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ABSTRACT  

With the advent of technology and multimedia production, the world has witnessed a tremendous increase in 

digital media attacks, which duplicates, forges and tamper the data leading to the violation of copyright laws. 

In this paper, a robust and secure digital image watermarking is proposed, which exploits the chaotic 

behaviour of the non – linear oscillators realized through Memristive diodes. The proposed scheme relies on 

a Human Visual System (HVS) model in order to mimic the real-life scenario. To improve the robustness of 

the proposed approach and to further increase the security of the digital watermarked media whilst still 

retaining compatibility with the real-time events, Histogram of Oriented Gradients (HOG) and extreme 

learning machine (ELM) is implemented. Secure key generation by means of scrambling through Arnold 

Transform and the coefficients of Memristive Chaotic Oscillator ensures extreme security. The watermark 

embedding followed the pixel transformation based on discrete cosine coefficient modification, and a semi-

blind watermarking extraction procedure was carried out through trained ELM models. A detailed analysis 

has been presented to evaluate the tradeoff between imperceptibility, security and robustness using 

performance metrics like PSNR, NC, SSIM, and BER. To establish a real-time implementation of the 

proposed architecture, the simulated results were verified using real-time chaotic signals generated from the 

chaotic oscillator, which dictates excellent performance against watermarking attacks and image processing 

tasks.       

INDEX TERMS Chaotic Encryption, Memristor, Arnold Transform, Histogram of Oriented Gradients 

(HOG), Human Visual Systems (HVS), Extreme Machine Learning (ELM), Discrete Cosine Transform 

(DCT) 

I. INTRODUCTION 

The rapid developments in the computer era have led to an 

exponential increase in digital media production and usage. 

Consequently, the cases of data duplication forging and 

tampering have significantly raised a concern towards data 

encryption and security and ultimate copyright protection of 

the digital media. Out of the several possible solutions, copy 

detection, steganography, and digital watermarking 

techniques are one such method that targets this problem and 

aims at embedding the information into more protected 

information in a characteristic manner [1]. The embedded data 

replicates the host image visually but makes it more secure by 

encrypting the information prone to malicious image 

processing attacks [2]. Whenever a copyright issue is 

encountered, the media is extracted using a watermarking 

technique.  
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    These techniques can be broadly classified into two types: 

(1) Spatial based, which operates on the pixel location by 

embedding the watermark into the least significant bit (LSB) 

of the original image, and (2) Frequency − based, which first 

converts the signal into the frequency domain and embeds and 

modifies the frequency coefficients after the transforms. 

However, spatial transforms are less robust but are 

computationally less complex and have a better payload 

capacity than the frequency domain, which is found to be more 

robust, more secure, and offers better invisibility [3]. 

Literature has demonstrated several techniques like which 

involves frequency and spatial domain analysis. Frequency 

domain based transforms like discrete Fourier Transforms 

(DFT), discrete wavelet transforms (DWT), discrete cosine 

transforms (DCT) etc., have been studied rigorously. 

However, it has been well established that using two or more 

transforms (hybrid) can yield better results. Fazil et. at.  [4] 

and Singh et. al. [5] has proposed a robust technique based on 

DWT, DCT with Singular Value Decomposition (SVD). Hwai 

and his group [6] have proposed that using sign correction, 

level shifting, mixed modulation, and orthogonal restoration, 

the process can be made more effective by improving 

invisibility and robustness. Recently, Liu and his group [7] 

have demonstrated a hybrid integer wavelet transform (IWT) 

and DCT to show the double encryption technique. Najafi et. 

al. [8] proposed a watermarking technique in which the group 

proposed a watermarking algorithm based on sharp frequency 

localized contourlet transform (SELCT) with SVD, which 

proved to solve the false positive problem and is resistant to 

ambiguity attacks. Several people have analyzed different 

matrix decomposition methods like Schur decomposition, 

SVD and LU decomposition. Makbol et. al. [9] demonstrated 

a block-based DWT and SVD image watermarking scheme in 

which they consider entropy as the HVS feature. Over the past 

few years, people have used fractal dimensions. Mishra et. 

al. [10] have proposed a robust and secure watermarking 

architecture based on fractal dimensions using the human 

visual system (HVS) model and Mamdani based Fuzzy 

Interface System (FIS). Over the past few years, several other 

techniques like using semi − blind Human Visual System [11], 

Dual Tree Complex Wavelet Transform − Discrete Cosine 

Transform (DTCWT − DCT) [12] and 2 Dimensional − 
Discrete Cosine Transform (2D − DCT) [13] have been 

introduced and studied. Hosny et. al. [14] have demonstrated 

a fractional order exponent moment watermarking technique. 

Quaternion based techniques have also emerged as a 

promising method in image watermarking [15][16]. To make 

the watermarking more effective and faster, researchers have 

now moved to various machine learning and deep learning 

techniques. Extreme Learning Machine (ELM) which can be 

considered as a special case of neural network with single 

layer feed – forward, has gained enormous interest due to its 

better generalization capability and good payload capability to 

handle large data and is widely used nowadays [17-19]. Ding 

et. al. [20] have recently proposed a generalized deep neural 

network approach used for watermarking. One major 

limitation of the neural network approach is the high 

computational time in case of heavy net with large number of 

hidden neurons and more vulnerability to statistical attacks 

like JPEG compressions [20][21]. Recently a parallel multi-

core CPU and GPU has been proposed targeting medical 

images which shows a promising research trend setup in the 

domain [22]. Several works have also demonstrated extraction 

of watermark coefficient directly from the host image itself 

using different processing tasks [10][23]. 

     From the security perspective, chaotic systems are widely 

used for information encryption as chaotic cryptography over 

the conventional encryption algorithms like data encryption 

standard (DES), advanced encryption standard (AES) etc. 

which are known to have redundancy and correlation problem 

[23-29]. Chaotic signals are the non − linear signals which are 

highly sensitive to the system parameters and initial 

conditions. The random and unpredictable nature of such 

signals meets the requirements such as diffusion and mixing 

hence facilitates them to act as encryption keys. Hu et. al. [24] 

have proposed a blind watermarking algorithm where the 

robustness of the proposed algorithm is tested in the chaotic 

sequence generated by the logistic system. Bhatti et. al. [25] 

had discussed a hybrid watermarking algorithm using Clifford 

algebra and Arnold transform. Due to pseudorandom and 

ergodic properties, the chaotic system is gaining great interest 

among researchers to study data encryption for better security 

against geometric attacks [26-29].  

    Over the past few years, extensive research has been done 

on utilizing mathematical tools and formulating theoretical 

approaches for building an effective digital watermarking 

model. However, there is still a gap when it comes to practical 

implementations which can be summarized as follows:  

• Usage of complex image transformation methods or 

complex encryption algorithms for enhancing the security 

unnecessarily leads to extremely high computational 

complexities and operation cost.  

• During data embedding, it is important to capture the 

features of image in efficient manner while taking care of 

the security. However, previous reported works either use 

a large block sized image or considers a very small portion 

of image which fails to capture the data appropriately; or 

leading to severe data protection and security concerns.  

• While dealing with the DC coefficients, it is necessary to 

handle the high frequency components in order to maintain 

the robustness and imperceptibility.  

• Further, enhancing and optimizing the pre − processing 
steps and improving the masking ability while maintaining 

the payload, computational time and operating cost is one 

of the major focus of the current research trend. 

 

    With this regard, this work proposes a watermarking 

scheme based on Arnold transform, HOG features, HVS and 

ELM. With the low computational complexities of the used 
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algorithms and extreme secure key generations, high 

processing speed, robustness, and security can be guaranteed.  

    The contributions of the presented work can be summarized 

as follows:  

• The proposed architecture exploits block coding and 

computationally efficient algorithms like Arnold 

transform for scrambling which ensures a good robustness.  

• The architecture involves human visual system (HVS), 

Histogram of Oriented Gradients and Extreme Learning 

Machine (ELM) which not only supports the real – life 

implementations but also improves the robustness and 

security. 

• Secure key generation is implemented at various stages:   

(a) Arnold transform; (b) Initial conditions and chaotic 

oscillator coefficients, and (c) Final watermarking 

generation using trained ELM. Incorporating these 

features and as dictated from the metrics has remarkably 

improved the security. 

• A detailed insights on robustness, security, 

imperceptibility, and computational complexities is 

developed using metrics like peak signal to noise ratios, 

structural similarity index, bit error rate, normalized cross 

– correlation for signed images and extracted watermark.  

• Experimental validations for chaotic encryption using 

memristor based chaotic oscillator is presented so as to 

access the performance of the proposed technique on real 

– time chaotic signals.  
 

In this work, a novel digital watermarking architecture is 

presented. The images are first block coded in order to reduce 

the processing load. The blocks are first analyzed by 

calculating the fractal dimensions, which are then scrambled 

using Arnold Transform for encryption. Consequently, the 

HOG features are extracted. The transformed signals were 

passed to the Mamdani FIS system to extract the key indexes 

using which one of the ELM model is trained. The chaotic 

signals generated using Memristors are utilized for training the 

second ELM model. The watermark embedding and 

extraction have been carried out using the weighted mean of 

both the data obtained from models. Finally, the semi – blind  

watermark extraction procedures and performance analysis 

were carried out to comment on the robustness and security of 

the proposed algorithm.  

    The paper is organized as follows: Section II gives 

preliminary information about the algorithms used in the 

architecture. The complete methodology followed in the work 

is summarized in Section III, and Section IV compiles all the 

results and discusses the various features and performance of 

the watermark technique. Finally, the work is concluded in 

Section V.  

II. PRELIMINARIES 

This section provides an essential mathematical background 

of the algorithms used in the proposed architecture and details 

about the experimental setup.  

