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Robust and Secure Image Hashing
Ashwin Swaminathan, Student Member, IEEE, Yinian Mao, Student Member, IEEE, and Min Wu, Member, IEEE

Abstract— Image hash functions find extensive applications
in content authentication, database search, and watermarking.
This paper develops a new algorithm for generating an im-
age hash based on Fourier transform features and controlled
randomization. We formulate the robustness of image hashing
as a hypothesis testing problem and evaluate the performance
under various image processing operations. We show that the
proposed hash function is resilient to content-preserving modi-
fications, such as moderate geometric and filtering distortions.
We introduce a general framework to study and evaluate the
security of image hashing systems. Under this new framework,
we model the hash values as random variables and quantify its
uncertainty in terms of differential entropy. Using this security
framework, we analyze the security of the proposed schemes
and several existing representative methods for image hashing.
We then examine the security versus robustness trade-off and
show that the proposed hashing methods can provide excellent
security and robustness.

Index Terms— Differential entropy, image authentication, im-
age hashing, multimedia security.

I. INTRODUCTION

In the information era, increasing availability of multimedia

data in digital form has led to a tremendous growth of tools

to manipulate digital multimedia. To ensure trustworthiness,

multimedia authentication techniques have emerged to verify

content integrity and prevent forgery [1], [2]. Traditionally

data integrity issues are addressed by cryptographic hashes

or message authentication functions, which are key-dependent

and sensitive to every bit of the input message. As a result,

the message integrity can be validated when every bit of

the message is unchanged [3]. While this sensitivity usually

meets the need to authenticate text messages, the definition of

authenticity for multimedia is not as straightforward. Multi-

media data can allow for lossy representations with graceful

degradation. The information carried by media data is mostly

retained even when the multimedia has undergone moderate

levels of filtering, geometric distortion, or noise corruption.

Therefore bit-by-bit verification is no longer a suitable way to

authenticate multimedia data and a media authentication tool

that validates the content is more desired.

Manuscript received May 31, 2005; revised February 20, 2006. This work
was supported in part by the U.S. Office of Naval Research under Young
Investigator Award N00014-05-10634 and by the U.S. National Science
Foundation under CAREER Award CCR-0133704. Preliminary results of this
work were presented in IEEE International Workshop on Multimedia Signal
Processing, Siena, Italy, 2004 [14] and in IEEE International Conference
on Acoustics, Speech, and Signal Processing, Philadelphia, 2005 [15]. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Thomas Johansson.

The authors are with the Department of Electrical and Computer En-
gineering and the Institute of Advanced Computing Studies, University of
Maryland, College Park, MD 20742, USA (email: ashwins@eng.umd.edu;
ymao@eng.umd.edu; minwu@eng.umd.edu).

Digital Object Identifier 10.1109/TIFS.2006.873601

Fig. 1. Hash functions for Image Authentication

A number of media-specific hash functions have been

proposed for multimedia authentication [4]–[7]. A multimedia

hash is a content-based digital signature of the media data. To

generate a multimedia hash, a secret key is used to extract

certain features from the data. These features are further

processed to form the hash. The hash is transmitted along with

the media either by appending or embedding it to the primary

media data. At the receiver side, the authenticator uses the

same key to generate the hash values, which are compared

to the ones transmitted along with the data for verifying its

authenticity. This process is illustrated in Fig. 1.

In addition to content authentication, multimedia hashes are

used in content based retrieval from databases [8]. To search

for multimedia content, naı̈ve methods such as sample-by-

sample comparisons are computationally inefficient. Moreover,

these methods compare the lowest level of content repre-

sentation and do not offer robustness in such situations as

geometric distortions. Robust image hash functions can be

used to address this problem [4]. A hash is computed for every

data entry in the database and stored with the original data in

the form of a look-up table. To search for a given query in the

database, its hash is computed and compared with the hashes

in the look-up table. The data entry corresponding to the

closest match, in terms of certain hash-domain distance that

often accounts for content similarity, is then fetched. Since the

hash has much smaller size with respect to the original media,

matching the hash values is computationally more efficient.

