = 0.05.
The stationary saddle-point equilibrium strategy says that
the defender should always be defending and the attacker
should not be attacking. In Fig. 2, we show the evolution
of state x2 with failure happening at time t = 10. The
optimal control design allows the state x2 to stabilize after
fault occurs. Note that our design methodology can be used
to meet given resilient control design specifications such as
degrading time, recovery time, performance loss, etc. [6], by
choosing appropriate weighting matrices.

V. CONCLUSION

Control design in many critical infrastructures is chal-
lenged by the uncertainties from the cyber world. The goal
of resilient control is to maintain an acceptable level of
operation or service in face of undesirable incidents. In this
paper, we have proposed a holistic theoretical framework for
the robust and resilient control design problem for cyber-
physical systems. We have applied the design methodology
to a synchronous machine with infinite bus and obtained a ro-
bust and resilient feedback control strategy. Our future work
will aim to investigate the impact of information structures on
the control design. In particular, we are interested in systems
with imperfect and delayed measurements.
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