A. MEMRISTOR & HARDWARE SETUP OF THE 

CHAOTIC SYSTEM 

Memristor, which is popularly known as Chua's diode, is 

considered to be the missing fourth circuit element. It is a 

passive circuit element that behaves like a resistive memory. 

Memristor is a non-linear memory element that found 

compatibility in many applications like oscillators, 

information encryption, memory etc.  In this work, a 

Memristor based chaotic oscillator is constructed based on the 

basic piecewise linear (PWL) (φ − 𝑞) characteristics using 

operational amplifier and off the shelf elements. Figure 1 

shows the experimental setup of the chaotic system, and 

Figure 2 shows the equivalent circuit of Memristor and 

oscillator realized both in hardware setup and simulation setup 

in NI MultiSim [30]. The hardware setup consists of a Chua’s 
Diode realized through general-purpose OPAMPs [31]. The 

diode was realized on a custom perf board for simplicity, and 

its response was validated on Agilent MSO – X 3034A 

through the signals generated by Tektronix AFG 3022B. 

The chaotic signals generations in Chua's circuit are 

governed by the basic set of three nonlinear ordinary 

differential equations (ODE) of state variables and 3 – 

 
 
FIGURE 2. (a) Equivalent Circuit for Memristor realized using op-amp (b) 
Chaotic oscillator realized using memristor. 

  

FIGURE 1. Experimental Setup of the chaotic system consisting of 
oscillator, and OPAMP realization of Chua’s Diode for chaotic signal 
generation.   
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segment piecewise – linear equations as summarized in 

Equation 1.  

                             
𝑑𝑥𝑑𝑦 = 𝛼[𝑦 − 𝑥 − 𝑓(𝑥)]  

𝑅𝐶2 𝑑𝑦𝑑𝑥 = 𝑥 − 𝑦 + 𝑅𝑧 

                                      
𝑑𝑧𝑑𝑡 = −𝛽𝑦                               (1) 

The characteristics of the signals can be controlled using 

the coefficients of ODEs. The Chaotic signals, due to their 

properties of pseudo-randomness and dynamicity, are widely 

used in digital media encryption. The chaotic system’s 
output is similar to white noise with correlation and 

complexity as defined by Equation 2 [32]:  

        𝐶𝑛+1 = µ × 𝐶𝑛 × (1 − 𝐶𝑛)                  (2) 

Here, 0 < µ < 4 and 𝐶𝑛 is the 𝑛th value generated from 

Equation 1. Generally, µ is 3.9 for high randomness. By 

varying the initial conditions using   µ and 𝐶𝑛, and value of 𝑛, the different chaotic signal can be generated, which is 

demonstrated in later sections.  

In this work, four different sets of oscillator’s coefficients { 𝑥1 = 0.01, 0.02, 0.03, 0.04;  𝑥2 = − 0.1, 𝑥3 = − 0.01,𝑥4 = 0.01} and initial conditions are used to understand the 

effect of parameters on the chaos as well on the architecture. 

The initial condition and the coefficient together act as a secret 

– user defined keys. Figure 3 (a) − (d) shows the various 
combinations of chaotic signals generated and studied for the 

above set of parameters. Figure 3(e) − (g) depicts the chaotic 

double scroll attractor pattern obtained for the different 

conditions. These signals so generated are utilized later in 

Section III while training the ELM model II. Also, the unique 

key in the chaotic signal generation is utilized while assessing 

the security concerns in key sensitivity and space analysis in 

Section IV.  

B. FRACTAL DIMENSIONS AND HIGUCHI ALGORITHM 

Fractal dimensions (FD) are the characteristic non − integer 
numbers which are used to characterize features like texture, 

degree of surface coarseness etc., of an image. The fractal 

dimensions of a digital image are relative to the pixel value 

of the image. Considered as a tool to calculate the image’s 
complexity, according to the Mandelbrot's Hausdorff 

dimensions [33], FD can be defined using Equation 2 as 

 𝐴(𝑟) = 𝒜𝑟2−𝐷 

 𝑓 = 𝒜𝐷/𝐶                                  (2) 
 

Where, 𝐴(𝑟) represents the curve surface, 𝓐 denotes the true 

area of the surface, 𝐷 depicts the FD, 𝐶 is the present 

constant, and 𝑓 is a factor to determine FD of the image. The 

advantage of using fractal dimensions is that it becomes 

really infeasible to identify the watermark bits in the cover 

image. There exist various methods of calculating fractal 

dimensions like box-counting, spectral analysis, Katz 

algorithm, Higuchi’s algorithm etc. [34-41]. In this work, 

Higuchi’s algorithm is used to calculate the FD of the image 

blocks [35].  

     Higuchi’s algorithm is a technique which is generally 

used to calculate the fractal dimension, 𝐷 of the time series 

       (a)       (b)        (c)        (d) 

    
          (e)           (f)          (g) 

 
 

  

FIGURE 3. (a)-(d) Five different chaotic signals generated for four different initial configurations and user defined keys (e)-(g) Signal 2,3 and 4 as a 
function of Signal 1 depicting double scroll attractor pattern in the generated chaotic signals.  
 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079319, IEEE Access

 

VOLUME XX, 2021 5 

data. Consider N samples of finite series at regular intervals 

as described in Equation (3): 

 

  𝑋(1), 𝑋(2), 𝑋(3)… , 𝑋(𝑁)       (3) 
    
From this series, 𝑋𝑘𝑚 can be obtained as defined in Equation 

4 as: 

         𝑋𝑘𝑚 = {𝑋(𝑚), 𝑋(𝑚 + 𝑘),… , 𝑋 (𝑚 + [𝑁−𝑚𝑘 ] 𝑘)}       (4)  

 

Where 𝑚 ∈ [1, 𝑘] which denotes the initial time, 𝑘 is the 

interval time and [. ] denotes the Gauss notation. Thus, 𝑘  set 

of new time series is obtained, which defines the FD of the 

original series. Further, the length of each curve associated 

with  𝑋𝑘𝑚 is defined by Equation 5 as:  

 

          𝐿𝑚(𝑘) = (∑ (𝑋(𝑚+𝑖𝑘)−𝑋(𝑚+(𝑖−1)𝑘))[𝑁−𝑚𝑘 ]𝑖=1 )( 𝑁−1[𝑁−𝑚𝑘 ]𝑘)𝑘       (5) 

 

where 
𝑁−1[𝑁−𝑚𝑘 ] is the normalization factor for the curve 𝑋𝑘𝑚. 

According to Higuchi, the average length of the curve 

follows the power law i.e. 〈𝐿(𝑘)〉  ∝   𝑘−𝐷 , and thus the 

curve is fractal with dimensions 𝐷. In the curve of 𝑙𝑛(𝐿(𝑘)) 
versus 𝑙𝑛(1/𝑘), the slope of the least squares linear best fit 

is the estimate of the fractal dimension. 

C. ARNOLD TRANSFORM  

Due to simplicity and periodicity, Arnold Transform is 

widely used in digital image scrambling [42-45].  Image 

scrambling is a method of rearranging the entire pixel array 

of the image, thus resulting in a completely disorganized and 

encrypted image. The transform follows one to one mapping 

and has one significant feature of periodicity, according to 

which the original image after scrambling can be restored 

back after several cycles. The number of permutations 

performed while rearranging is of significant importance as 

it acts as a secret key. This pseudo − random behavior of 

Arnold transform is characteristic and is of utmost 

importance as without knowing the number of cycle or 

sequence used, one cannot decrypt the image [46].  

    Consider a square image of N × N representing a 2 – D 

image, then the transformation of the pixel point (𝑥, 𝑦) of the 

original image to pixel point (𝑥’, 𝑦’) of the encrypted image 

can be represented by Equation 6 as:   

 

             [𝑥′𝑦′] = [1 11 2] [𝑥𝑦]  𝑚𝑜𝑑 (𝑁)      (6) 

 

where 𝑚𝑜𝑑 is the mathematical modular operator. The factor 𝑁 is the image’s size dependent parameter which decides the 
transformation’s periodicity or the period 𝑝. The cover image 

is first scrambled in iterative procedures of 𝑛 cycles, which 

acts as a key in the de – scrambling process, and the 

scrambled image is retrieved using iterative inverse Arnold 

transform for 𝑝 − 𝑛 cycles. The inverse Arnold Transform, 

which can be used to restore back the original image, can be 

represented by Equation 7: 

  

                  [𝑥𝑦] = [ 1 −1−1 2 ] [𝑥′𝑦′] + [𝑁𝑁]𝑚𝑜𝑑 (𝑁)           (7) 

 

Figure 4 depicts the procedure of Arnold transform. It can be 

understood as an iterative process of stretching and shearing, 

and translating back to the square matrix, resulting in an 

invertible matrix that preserves the image features but looks 

distorted. The inverse Arnold transform follows the same 

steps but in reverse order.    

 

 
 
FIGURE 4. Illustration showing scrambling through Arnold Transform.  

D. HUMAN VISUAL SYSTEM MODEL & MAMDANI FIS  

The Human Visual System (HVS) model is one of the widely 

used techniques in image processing for analyzing subjective 

qualities and to improve the imperceptibility of the image. It 

helps strengthen the technique by making the watermark 

adaptive to the original image's features, thus ensuring 

excellent imperceptibility. Literature has reported various 

approaches for calculating the HVS like Barni et. al. [47] has 

proposed three rules of disturbs and sensitivities to texture 

and regions of the image. Delaigle et. al. [48] proposed FFT 

based HVS masking procedural, and Martin et.al. [49] has 

used isotropic contrast function with frequency to spatial 

domain transformation. In the Watson model, three feature: 

luminance, edge and contrast, are considered while defining 

the perpetual quality of the image [50]. The luminance 

sensitivity and edge sensitivity are computed using a 

threshold value, and contrast sensitivity computed using a 

variance.  