Image hash functions have also been used in applications

involving image and video watermarking. In non-oblivious

image watermarking, the need for the original image in

watermark extraction can be substituted by using hash as side

information [1], [9], [10]. The hash functions have also been

used as image-dependent keys for watermarking [11], [22].

In video watermarking, it has been shown that adversaries

can employ “collusion attacks” to devise simple statistical

measures to estimate the watermark if they have the access

to multiple copies of similar frames [12]. A solution to this
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problem is to use secure, content-dependent hash values as a

key to generate the watermark [13].

There are two important design criteria for image hash

functions, namely, robustness and security [4], [13]–[15].

By robustness, we mean that when the same key is used,

perceptually similar images should produce similar hashes.

Here, the similarity of hashes is measured in terms of some

distance metric, such as the Euclidean or Hamming distance.

In this work, we consider two images to be similar if one

image can be obtained from the other through a set of

content-preserving manipulations. This set of manipulations

includes moderate levels of additive noise, JPEG compres-

sion, geometric distortions (such as the common rotation,

scaling, and translation operations, or more generally affine

transformations), cropping, filtering operations (such as spatial

averaging and median filtering), and watermark embedding.

The security of image hash functions is introduced by

incorporating a secret key in generating the hash. Without the

knowledge of the key, the hash values should not be easily

forged or estimated. Additionally, some design criteria for

generic data hash also applies to image hash functions, namely,

the one-way and collision-free properties. A hash is one-way if

given a hash h and a hash function g(·), it is computationally

expensive to find an image I such that h = g(I). Collision-

free property refers to the fact that given an image I and a

hash function g(·), it is computationally hard to find a second

image Î such that g(I) = g(Î). Although some generic data

hash functions such as MD5 satisfy these criteria [3], they

are highly dependent on every bit (or pixel) of the input data

rather than on the content. Hence, most of the them are not

suitable for the emerging multimedia applications and the need

for building robust and secure image hash is paramount.

In this paper, we introduce a new method to construct

robust and secure image hash functions. Our proposed method

is based on the rotation invariance of the Fourier-Mellin

transform and controlled randomization during image feature

extraction. We show that the proposed scheme is robust to

geometric distortions, filtering operations, and various content-

preserving manipulations. We then present a new framework to

study the security aspects of existing image hashing schemes.

We propose to evaluate the security from an information

theoretic perspective by measuring the amount of randomness

in the hash vector using the differential entropy as a metric.

We show that the suggested security evaluation framework

is generic and can be used to analyze and compare the

security of several classes of image hashing algorithms. We

derive analytical expressions of security using an entropy-

based metric for several representative image hashing schemes

and demonstrate that the proposed hashing algorithm is more

secure in terms of this metric. Finally, we use the proposed

security metric to discuss the trade-offs between robustness

and security that is exhibited in most existing image hashing

algorithms.

The rest of the paper is organized as follows. In Section II,

we introduce the general framework for image hashing. We

then present the proposed image hashing scheme and compare

its performance with several existing schemes in Section III.

Fig. 2. The three-step framework for generating a hash

We evaluate the security for a number image hashing schemes

in Section IV. Finally, the discussions and concluding remarks

are provided in Sections V and VI.

II. GENERAL FRAMEWORK AND PRIOR ART

To achieve robustness and security in image hashing, most

of the existing schemes follow a three-step framework to

generate a hash. As shown in Fig. 2, these three steps include

1) Generating a key-dependent feature vector from the

image,

2) Quantizing the feature vector, and

3) Compressing the quantized vector.