 

 
 
FIGURE 5: Block diagram for Mamdani Based Fuzzy Interface System. 
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     In a Mamdani Fuzzy Interface System, the output, which 

is a fuzzy set, is controlled using a linguistic control rules. 

The fuzzy set is derived using the output membership 

function and the implication method of FIS. The multiple 

fuzzy sets so obtained are then combined using the FIS 

aggregation method. Finally, defuzzification is carried out to 

get the final crisp values. A Mamdani type FIS system setup 

in Matlab is depicted in Figure 5. 

E. HISTOGRAM OF ORIENTED GRADIENTS  

 
 
FIGURE 6: Illustration showing Histogram of Oriented Gradients (HOG) 
feature calculations. 

 

The Histogram of oriented gradients (HOG) is used as a 

feature descriptor in image recognition domains where the 

image features are extracted from the edges of the local 

regions of the target image. This characterizes the orientation 

and magnitude values of the pixels in the two-dimensional 

planes. The HOG can be realized using a grid of (2 ×

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠) rose plots spaced uniformly. The rose plot 

depicts the gradient orientation distribution in a HOG cell, and 

in each cell, the contribution of each orientation is depicted by 

the length of each petal.  

    Consider the image shown in Figure 6 with 4 × 4 cells 

constituting a HOG block. The HOG feature extraction 

considers this as m × n block and generates a feature vector 

consisting of HOG blocks arranged in sequential order. Each 

HOG block is represented using a cell histogram which is (1 –  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠) where the number of bins represents 

the dimensions of orientation histogram. The larger the 

number of bins, the better is the orientation details. Figure 5 

illustrates the HOG feature extraction procedure.  

C. EXTREME LEARNING MACHINES 

Extreme Learning Machine (ELM) is a single layer feed − 

forward neural network (SLFN). The ELM works on 

allocating the input weights and hidden layers biases using 

continuous determined probability distribution systems, and 

finally, the output weights are calculated using the Moore − 

Penrose method [51][52]. Consider the training samples (𝑥𝑖 , 𝑦𝑖)𝑖=1,2…𝑁 with 𝑥𝑖 ∈ ℝ𝑛 , 𝑦𝑖 ∈ ℝ𝑚 and N is the number 

of hidden neurons. The output of the single hidden layer feed 

− forward neural network with activation function 𝑔:ℝ → ℝ 

can be modeled using Equation 8:  

 

   ∑ 𝛽𝑘𝑔(〈𝑤𝑘1, 𝑥𝑖〉 + 𝑏𝑘) = 𝑦𝑖  𝑁𝑘=0     ∀ 𝑖 ∈ 1,2…𝑁        (8) 
 

where 𝑤𝑘 = (𝑤𝑘1, 𝑤𝑘2,…𝑤𝑘𝑛) defines the weighting vector 

connecting 𝑘𝑡ℎ hidden neuron to the input node and  𝛽𝑘 =(𝛽𝑘1, 𝛽𝑘2,…𝑤𝑘𝑛) is the weighting factor connecting the 𝑘𝑡ℎ 

hidden neuron to the output node and 𝑏𝑘 is the threshold bias 

of 𝑘𝑡ℎ hidden neuron. The factors 𝑤𝑘 and 𝛽𝑘 are randomly 

selected in accordance with the continuous probability 

distribution function. Thus, Equation 8 can be interpreted as 

Equation 9: 

 
 
FIGURE 7: Flowchart of the proposed watermarking technique. 
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 𝐻𝛽 = 𝑌                                  (9) 

The solutions of Equation 8 can be described using Equation 

10: 
                                    𝛽′ = 𝐻∗𝑌                                  (10) 

where 𝐻∗ is the Moore – Penrose inverse of the hidden – 

layer output matrix 𝐻. 

III. METHODOLOGY 

Figure 7 presents the flowchart of the proposed watermarking 

methodology and is illustrated in detail through Figure 8, 11 

and 12. The simulations are carried using MathWorks 

MATLAB [53]. Four different grayscale host images - Lena, 

Airfield, Peppers and Mandrill were used for watermark 

embedding. The complete drill followed in this work can be 

categorized into three groups: (1) Pre – processing for the 

generation of watermarking sequence, which is covered in 

subsection A – F; (2) Watermark Embedding to obtain the 

final signed image, which is covered in subsection G; and (3) 

Semi – Blind Watermark extraction to retrieve back the 

watermarking coefficients from the signed image which is 

covered in subsection H.   

A. CALCULATIONS OF FRACTAL DIMENSIONS 

At first, the 512 × 512 sized host images is subjected to block 

coding, which generates 1024 blocks of size 16 × 16. Each of 

this block is then featured into their respective unique fractal 

dimensions ([FDi]) using Higuchi’s algorithm and stored in a 
32 × 32 matrix.  

To ensure better security, two-level encryption has been 

introduced in the proposed watermarking scheme, first using 

Arnold transform and second using the chaotic sequence used 

to train the ELM Model 2.  

B. SCRAMBLING USING ARNOLD TRANSFORM  

The 32 × 32 blocks are iteratively passed to the scrambling 

system, and the corresponding periodicity is determined. The 

image’s periodicity is a function of image size and 
dimensions. For the present work, a periodicity of 24 is 

obtained. The fractal matrix can then be scrambled for any 

number or iterations, which then act as the unique key for 

image encryption. The transformed matrix ([FDj]) is 

converted into a vector of size 1024 × 1 using zig – zag scan 

((32 × 32) → (1024 × 1)), which forms the base for all the 

further processing.  

 
C. HUMAN VISUAL SYSTEM AND FUZZY INTERFACE 
The three features − luminosity, edge and contrast terms are 
obtained and stored in [𝐿𝑗], [𝐸𝑗] and [𝐶𝑗] respectively. These 

blocks are then fed to the Mamdani FIS system driven by a 

set of 10 interference rule as proposed by Lou et. al. [50], 

and the 1024 × 1 matrix representing single weighted output 

is obtained. Figure 8 shows the interference process 

illustrating the role of membership functions and weighting 

factors. Figure 9 shows the weighting factor generated as a 

function of the three indices: Luminous, edge and contrast. 

The weighting factors as generated by the FIS system is of 

utmost importance as it is later used as labels or weight for 

 
 
FIGURE 8: Flowchart explaining pre-processing steps for the watermark sequencing. 
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individual elements and is used in the preparation of the 

training data for the neural network.  

 

 
FIGURE 9: Illustration explaining the role of membership functions and 
effect on weighting factors in HVS-FIS. 
 

D. HISTOGRAM OF ORIENTED GRADIENTS 
The image blocks corresponding to the fractal array after zig 

− zag scan is parsed for extracting HOG features. The 

features are extracted using 4 × 4 cells and using 9 bins. 

Since the input is 1024 × 1,  /𝟑𝒓𝒅 of the total size, i.e. 324, 

results in the output of size 1024 × 324. This array is 

concatenated with the weighting factor earlier generated 

using the FIS Mamdani system and is fed into the ELM 

Model 1 for training.  

 E. CHAOTIC SIGNALS GENERATION AND DATA 

PREPARATION 

The chaotic signals generated through Memristor based non 

– linear oscillators are further used for improving the 

robustness of the proposed scheme. The signals are stored in 

a row vector, and a total of 1024 unique signals are 

generated. For each signal, 342 sample points are taken for 

building up the training dataset. The so obtained 1024 × 342 

matrix is modified by concatenating the weighting factor 

matrix generated by FIS, and the final dataset is fed to the 

ELM Model 2 for subsequent training and testing.  

F. EXTREME LEARNING MACHINE MODEL 

In this work, two ELM models are used. One machine is 

trained with the matrix obtained from the HOG feature 

extraction procedure, and the other ELM model is trained with 

 

 
FIGURE 11: Flowchart explaining water embedding methodology.  
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FIGURE 10: Evolution of weighting factor as a function of luminous, edge and contrast terms. 
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the unique sets of chaotic signals. The ELM is a single-layer 

network with 10 hidden neurons, and the sigmoid activation 

function is used. The output of each ELM is a 1024 × 1 vector. 

The two ELM dataset obtained as output are combined using 

the weighted sum method, and the final matrix sequence is 

obtained. The output so obtained is the required watermarked 

sequence (𝑋𝑖).  
 

G. WATERMARK EMBEDDING 

The ELM Model 1 and 2 so trained using HOG features and 

chaotic signals, respectively, were used in weights of 50% to 

generate the final watermarking coefficients denoted by (𝑋𝑖).  
Consequently, for watermark embedding, each block of [𝐹𝐷𝑗] 
is read in order as dictated using zig – zag scan and 

transformed using discrete cosine transform (DCT). The 2D – 

DCT converts the image bock from Spatial to Frequency 

domain that can be categorized into low, mid and high 

frequency bands. The entire block in the frequency domain 

consists of AC coefficients, except at the (0,0) index, which 

corresponds to the DC coefficient. The said DC coefficient for 

all the blocks are extracted for embedding the watermarking 

coefficients. The watermark embedding method used here is 

the one proposed by Cox et. al. [55]. The formula used is 

described in equation 11 as:  

 𝑉𝑖′ = 𝑉𝑖(1 + 𝛿𝑋𝑖)                               (11) 
where 𝑉𝑖 represents the host image coefficient and 𝛿 is the 

scaling factor. The extracted DC coefficient is used as 𝑉𝑖 in the 

above Equation. The modified value of the DC coefficient so 

obtained is used to replace the previous DC coefficients, and 

inverse discrete cosine transform (IDCT) is performed to 

retransform the signal back to the spatial domain. Since 

Arnold Transform was used in the preliminary stages for 

scrambling, inverse zig – zag scan is applied and, the original 

block locations are obtained after subjecting it to the Arnold 

Transform for the remaining iterations. This restores the 

original image. 

 

H. SEMI – BLIND WATERMARK EXTRACTION  
Watermark extraction involves the same set as pre – 

processing tasks and prediction using ELM. The signed image 

and the chaotic signal generated using Chua’s circuit are 
subjected to the same pre – processing tasks described in 

subsection A – F. The HOG features-based dataset and the 

chaotic signal dependent dataset is generated, and the prepared 

data is tested using the trained ELM models. The 1024 × 1 

sized output of the ELM models are added using a sum of 

weighted mean, and finally, the watermark is extracted.  

IV. RESULTS AND DISCUSSION 

The proposed approach discusses a double encryption 

technique for image watermarking. The architecture uses 

several distinguishing features enhancing its robustness, 

imperceptibility and security. Not only this, but the processing 

time is also found to competitive with state − of − the – art 

watermarking techniques.   

Arnold transform used for image scrambling eliminates the 

spatial correlation of image pixel, making the watermarking 

process distinguishably robust. The unique key so generated 

forces a layer of encryption, thus enhances the security. 

Furthermore, the presented approach is based on using index 

features of the image – luminance, edge and contrast, which 

ensures a high level of security and excellent resistance to 

watermarking attacks. Considering the geometric attacks, the 

   
 
FIGURE 10: Evolution of weighting factor as a function of luminous, edge and contrast terms 

 

FIGURE 12: Flowchart explaining the procedure for semi-blind watermarks extraction.  
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proposed scheme has HOG features as one of the base for 

training models as histogram distribution of an image are 

generally invariant under attacks. Considering the need to 

have efficient processing of color images in copyrights, the 

proposed algorithm can also be used for colored images. It is 

due to this feature; the proposed algorithm is reliable and 

applicable to a vast variety of digital media. The second level 

of encryption is based on the chaotic signals, which usually is 

based on using the pseudo − random and dynamic property of 

signals. A chaotic oscillator is developed using Memristor, 

which acts as a chaotic signal generator. Since training is also 

based on these signals, another key is required in order to 

perform proper decryption, which further makes the system 

secure. The results so presented are experimentally validated 

using hardware setup with the simulation deck, which proves 

the proposed technique's possible implementations in real–
time applications.  

    Imperceptibility or invisibility can be related to the 

concealment of digital watermarks. If a watermark can’t be 
visually detected by the human visual system, it is said to be 

imperceptible. Watermark imperceptibility can be evaluated 

using metrics like Peak Signal to Noise Ratio (PSNR), Mean 

Square Error (MSE) and Structural Similarity Index (SSIM). 

The security depicts how much encrypted the process is. If the 

watermark is somehow extracted, it is impossible to embed it 

back to its original form without the encryption key, thus the 

watermark is said to be secure. The watermark's robustness is 

its ability to resist change in the embedded watermark due to 

changes in the watermark carrier data. Watermark robustness 

is generally measured with metrics like Normalized Cross-

Correlation (NC).   

The performance analysis in terms of robustness, security 

and imperceptibility of the proposed architecture is tested on 

digital attack benchmarks. The signed images are applied to 

21 StirMark benchmarks [56], and then the watermark is 

extracted from the attacked images. The performance of the 

technique was assessed using various metrics discussed 

below. 

 

A. STRUCTURAL SIMILARITY INDEX  
The Structural Similarity Index (SSIM) is the quality 

assessment index for measuring the similarity between the 

host image and the watermarked image. Numerically, SSIM 

lies in the range of 0 to 1 with 1 perfect structural similarity 

between two images and 0 being the worst case depicting that 

the two images doesn’t share the similarity. Equation 12 
realizes the SSIM metric as follows:  

 𝑆𝑆𝐼𝑀(𝐼, 𝐼′) = [𝑙(𝐼, 𝐼′)]𝛼 . [𝑐(𝐼, 𝐼′)]𝛽[𝑠(𝐼, 𝐼′)]𝛾       (12) 
 

Where 𝐼(𝑖, 𝑗) denotes the host image, 𝐼′(𝑖, 𝑗) denotes the 

signed image, 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are the exponents for luminance, 

contrasts and structural terms respectively and  𝑙(𝐼, 𝐼′), 𝑐(𝐼, 𝐼′) 
and  𝑠(𝐼, 𝐼′) can be described by Equation 13:  

 

𝑙(𝐼, 𝐼′) = 2𝜇𝐼𝜇𝐼′+𝐶1𝜇𝐼2+𝜇𝐼2+𝐶1    

 𝑐(𝐼, 𝐼′) = 2𝜎𝐼𝜎𝐼′+𝐶2𝜎𝐼2+𝜎𝐼2+𝐶2  
 𝑠(𝐼, 𝐼′) = 𝜎𝐼𝐼′  +𝐶3𝜎𝐼𝜎𝐼′+𝐶3                            (13) 

 

where 𝜇𝐼 and 𝜇𝐼′ are the local means, 𝜎𝐼 and 𝜎𝐼′ are the local 

standard deviation and 𝜎𝐼𝐼′  are the cross − covariance for 
images 𝐼 and 𝐼′.  When 𝛼 = 𝛽 = 𝛾 = 1 and 𝑐3 = 𝑐2/2, the 

SSIM metric simplifies to and is expressed in Equation 14.  

 𝑆𝑆𝐼𝑀(𝐼, 𝐼′) = (2𝜇𝐼𝜇𝐼′+𝐶1)(2𝜎𝐼𝐼′+𝐶2)(𝜇𝐼2+𝜇𝐼′2 +𝐶1)(𝜎𝐼2+𝜎𝐼′2+𝐶2)         (14) 

For a 2D image, the SSIM is generally calculated using a 

sliding Gaussian window or block and is made to traverse the 

image pixel by pixel generating the SSIM quality map. 

Figure 12 depicts the SSIM as a function of the scaling 

factor. As observed from the figure, the SSIM factor for all 

the four images under consideration lies well near 1, 

indicating that the watermarked images are similar and hence 

offers an excellent imperceptibility and invisibility to the 

watermarked image. Table 1 shows the objective metrics for 

different host image with watermark with respect to the 

scaling factor. Near to 1 value of SSIM over the entire range 

of scaling factor point towards the excellent imperceptibility 

achieved.  

 
FIGURE 13: SSIM metric for different images under consideration as a 
function of scaling factor. 

B. NORMALIZED CROSS CORRELATION 

Normalized Cross Correlation (NC) is used to judge the 

image similarity between two images. Since the NC is found 

to be less sensitive to linear change in the amplitude of 

illumination, it is one of the most commonly used metric in 

image processing tasks. Generally confined in the range 

between −1 and 1, the NC provides an edge over cross 

correlation by easing the threshold value selection and in other 

analysis. In this work, the cross – correlation of the watermark 

and signed image both before and after attacks are studied. The 
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former is done to assess the robustness of the semi – blind 

watermarking technique, while the latter is done to assess the 

overall performance of the proposed scheme on the image 

containing the watermarking coefficients. NC metrics can be 

represented using Equation 15: 𝑁𝐶(𝑊,𝑊′) = ∑ ∑ [𝑊(𝑖,𝑗)∗𝑊′(𝑖,𝑗)]𝑛𝑗=1𝑚𝑖=1∑ ∑ [𝑊(𝑖,𝑗)]2𝑛𝑗=1𝑚𝑖=1   

      𝑁𝐶(𝐼, 𝐼′) = ∑ ∑ [𝐼(𝑖,𝑗)∗𝐼′(𝑖,𝑗)]𝑛𝑗=1𝑚𝑖=1∑ ∑ [𝐼(𝑖,𝑗)]2𝑛𝑗=1𝑚𝑖=1                 (15) 

 
where, p and q are the rows and columns of the watermarking 

sequence. 𝑊(𝑖, 𝑗) and 𝑊′(𝑖, 𝑗) are the watermarking 

coefficients of the original and watermarked sequence, 

respectively and  𝐼(𝑖, 𝑗) and 𝐼′(𝑖, 𝑗) denotes the host and the 

signed image respectively. The higher the value of NC, the 

better is the system’s robustness to the vulnerable digital 

attacks. More specifically, a higher value of NC(W,W') 

dictates that the watermark so embedded into the original 

sequence and that extracted using semi – blind extraction 

routine shares a high degree of correlation with the original 

version indicating robustness of the extraction procedure. 

After subjecting the signed image to various attacks, the 

attacked image will lose its correlation with the original 

image, which is evident from the PSNR, NC(I,I’), SSIM, and 
BER values indicated in Table 2. This is done deliberately in 

an attempt to destroy the embedded watermark. However, 

when the watermarking coefficients are extracted from the 

attacked image, the cross – correlation of the watermark i.e. 

NC(W,W’), still remains close to unity, indicating the 

robustness of the proposed scheme. 

 

 

  
 
FIGURE 14: NCC metric for signed image (black) and watermarked image 
(red) under consideration as a function of scaling factor. 

 

Figure 14 shows the NC of the signed and original image. 

As clearly visible, the high values of NC’s for all four images 
prove the robustness of the proposed watermarking technique.  

In the presented scheme, the NC’s value is above 90% in 
almost all cases depicts excellent robustness, and hence the 

resilience of the proposed algorithm. It is because, in the 

proposed scheme, the watermark embedding is carried out by 

modifying the DC coefficients of the adjacent blocks. This 

results in an invariably small change in the pixel domain hence 

leading to a better quality. Moreover, it is worthy to note that 

if AC coefficient from mid – frequency sub – band are chosen 

instead of the DC coefficient, the pixel domain changes can be 

further minimized, and the image quality can be enhanced. 