The most challenging part of this framework has been the

feature extraction stage [4], [16], [17]. A typical approach

is to extract image features that is invariant to allowed

content-preserving image processing operations [13], [18],

[19], [22], [23]. These features are then used to generate the

hash values. Some of the features that have been proposed

in the literature include block-based histograms [24]–[26],

image edge information [27], relative magnitudes of the DCT

coefficients [28], and the scale interaction model with the

Mexican-Hat wavelets [29]. However, since these features are

publicly known, using such features alone makes the scheme

susceptible to forgery attacks [13], even when the final hash

is obtained by encrypting these features [28], [29]. This is

because the attacker may create a new image with different

visual content, while still preserving the feature values. As the

resulting hash will be the same, such hashing approaches may

lead to mis-classifications in database applications, and would

also be vulnerable to counterfeiting attacks in authentication

applications. Therefore, the security mechanism should be

combined into the feature extraction stage.

By jointly considering security and robustness, Fridrich et

al. propose to generate image hash by projecting an input

image onto zero-mean random smooth patterns, generated

using a secret key [13]. While the resulting hash is resilient

to filtering operations, it does not perform very well for

geometric distortions and is not collision-free as shown in [30].

In [4], Venkatesan et al. use the principal values calculated

from the wavelet transform of the image blocks to generate a

feature vector invariant to general gray scale operations. The

resulting features are then randomly quantized and compressed

to produce the final hash [5]. Recently, it has been shown that

this scheme does not perform well for some manipulations

such as contrast changes, gamma correction [31]. An iterative

key-dependent image hash based on repeated thresholding

and spatial filtering was proposed in [16]. All these algo-

rithms [4], [13], [16] described above perform well under

additive noise and common filtering operations, but not un-

der desynchronization and geometric distortions. Considering

these disadvantages, the Radon soft hash algorithm (RASH)
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based on the properties of the Radon transform was proposed

in [17], [19]. Recently, other transform domain features have

been employed for perceptual hashing. Features obtained from

the singular value decomposition (SVD) of pseudo-randomly

chosen regions of the image [20] and Randlet transform

coefficients [21] have been shown to have good robustness

properties especially for rotation and cropping attacks.

To enable fast comparison and searches, it is usually pre-

ferred that the final hash be a short sequence of bits rather than

a set of real numbers. Therefore, the output of the feature

extraction stage is usually quantized, converted to binary

representation, and further compressed. Uniform, Lloyd-Max,

or key-dependent randomized quantizers have been used for

hash quantization [4], [5]; and the decoding stages of error

correcting codes have been used for compressing the quantized

hash [4], [5], [33]. These methods reduce the length of the hash

vector; yet preserving the Hamming distance. Some works also

secure the compression stage by performing a key-dependent

random selection from the quantized hash values [5], [18].

Since the feature extraction stage is the most important stage

in the general image hashing framework, we will investigate

the feature extraction stage in greater detail in this paper.

We design a randomized hashing scheme and examine its

performance in terms of robustness and security.

III. IMAGE HASHING ALGORITHMS BASED ON POLAR

FOURIER TRANSFORM

In this section, we present the proposed image hashing

algorithm. Our proposed scheme is based on the Fourier-

Mellin transform, which has been shown to be invariant to

2D affine transformations [22], [34]–[36]. We incorporate key-

dependent randomization into the Fourier transform outputs to

form secure and robust image hash.

A. Underlying Robustness Principle of the Proposed Algo-

rithm

Consider an image i(x, y) and its 2D Fourier transform

I(fx, fy), where fx and fy are the normalized spatial fre-

quencies in the range [0, 1]. We denote a rotated, scaled and

translated version of the i(x, y) as i′(x, y). We can relate them

as

i′(x, y) = i(σ(xcosα+ysinα)−x0, σ(−xsinα+ycosα)−y0),
(1)

where the rotation, scaling, and translation (RST) parameters

are α, σ, and (x0, y0) respectively. The magnitude of the 2D

Fourier transform of i′(x, y) can be written as

|I ′(fx, fy)| = |σ|−2|I(σ−1(fxcosα + fysinα),

σ−1(−fxsinα + fycosα))|. (2)