However, most image processing attacks are directed towards 

the mid – and high – frequency coefficients, which 

significantly deteriorates the watermarking coefficients, 

thereby defeating the main objective of robust image 

watermarking scheme. 

 

C. BIT ERROR RATE 

The bit error rate (BER) represents the number of error bits 

received per unit time. Mathematically, it can be obtained by 

dividing the number of bits that have been altered while 

processing by the total of transferred bits. Mathematically, 

BER can be described using equation 16 as:  

            𝐵𝐸𝑅(𝐼, 𝐼′) = 1𝑚𝑛 [∑ ∑ 𝐼(𝑖, 𝑗) ⊕𝑛𝑗=1𝑚𝑖=1 𝐼′(𝑖, 𝑗)]       (16) 

 

Where 𝐼 and 𝐼′ represent the original and the signed image, 

respectively. Ideally, BER is zero, which shows that the two 

images share a good proportion of resemblance. The various 

BER metrics of the images under consideration are 

summarized in Figure 14. The BER lies well below 0.50 for 

all scaling factors, which proves highly robust for the image 

processing operations and even close to 0 for the small scaling 

factor. Further, it is evident from the figure that as the scaling 

factor's value decreases, the system's robustness is also 

increased as far as the BER is concerned. However, the 

strength of watermarking coefficients gets significantly 

affected and becomes vulnerable to image processing attacks. 

 

D. PEAK SIGNAL TO NOISE RATIO 

Peak Signal to Noise is the ratio of the signal’s maximum 
possible power to the power of corrupting noise signal. PSNR 

is generally expressed in terms of the logarithm of mean 

square error.  𝑀𝑆𝐸(𝐼, 𝐼′) = 1𝑚𝑛 [∑ ∑ [𝐼(𝑖, 𝑗) −𝑛−1𝑗=1𝑚−1𝑖=1 𝐼′(𝑖, 𝑗)]2        (17) 

 𝑃𝑆𝑁𝑅(𝐼, 𝐼′) = 10 𝑙𝑜𝑔10(2𝑣−1𝑀𝑆𝐸 )                                      (18) 

where 𝑣 is the minimum number of bits depicting the 

maximum intensity in a given image, 𝐼(𝑖, 𝑗) and 𝐼′(𝑖, 𝑗) 
denotes the host and the watermarked image, respectively, and 𝑚 and 𝑛 represent the number of rows and columns in the 

original image. The evolution of PSNR as a function of the 
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scaling factor is depicted in Figure 14. An intersection 

between the PSNR and BER curves is used to determine the 

optimum scaling factor (𝛿𝑂𝑝𝑡𝑖𝑚𝑢𝑚) which is later used to 

assess the proposed watermark scheme through StirMark 

attacks. Further, if the intersection point of the PSNR and BER 

is traced, a shift in optimum scaling factor is obtained, 

enabling us to adjust the other parameters to enhance the 

overall system performance. The shift and the values of 

various metric can be related to the random weight allocation 

in the ELM [10]. It is worth mentioning that the ELM training 

and testing time in all the cases are extremely small and lies in 

the range of mili – seconds (70 – 90 msec for 20 iterations) 

which prompts the extremely high computational speed and 

testing time. 

    For watermark embedding procedure, the NC(I,I’) lie close 
to unity, indicating that the signed image still has a high degree 

of correlation with the host image. Under semi blind 

extraction, NC(W,W’) as observed, lies close to unity, 

indicating that the proposed scheme is able to extract the 

watermark, and that the extracted watermarking coefficients 

have a high degree of correlation with the coefficients that 

were embedded in the initial phase. Further, after deliberately 

subjecting the signed images to heavy image processing 

attacks, evident from the seriously degraded PSNR, BER, 

SSIM, and NC(I,I’) values, the extracted watermark still has a 

high degree of correlation with the original watermarking 

coefficients. 

 

 

Table 1: Computed SSIM, PSNR, BER and NC metric as a function of scaling factor (𝛿) 
 

IMAGE: LENA IMAGE: AIRFIELD  

Scaling SSIM(I,I') PSNR BER(I,I') NC(I,I') NC(W,W') Scaling SSIM(I,I') PSNR BER(I,I') NC(I,I') NC(W,W') 

0.05 0.999328 65.28387 0.036629 0.981698 0.994682 0.05 0.999764 63.5187 0.050499 0.979444 0.99622 

0.1 0.997955 59.14479 0.096039 0.98165 0.958774 0.1 0.999198 57.65621 0.124928 0.978305 0.973102 

0.15 0.995981 56.04389 0.138351 0.973252 0.985741 0.15 0.99834 54.19128 0.182003 0.977174 0.990176 

0.2 0.993631 53.66393 0.170708 0.973132 0.985701 0.2 0.99727 51.97557 0.220226 0.976489 0.976068 

0.25 0.990224 51.53457 0.196701 0.973108 0.974542 0.25 0.996034 49.91912 0.255089 0.974388 0.990943 

0.3 0.986785 49.93501 0.214005 0.965197 0.979981 0.3 0.994492 48.28276 0.283337 0.972698 0.983087 

0.35 0.983263 48.7579 0.230629 0.965076 0.985906 0.35 0.992689 46.99864 0.307251 0.971836 0.994036 

0.4 0.979071 47.54181 0.248665 0.956999 0.978981 0.4 0.991309 45.98438 0.323921 0.969789 0.981759 

0.45 0.975014 46.50796 0.263985 0.956599 0.985055 0.45 0.98933 45.00636 0.340172 0.966141 0.975452 

0.5 0.970629 45.58403 0.279602 0.948331 0.993136 0.5 0.986604 43.84746 0.356365 0.961671 0.981975 

0.55 0.966744 44.84779 0.290146 0.948204 0.987827 0.55 0.98512 43.31841 0.362415 0.957495 0.986487 

0.6 0.964679 44.66727 0.294899 0.947791 0.955592 0.6 0.982369 42.35925 0.371441 0.955648 0.981361 

0.65 0.957403 43.39412 0.311218 0.940279 0.988642 0.65 0.979719 41.70847 0.382233 0.95299 0.979242 

0.7 0.952541 42.66457 0.319344 0.939889 0.997524 0.7 0.977757 41.23108 0.386551 0.946277 0.988136 

0.75 0.948202 42.05109 0.325455 0.939808 0.959141 0.75 0.975174 40.57445 0.394634 0.929115 0.990356 

0.8 0.944813 41.65563 0.33168 0.931776 0.979719 0.8 0.972573 40.03375 0.398029 0.917049 0.985677 

0.85 0.939597 40.97029 0.338982 0.923226 0.978955 0.85 0.969424 39.48496 0.40443 0.922522 0.987675 

0.9 0.933649 40.43767 0.34713 0.923221 0.988045 0.9 0.967054 39.06541 0.408562 0.892613 0.97911 

0.95 0.929661 40.05302 0.351585 0.922814 0.991674 0.95 0.964968 38.71499 0.409695 0.890757 0.972787 

1 0.924527 39.55364 0.357666 0.915114 0.994659 1 0.962557 38.37611 0.4119 0.853191 0.957295 

IMAGE: PEPPER  IMAGE: MANDRILL 

Scaling SSIM(I,I') PSNR BER(I,I') NC(I,I') NC(W,W') Scaling SSIM(I,I') PSNR BER(I,I') NC(I,I') NC(W,W') 

0.05 0.999362 64.48765 0.04261 0.981052 0.989643 0.05 0.999943 67.60804 0.022774 0.979446 0.977927 

0.1 0.997795 58.74412 0.10112 0.981052 0.971526 0.1 0.999664 59.47459 0.127434 0.978232 0.995257 

0.15 0.995525 55.40029 0.144318 0.976197 0.984167 0.15 0.999274 56.26978 0.210762 0.980287 0.997608 

0.2 0.992522 52.83352 0.177231 0.976193 0.983405 0.2 0.998742 53.98757 0.262131 0.972306 0.988732 

0.25 0.989278 50.9982 0.204247 0.976152 0.98709 0.25 0.998182 52.34074 0.298889 0.969862 0.986089 

0.3 0.985714 49.54127 0.225899 0.97146 0.995407 0.3 0.99748 50.8346 0.324287 0.964872 0.980703 

0.35 0.981832 48.30797 0.242081 0.971413 0.988358 0.35 0.996535 49.3733 0.3507 0.966997 0.961839 

0.4 0.977482 47.07869 0.259277 0.966678 0.99731 0.4 0.995693 48.33636 0.367294 0.965885 0.970867 

0.45 0.973706 46.1935 0.271194 0.966572 0.984689 0.45 0.994499 47.1766 0.380981 0.977665 0.983578 

0.5 0.969081 45.23497 0.280869 0.96649 0.97686 0.5 0.993616 46.36271 0.390648 0.967068 0.971919 

0.55 0.96355 44.32647 0.298157 0.961805 0.975092 0.55 0.992441 45.64674 0.400566 0.978669 0.955079 

0.6 0.959869 43.71914 0.303299 0.961749 0.9701 0.6 0.990872 44.75621 0.411041 0.952646 0.970331 

0.65 0.954511 43.03996 0.316307 0.961713 0.988062 0.65 0.989391 44.12213 0.416847 0.947627 0.960897 

0.7 0.949803 42.33428 0.323837 0.956986 0.984002 0.7 0.987996 43.4267 0.422462 0.952625 0.96003 

0.75 0.945146 41.75548 0.330841 0.956954 0.993501 0.75 0.986538 42.90274 0.430283 0.944572 0.995528 

0.8 0.941414 41.35166 0.338371 0.956949 0.978633 0.8 0.984965 42.30331 0.435211 0.936181 0.977584 

0.85 0.935252 40.75559 0.346115 0.952202 0.987912 0.85 0.983358 41.81809 0.437599 0.912235 0.980045 

0.9 0.930385 40.33894 0.354378 0.952124 0.997778 0.9 0.982141 41.50226 0.441505 0.907735 0.975702 

0.95 0.924925 39.83766 0.359962 0.952122 0.982115 0.95 0.97999 40.93978 0.447456 0.918014 0.985511 

1 0.920535 39.43099 0.368782 0.947338 0.992456 1 0.977836 40.41583 0.450058 0.91908 0.986692 
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FIGURE 15: PSNR and BER metrics for different images under 
consideration and optimization of the scaling factor. 

 

 

E. PERFORMANCE ANALYSIS UNDER ATTACKS 

Table 3 shows the computational performance of the 

images on StirMark benchmark when signed images are 

subjected to various image processing tasks. Two main cases 

are considered: (1.) Single attack and (2.) Hybrid attacks 

where the image is subjected to more than 1 attack at a time. 

The benchmark so chosen de – synchronizes the algorithm 

using random bilinear geometrical distortion and is one of 

the simplest tools for testing the robustness of the digital 

watermark architecture. Seriously degraded PSNR, SSIM, 

BER, and NC values for the image justify the StirMark 

attacks carried out on the image in a deliberate attempt to 

destroy the watermark and hence are an effective way to 

evaluate the performance of the algorithm [10]. Figure 16 

depicts the hybrid attack. To comment on the robustness in 

severe conditions of digital attack, the signed image is 

subjected to 5 combined attack and the attacked image is 

visualized in Figure 16. The seriously degraded values of 

PSNR, SSIM, BER, and NC(I,I’) demonstrate the intensity 
of image processing attacks so studied to evaluate the 

robustness of the proposed scheme  From the NC(W,W’) 
metrics, only 1.5% degradation is observed in case of image 

resizing which depicts excellence resilience of the technique 

to resizing attacks. In case of cropping and replacing which 

seems to be the worst case amongst all the single attack, the 

maximum degradation of 8.42% in NC(W,W’) is recorded 
with is accompanied with  0.087, 0.250 and 27.16 dB change 

in BER, PSNR and SSIM index. While in case of filtering 

and noise, the algorithm is still able to extract the 

recognizable watermarking coefficients from the attacked 

images. Same can also be concluded from the subjective 

quality of the image as depicted.   

To test the performance under extreme conditions, the 

proposed technique was tested under 5 simultaneous attacks. 

To the best of authors knowledge, a maximum of 2 − 3 

combined attacks have been studied in [2] and there has been 

no work reported which deals with such extreme cases of 5 

attacks covering blurring, filtering and noise operations 

simultaneously. The seriously degraded values of PSNR, 

SSIM, BER, NC(I,I’) justify the worst case image processing 
attacks that were deliberately applied to destroy the 

watermarking coefficients in the singed image. However, a 

high value of NC(W,W’) justifies the robustness of the 
proposed scheme against vulnerable attacks.  To assess other 

traits, SSIM and PSNR have also been studied. SSIM which 

is originally based on image distortion model utilizes 

features like loss of correlation, luminance distortion and 

contrast distortion while the PSNR metrics are based on the 

mean square error are more consistent in studying the effect 

of gaussian noises [57]. However, since a variety of cases 

other than gaussian noise have also been considered, so it 

becomes crucial to understand the evolution of both the 

metrics under various conditions and obtain a tradeoff. In our 

case, the random weight allocation may be the reason to such 

sensitivity in SSIM and PSNR values. Overall, based on 

SSIM and PSNR metrics of image under attack, the visual 

quality of the image is distorted because of which it loses its 

correlation and structural similarities and the objective 

quality is slightly degraded.  While a good value of 

NC(W,W) even after attacks reflects the extraction of 

original watermark is achievable and that the proposed 

scheme is robust and resilient to attacks. 

 

Table 2: Evaluation of Stirmark Attacks on the Signed Images for 

different Host Images.  

 

(a) IMAGE:LENA 

Attacks 
SSIM 

(I,I') 
PSNR 

BER 

(I,I') 

NC  

(I,I') 

NC 

(W,W') 

No Attack 46.50796 0.975014 0.263985 0.956599 0.985055 

Gaussian Blur 

0.5 std dev 
44.7357 0.929786 0.374512 0.766944 0.975721 

Gaussian Blur 

1 std dev 
39.07138 0.69975 0.439423 0.760608 0.981301 

Gaussian Blur 

1.5 std dev 
36.44224 0.576745 0.447742 0.753414 0.981155 

Gaussian Blur 

2 std dev 
34.76434 0.492118 0.451866 0.753277 0.970236 

Resizing 

(512->256->512) 
39.44511 0.703132 0.441662 0.780613 0.980725 
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FIGURE 16: Visualization of (a) Original host (Lena) Image (b) 
Attacked Lena image under hybrid attack (Gaussian Blur 2std dev + 
Median Filter (Aperture 5) + Salt and Pepper (5 % Noise) + Gaussian 
Noise (Var=0.05) + Speckle Noise (Var=0.05)). 

(a) (b)
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Crop and Replace by 

0 (1st Quarter) 
17.99436 0.723865 0.209938 0.667611 0.916334 

Crop and Replace by 

0 (2nd Quarter) 
16.8827 0.724864 0.203987 0.68718 0.959997 

Crop and Replace by 

0 (3rd Quarter) 
19.57468 0.72302 0.176643 0.512134 0.902041 

Crop and Replace by 

0 (4th Quarter) 
16.90798 0.724347 0.197239 0.185562 0.915208 

Crop and Replace by 

255 (1st Quarter) 
17.60123 0.723177 0.455109 0.364769 0.965691 

Crop and Replace by 

255 (2nd Quarter) 
17.98768 0.726073 0.45166 0.773957 0.990717 

Crop and Replace by 

255 (3rd Quarter) 
15.8804 0.722346 0.430199 0.766801 0.966513 

Crop and Replace by 

255 (4th Quarter) 
18.12537 0.72442 0.449089 0.165056 0.986961 

Crop Right Half and 

Replace by 0 
13.89417 0.481912 0.137611 0.011014 0.934375 

Crop Right Half and 

Replace by 255 
15.05882 0.482552 0.640224 0.336588 0.942151 

Crop Left Half and 

Replace by 0 
15.71487 0.477499 0.124802 0.0303 0.932215 

Crop Left Half and 

Replace by 255 
13.65684 0.47763 0.620415 0.02544 0.909443 

Crop Top Half and 

Replace by 0 
14.40665 0.481356 0.148666 0.303795 0.937184 

Crop Top Half and 

Replace by 255 
14.78896 0.481227 0.650696 0.356329 0.956216 

Crop Bottom Half 

and Replace by 0 
15.04208 0.48069 0.114197 0.01146 0.935854 

Crop Bottom Half 

and Replace by 255 
13.85742 0.479558 0.614933 0.335225 0.933472 

Median Filter 

(Aperture 3) 
40.54053 0.687026 0.408997 0.323202 0.901306 

Median Filter 

(Aperture 5) 
37.09303 0.55275 0.429844 0.342411 0.986891 

Salt and Pepper  

(2% Noise) 
28.48008 0.498009 0.270176 0.877821 0.990378 

Salt and Pepper 

 (5% Noise) 
24.46047 0.253429 0.277779 0.85816 0.901752 

Gaussian Noise 

(Var=0.01) 
26.08309 0.201363 0.49342 0.661472 0.964417 

Gaussian Noise 

(Var=0.05) 
19.71037 0.079789 0.497383 0.654308 0.919121 

Speckle Noise 

(Var=0.01) 
31.57855 0.41068 0.475464 0.75034 0.997434 

Speckle Noise 

(Var=0.05) 
24.86664 0.228578 0.489159 0.706485 0.922088 

Rotate 90° 

Anticlockwise 
17.16607 0.107029 0.513157 0.425617 0.977994 

Rotate 180° 

Anticlockwise 
16.82567 0.103229 0.49707 0.49127 0.967727 

Rotate 270° 

Anticlockwise 
17.16682 0.101436 0.481873 0.27259 0.961753 

Gaussian Blur 2std 

dev + Median Filter 

(Aperture 5) + Salt 

and Pepper (5 % 

Noise) + Gaussian 

Noise (Var=0.05) + 

Speckle Noise 

(Var=0.05) 

18.19022 0.028897 0.463955 0.190371 0.868516 

 

 

 

  

(b) IMAGE: AIRFIELD 

Attacks 
SSIM 

(I,I') 
PSNR 

BER 

(I,I') 
NC (I,I') 

NC 

(W,W') 