Consider now a polar coordinate representation in the Fourier

transform domain, i.e. fx = ρcosθ and fy = ρsinθ, where

ρ ∈ [0, 1] is the normalized radius and θ ∈ [0, 2π) is the angle

parameter. The (2) can be written using polar co-ordinates as

|I ′(ρ, θ)| = |σ|−2|I(ρσ−1, θ − α)|. (3)

In (3), we observe that the magnitude of the Fourier transform

is independent of the translational parameters (x0, y0). Ob-

serving that a rotation in image domain leads to a rotation by

the same amount in the Fourier transform domain, we integrate

the transform magnitude |I ′(ρ, θ)| along a circle centered at

zero frequency with a fixed radius ρ to obtain

h(ρ) =

∫ 2π

0

|I ′(ρ, θ)|dθ

≈
∫ 2π

0

|I(ρ, θ − α)|dθ ≈
∫ 2π

0

|I(ρ, θ)|dθ. (4)

These properties of the Fourier transform enable us to

construct robust features. In the next subsection, we present

the detail steps of the proposed algorithms.

B. Basic Steps of the Proposed Algorithms

The basic steps of the proposed algorithm include prepro-

cessing, feature generation, and post processing.

1) Preprocessing: We first apply a low-pass filter on the

input image and downsample it. We then perform his-

togram equalization on the down-sampled image to get

i(x, y). We take a Fourier transform on the preprocessed

image to obtain I(fx, fy). The Fourier transform output

is converted into polar co-ordinates to arrive at I ′(ρ, θ)
as in (3).

2) Feature generation: We sum up I ′(ρ, θ) along the θ-axis

at K equidistant points in the range of [0, 2π), i.e. for

θ ∈ { π
K

, 3π
K

, . . . ,
(2K−1)π

K
}, to obtain an image feature

vector hρ. K = 360 is used in our implementation. Since

the feature hρ is only dependent on the image content,

we propose two randomization methods to obtain key-

dependent features using hρ:

• Scheme 1:

We obtain |I ′(ρ, θ)| as in (3) and compute a

weighted sum along the θ-axis to obtain the jth

hash value:

hj =

K−1
∑

i=0

βρj ,i

∣

∣

∣

∣

I ′
(

ρj ,
(2i + 1)π

K

)∣

∣

∣

∣

, (5)

where {βρj ,i} are key-dependent pseudo-random

numbers that are normally distributed with mean m

and variance σ2.

• Scheme 2:

We first use a secret key to generate random sets

of radii {Γj}. We then take |I ′(ρ, θ)| obtained in

(3) and do a summation along the θ-axis for each

radii in this set. A random linear combination of the

resulting summations gives the jth hash value. This

can be represented as

hj =
∑

ρ∈Γj

βρ

K−1
∑

i=0

∣

∣

∣

∣

I ′
(

ρ,
(2i + 1)π

K

)∣

∣

∣

∣

, (6)

where βρ are key-dependent pseudo-random num-

bers that are normally distributed with mean m and

variance σ2. This method is illustrated in Fig. 3.
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Fig. 3. 2-D Fourier Transform of the Lena image. The jth hash value−hj ,
is obtained by a random weighted summation along the circumference of
chosen radii ρ ∈ Γj in Scheme−2. Some of the constant radii circles used
in the summation are displayed in the figure. The magnitude of the Fourier
transform is shown in the log-scale and has been appropriately scaled for
display purposes.

3) Post processing: We quantize the resulting statistics

vector and apply Gray coding to obtain the binary hash

sequence [37]. This bit sequence is then passed through

the decoding stage of a order-3 Reed-Muller decoder

for compression [5]. This step may also be replaced

with the Wyner-Ziv encoder [32], [38]. Furthermore,

we can enhance the security of the hash by making

the quantization and compression stages key-dependent.