No Attack 46.99864 0.992689 0.307251 0.971836 0.994036 

Gaussian Blur 

 0.5 std dev 
40.21519 0.941193 0.425785 0.789518 0.989273 

Gaussian Blur  

1 std dev 
32.42935 0.64835 0.455547 0.759776 0.977642 

Gaussian Blur  

1.5 std dev 
30.00568 0.477403 0.460854 0.751798 0.996658 

Gaussian Blur  

2 std dev 
28.58221 0.361408 0.463734 0.757064 0.955167 

Resizing  

(512->256->512) 
32.66961 0.658211 0.454712 0.807615 0.982503 

Crop and Replace by 

0 (1st Quarter) 
18.06318 0.739076 0.217331 0.642429 0.905661 

Crop and Replace by 

0 (2nd Quarter) 
14.68989 0.737749 0.241173 0.669916 0.918845 

Crop and Replace by 

0 (3rd Quarter) 
18.12552 0.739094 0.221333 0.618322 0.91356 

Crop and Replace by 

0 (4th Quarter) 
15.57428 0.737913 0.235321 0.101424 0.962962 

Crop and Replace by 

255 (1st Quarter) 
16.48988 0.739586 0.463032 0.729635 0.901668 

Crop and Replace by 

255 (2nd Quarter) 
22.01176 0.740097 0.482147 0.690327 0.992229 

Crop and Replace by 

255 (3rd Quarter) 
16.82641 0.739256 0.469723 0.710463 0.941931 

Crop and Replace by 

255 (4th Quarter) 
19.2331 0.740843 0.47369 0.145056 0.962049 

Crop Right Half and 

Replace by 0 
12.11178 0.490421 0.167957 0.083865 0.932025 

Crop Right Half and 

Replace by 255 
17.40206 0.49155 0.649887 0.113814 0.958451 

Crop Left Half and 

Replace by 0 
15.09571 0.490928 0.131523 0.690967 0.925136 

Crop Left Half and 

Replace by 255 
13.65379 0.491432 0.628658 0.660544 0.888134 

Crop Top Half and 

Replace by 0 
13.0586 0.490101 0.152805 0.694583 0.935882 

Crop Top Half and 

Replace by 255 
15.42507 0.491112 0.638657 0.659265 0.905156 

Crop Bottom Half 

and Replace by 0 
13.66389 0.489331 0.154182 0.087134 0.940327 

Crop Bottom Half 

and Replace by 255 
14.86717 0.492822 0.636536 0.068593 0.913149 

Median Filter 

(Aperture 3) 
33.49103 0.639618 0.435936 0.120415 0.999819 

Median Filter 

(Aperture 5) 
30.03254 0.437871 0.454655 0.119048 0.984948 

Salt and Pepper  

(2% Noise) 
28.03788 0.680522 0.312439 0.642973 0.984851 

Salt and Pepper  

(5% Noise) 
24.16729 0.446003 0.315498 0.641987 0.982815 

Gaussian Noise 

(Var=0.01) 
26.29173 0.405914 0.476814 0.309781 0.956684 

Gaussian Noise 

(Var=0.05) 
19.96853 0.191405 0.481586 0.218869 0.902811 

Speckle Noise 

(Var=0.01) 
30.57089 0.614661 0.456928 0.569419 0.961548 

Speckle Noise 

(Var=0.05) 
23.9128 0.373482 0.471809 0.775895 0.886692 

Rotate 90° 

Anticlockwise 
15.30807 0.101532 0.512699 0.421124 0.995651 
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Rotate 180° 

Anticlockwise 
14.65399 0.102047 0.497646 0.527501 0.995045 

Rotate 270° 

Anticlockwise 
15.31122 0.101833 0.48103 0.480128 0.957886 

Gaussian Blur 2std 

dev + Median Filter 

(Aperture 5) + Salt 

and Pepper (5 % 

Noise) + Gaussian 

Noise (Var=0.05) + 

Speckle Noise 

(Var=0.05) 

17.77562 0.045185 0.451057 0.134961 0.872051 

 

(c) IMAGE: PEPPER 

Attacks 
SSIM 

(I,I') 
PSNR 

BER 

(I,I') 
NC (I,I') 

NC 

(W,W') 

No Attack 46.1935 0.973706 0.271194 0.966572 0.984689 

Gaussian Blur 0.5 std 

dev 
43.59527 0.902218 0.411102 0.954767 0.992837 

Gaussian Blur 1 std 

dev 
37.98662 0.642255 0.446003 0.947694 1.000017 

Gaussian Blur 1.5 std 

dev 
35.87764 0.54251 0.449184 0.937962 0.986577 

Gaussian Blur 2 std 

dev 
34.40202 0.475947 0.449642 0.927963 0.987919 

Resizing  

(512->256->512) 
37.37498 0.63783 0.452942 0.969443 0.981094 

Crop and Replace by 

0 (1st Quarter) 
18.02933 0.723854 0.202629 0.901575 0.944601 

Crop and Replace by 

0 (2nd Quarter) 
17.03702 0.722264 0.199154 0.915801 0.963796 

Crop and Replace by 

0 (3rd Quarter) 
17.61236 0.722924 0.208836 0.915726 0.934425 

Crop and Replace by 

0 (4th Quarter) 
18.77836 0.722337 0.199913 0.900392 0.933271 

Crop and Replace by 

255 (1st Quarter) 
16.97384 0.723011 0.453835 0.915114 0.975468 

Crop and Replace by 

255 (2nd Quarter) 
17.90226 0.722214 0.45097 0.915239 1.000822 

Crop and Replace by 

255 (3rd Quarter) 
16.77587 0.722541 0.460968 0.901511 0.974543 

Crop and Replace by 

255 (4th Quarter) 
16.22294 0.721318 0.45039 0.929924 0.94844 

Crop Right Half and 

Replace by 0 
14.82174 0.477226 0.12936 0.310157 0.93883 

Crop Right Half and 

Replace by 255 
13.98327 0.477307 0.629692 0.298993 0.925329 

Crop Left Half and 

Replace by 0 
14.81779 0.481239 0.143036 0.161373 0.938528 

Crop Left Half and 

Replace by 255 
13.87392 0.479892 0.641678 0.148206 0.930975 

Crop Top Half and 

Replace by 0 
14.50228 0.480911 0.132965 0.162313 0.943185 

Crop Top Half and 

Replace by 255 
14.41703 0.480956 0.631363 0.149011 0.952007 

Crop Bottom Half 

and Replace by 0 
15.15661 0.478602 0.139301 0.032161 0.936491 

Crop Bottom Half 

and Replace by 255 
13.49122 0.477916 0.640186 0.298936 0.917342 

Median Filter 

(Aperture 3) 
40.23302 0.636505 0.423611 0.904701 0.977683 

Median Filter 

(Aperture 5) 
38.05011 0.532768 0.438004 0.904681 0.990717 

Salt and Pepper  

(2% Noise) 
28.1799 0.506766 0.274563 0.801505 0.962378 

Salt and Pepper  

(5% Noise) 
24.31545 0.261639 0.282997 0.771512 0.976992 

Gaussian Noise 

(Var=0.01) 
26.18434 0.20622 0.491333 0.893283 0.983873 

Gaussian Noise 

(Var=0.05) 
19.82711 0.084706 0.495605 0.728862 0.907096 

Speckle Noise 

(Var=0.01) 
31.64505 0.441033 0.468826 0.757381 0.99272 

Speckle Noise 

(Var=0.05) 
24.91428 0.243569 0.481167 0.669836 0.954434 

Rotate 90° 

Anticlockwise 
16.4794 0.112083 0.50642 0.126578 0.986287 

Rotate 180° 

Anticlockwise 
16.90851 0.120504 0.497471 0.156952 0.99178 

Rotate 270° 

Anticlockwise 
16.47869 0.11164 0.490543 0.283956 0.98075 

Gaussian Blur 2std 

dev + Median Filter 

(Aperture 5) + Salt 

and Pepper (5 % 

Noise) + Gaussian 

Noise (Var=0.05) + 

Speckle Noise 

(Var=0.05) 

18.22476 0.033351 0.464767 0.307428 0.850535 

 

(d) IMAGE: MANDRILL 

Attacks 
SSIM 

(I,I’) PSNR 
BER 

(I,I') 
NC (I,I') 

NC 

(W,W') 

No Attack 50.8346 0.99748 0.324287 0.964872 0.980703 

Gaussian Blur  

0.5 std dev 
37.79769 0.949584 0.451973 0.652473 0.991784 

Gaussian Blur  

1 std dev 
29.87719 0.632381 0.483749 0.783224 0.976952 

Gaussian Blur  

1.5 std dev 
28.14575 0.430244 0.489082 0.843479 0.97433 

Gaussian Blur  

2 std dev 
27.33262 0.307486 0.490646 0.88074 0.987898 

Resizing  

(512->256->512) 
29.6846 0.640205 0.482456 0.873878 0.967229 

Crop and Replace by 

0 (1st Quarter) 
17.97788 0.742716 0.240761 0.819321 0.934412 

Crop and Replace by 

0 (2nd Quarter) 
17.29128 0.742393 0.24218 0.847154 0.978103 

Crop and Replace by 

0 (3rd Quarter) 
17.09279 0.741396 0.251293 0.851018 0.984276 

Crop and Replace by 

0 (4th Quarter) 
17.79154 0.740594 0.252766 0.842445 0.984986 

Crop and Replace by 

255 (1st Quarter) 
17.15238 0.743205 0.489601 0.786474 0.92147 

Crop and Replace by 

255 (2nd Quarter) 
17.94106 0.74141 0.49268 0.839919 0.97482 

Crop and Replace by 

255 (3rd Quarter) 
18.22283 0.741894 0.502693 0.838879 0.988169 

Crop and Replace by 

255 (4th Quarter) 
17.6576 0.740444 0.502743 0.800531 0.955298 

Crop Right Half and 

Replace by 0 
14.53374 0.492056 0.166252 0.255322 0.94631 

Crop Right Half and 

Replace by 255 
14.79622 0.490637 0.664871 0.363466 0.983404 

Crop Left Half and 

Replace by 0 
14.51201 0.492763 0.163612 0.296784 0.937844 

Crop Left Half and 

Replace by 255 
14.65437 0.493842 0.662651 0.296105 0.995125 

Crop Top Half and 

Replace by 0 
14.61918 0.49343 0.15242 0.266478 0.934161 
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Crop Top Half and 

Replace by 255 
14.5288 0.493426 0.653595 0.296544 0.980978 

Crop Bottom Half 

and Replace by 0 
14.42756 0.491552 0.173676 0.220073 0.941885 

Crop Bottom Half 

and Replace by 255 
14.92921 0.491721 0.672848 0.559735 0.996536 

Median Filter 

(Aperture 3) 
29.78747 0.641115 0.448967 0.780235 0.978819 

Median Filter 

(Aperture 5) 
27.37619 0.350543 0.470036 0.79391 0.996561 

Salt and Pepper  

(2% Noise) 
28.56558 0.731682 0.317188 0.771794 0.949707 

Salt and Pepper  

(5% Noise) 
24.59975 0.518284 0.335457 0.755571 0.937836 

Gaussian Noise 

(Var=0.01) 
26.09482 0.503124 0.492325 0.681406 0.964656 

Gaussian Noise 

(Var=0.05) 
19.59942 0.237642 0.496025 0.561678 0.995004 

Speckle Noise 

(Var=0.01) 
31.44182 0.714189 0.480965 0.828966 0.985137 

Speckle Noise 

(Var=0.05) 
24.56973 0.47168 0.491634 0.811121 0.879708 

Rotate 90° 

Anticlockwise 
18.87803 0.105965 0.505821 0.61348 0.99931 

Rotate 180° 

Anticlockwise 
18.89277 0.105194 0.497177 0.698274 0.932344 

Rotate 270° 

Anticlockwise 
18.87788 0.100886 0.488358 0.393969 0.993063 

Gaussian Blur 2std 

dev + Median Filter 

(Aperture 5) + Salt 

and Pepper (5 % 

Noise) + Gaussian 

Noise (Var=0.05) + 

Speckle Noise 

(Var=0.05) 

17.64072 0.025453 0.467468 0.796696 0.83836 

 

F. COMPUTATIONAL TIME ANALYSIS 

The evolution of PSNR, SSIM, BER, and NC metrics over 20 

iterations has been depicted in Fig. 17. It is to be noted that the 

real – time performance of the proposed scheme is ensured by 

adopting a fast single layer feed – forward neural network 

(SLFN) called the ELM, which relies on random weight 

allocation in the ELM Model [10][51][52] which gives 

training and testing time spans for the trained models within 

70 – 90 msec range. It is due to the random weight allocation, 

that the PSNR, SSIM, BER, and NC metrics so presented will 

vary with each iteration. However, it is to be noted that the 

variation in each metric is small, and in some iterations, 

outperform all the metrics when compared with the published 

literature, already summarized in Table 3. Further, since 

Memristors are not available yet as a commercial product, the 

OP – Amp realization of the Chua’s diode, will demonstrate 
slight variations in the Chaotic Signals, which will depend on 

both the slew rate of the OP – Amp ICs and the tolerance of 

the circuit components so used for realizing the memristive 

oscillators.  

Figure 17 depicts the evolution of different performance 

metrics for the different host images so considered in this 

work. Also presented is the computational time complexity for 

the embedding and semi – blind extraction procedures. From 

the analysis, it can be seen that embedding time spans over few 

seconds and semi − blind extraction routine which involves 

the entire routine depicted in Figure 12, including the 

generation of chaotic dataset spans within a few seconds. This 

lies in the expected range as previously reported in the 

literature [59][60]. As far as the payload is concerned, since 

the proposed scheme relies on the watermark sequence and not 

on the embedded image, a better payload capability can be 

inferred.  

 

G. SECURITY CONCERNS 

In order to test the security concerns, the scheme is tested in a 

number of false conditions. Table 3 summarizes the results of 

the key space and key sensitivity analysis performed on the 

Lena Image. In the complete method, three main keys enforces 

the security. First during the scrambling using Arnold 

transform which decides the Arnold’s periodicity. As 
depicting in case 6, a mismatch in the Arnold’s key greatly 
reduces the NC metric of the watermark to the value of 0.1964 

which demonstrates inaccurate extraction of the watermarking 

coefficients. The initial conditions and the coefficients of the 

  

  

  

  

 
FIGURE 17: Evolution of different performance metrics for the various 
host images over a set of 20 iterations. Also presented is the 
computational time analysis for embedding and semi – blind extraction 
procedures. 
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memristive based chaotic oscillator acts as a second key. On 

varying theses secure keys, again a large degradation in the 

NC(W,W’) metric is observed, which depicts the security of 

the proposed scheme. The third secure is generated during the 

final watermark generation using the trained data of the two 

ELM models. Table 3 discusses the four cases of weights 

mismatch from which it can be concluded that the random 

weight allocation in the ELM too enforces a high degree of 

security. It is worth mentioning that, these cases have been 

studied separately here. In actual scenario, all these will 

combine and further strengthen the key sensitivity of the 

proposed scheme.     

 

Table 3: Security testing on the Lena Image for Scaling 

Factor = 0.45 with PSNR = 46.50, SSIM = 0.97, BER = 0.26 

and NC = 0.95 

Sl No. Cases 
NC 

(W,W') 

1 Watermark Weights Mismatch [α1 = 0.0, α2=1.0] 0.2784 

2 Watermark Weights Mismatch [α1 = 1.0, α2=0.0] 0.2696 

3 Watermark Weights Mismatch [α1 = 0.2, α2=0.8] 0.2675 

4 Watermark Weights Mismatch [α1 = 0.8, α2=0.2] 0.2719 

5 

Mismatch in Circuit Components used for  

Memristive Oscillators 

[𝑅 = 2kΩ, 𝐶1 = 68nF, 𝐶2 = 6.8nF] 

0.2697 

6 

Mismatch in Initial Conditions used to Model 

Memristive Oscillators 

[Reversed initial conditions (𝑖𝑐𝑛) i.e. 𝑖𝑐1024, 𝑖𝑐1023 ... 𝑖𝑐2, 𝑖𝑐1] 

0.1603 

7 
Incorrect Key used for Descrambling the Fractal Array 

[Arnold's Descrambling Key = 15] 
0.1964 

 

H. COMPARISON WITH PUBLISHED LITERATURE 

The watermarking scheme proposed in this work based on 

Memristive Chaotic signals is compared with some state − of 

− the − art techniques. A comparison is presented in Table 4, 

which compares the NC values of the watermark after 

subjecting the signed images to StirMark attacks. Table 5 

compares the PSNR and SSIM metric before subjecting the 

image to processing attacks, with various recent works. It is to 

be noted that the comparison with published literature is done 

ensuring similar host images and similar dimensions. All the 

references consider a host image of size 512 × 512. From 

Table 5 and 6, it can be concluded that the presented technique 

offers competitive performance in terms of robustness and 

imperceptibility in comparison to the semi – blind 

watermarking techniques published in literature. The table 

further establishes the superiority of the proposed technique in 

comparison to the state − of − the − art algorithms. 
 

 

 

 

 

 

 

Table 4: Comparison of NC(W,W’) in presence of image 
processing attacks with state − of − the − art techniques. 

Comparison is drawn considering similar host images with 

dimensions 512 × 512. 
Attack 

Host Image: Lena 

Ref. [8] Ref. [10] Ref. [17] This 

Work 

Gaussian Blur - 0.970 - 0.981 

Resizing 0.975 0.980 0.997 0.981 

Crop & 

Replace 

0.920 0.890 - 0.960 

Median Filter 0.969 0.970 0.918 0.987 

Salt & Pepper 0.956 0.950 - 0.990 

Gaussian Noise 0.921 0.950 0.983 0.981 

Speckle 0.899 0.960 - 0.997 

 Host Image: Peppers 

Ref. [11] Ref. [10] Ref. [17] This 

Work 

Gaussian Blur - 0.980 - 1.000 

Resizing - 0.980 0.989 0.982 

Crop & 

Replace 

0.940 0.950 - 1.000 

Median Filter 0.890 0.990 0.911 0.999 

Salt & Pepper 0.860 0.960 - 0.977 

Gaussian Noise 0.940 0.960 0.980 0.984 

Speckle - 0.970 - 0.992 

 

Table 5: Comparison of PSNR and SSIM in absence of 

image processing attacks with state − of − the − art 
techniques 

(a) PSNR 

Image Ref. [8] Ref. [10] Ref. [17] 
This 

Work 

Leena 44.320 54.260 45.433 46.508 

Airfield - - - 46.999 

Peppers - 53.060 45.154 46.193 

Mandrill - 54.560 32.492 50.835 

(b) SSIM 

Image Ref. [8] Ref. [10] Ref. [17] 
This 

Work 

Leena 0.960 0.990 0.994 0.975 

Airfield - - - 0.993 

Peppers - 0.990 0.983 0.974 

Mandrill - 0.990 0.961 0.997 

V. CONCLUSION AND FUTURE SCOPE 

In this work, a novel secure and robust digital image 

watermarking technique is proposed. Double encryption is 

implemented using Arnold transform and Memristive chaotic 

signals. The proposed embedding technique is based on fractal 

dimensions extracted using Higuchi’s algorithm, which is 
scrambled using Arnold transform. The unique key is stored 

for embedding and extraction procedures. To establish 

experimental validations, the chaotic signals were generated 

using Memristor based chaotic oscillator. The proposed 

scheme incorporates two ELM models trained using HOG 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3079319, IEEE Access

 

VOLUME XX, 2021 18 

features and chaotic signals, and the output was combined 

using a sum of weighted averages. Semi – Blind Watermark 

embedding and extraction were followed, and an in-depth 

analysis using various figure of metrics were carried out. From 

the results presented, the proposed technique is proved to be 

robust and secure and establishes its significance in various 

applications.  
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