For example, randomized quantization algorithms may

be used to quantize the hash [5]; for the compression

stage, we can randomly select the hash values from

the quantized hash vector [16] or randomly choose the

order of the Reed-Muller decoder used for different sub-

sections of the hash. These techniques would further

enhance the security of the resultant hash vector. Finally,

the compressed hash is randomly permuted according to

a permutation table generated using the key.

C. Performance Study and Comparison

1) Performance Metrics and Experiment Setup: To measure

the performance of image hashing, we choose the Hamming

distance between the binary hashes, normalized with respect

to the length (L) of the hash as a performance metric. The

normalized Hamming distance is defined as

d(h1, h2) =
1

L

L
∑

k=1

|h1(k) − h2(k)|, (7)

which is expected to be close to 0 for similar images and

close to 0.5 for dissimilar ones. As more parts of a picture

is changed, the manipulated image and the original image

become more dissimilar. For an ideal hashing scheme, the

normalized Hamming distance between the corresponding

hashes should increase accordingly.

We test the proposed schemes on a database of around

157,200 images. In this database, there are 1200 original grey

scale images each of size 512 × 512. This includes around

50 classic benchmark images (such as Lena, Baboon, Pepper,

etc.), and a variety of scenery and human activity photos

taken by digital cameras. These camera photos were cropped,

TABLE I

SET OF CONTENT-PRESERVING MANIPULATIONS

Manipulation Operation Parameters of the Operation Number
of Images

Additive Noise

Gaussian distributed Variance 0-0.2 10
Uniform distributed Variance 0-0.5 10

Filtering Operations

Spatial Averaging Filter order 2-6 5
Median Filter Filter order 2-11 10
Wiener Filter Filter order 2-11 10
Sharpening Filter order 3-11 5

Geometric Distortions

Rotation Degrees 1-20 20
Scaling Percentage 0.5-1.5 10
Cropping Percentage 1-30 10
Shearing Percentage 1-10 10
Random deletion of lines Percentage 1-20 10

Luminance Non-Linearities

Gamma correction Iγ , γ ∈ [0.75-1.25] 10

JPEG compression Compression Ratio 10-99 10

Total 130

TABLE II

HASH LENGTHS FOR VARIOUS HASHING SCHEMES

Hashing Method used Hash Length

Mihçak’s Algorithm B [16] 1000
Venkatesan’s scheme [4] 805
Fridrich’s scheme [13] 420

Proposed Scheme 1 420
Proposed Scheme 2 420

converted to grey scale, and downsampled to 512 × 512.

For each original image in this set, we generate 130 similar

versions by manipulating the original image according to a

set of content-preserving operations listed in Table I. We

measure the normalized Hamming distance between the hashes

of the original image and the manipulated images. The results

obtained for the proposed schemes are compared with three

representative existing schemes by Fridrich et al. [13], by

Venkatesan et al. [4], and by Mihçak et al. [16]. These three

schemes are chosen because they adopt different ways to

extract the robust image feature as well as different methods

to randomize these features. We also consider the normalized

Hamming distance between the hashes of dissimilar images,

which indicates the discriminative capability of the hashing

algorithm. We note that the computed hashes of all these

schemes are short in length. For a 512 × 512 image, the hash

lengths are on the order of a few hundred bits, as shown in

Table II.

2) Experimental Results on Robustness of the Hash:

To examine the robustness properties, we consider the per-

formance of various hashing schemes to different content-

preserving manipulations such as moderate RST, filtering,

and image compression1. We show the comparison results in

terms of normalized Hamming distance in Fig. 4−Fig. 8. Our

results indicate that the proposed schemes perform well under

1In all the experiments, we use our implementation of the hashing methods
[4], [13], [16] for the comparison study. Whenever possible, we verified the
performance results with the ones reported in the paper. In all cases, the
parameters of the hashing algorithms were chosen so as to maintain similar
values for the security metric in order to facilitate a fair comparison. Refer
Section IV for details on the security metric.
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Fig. 4. Performance of various hashing schemes under desynchronization attacks. To generate a point on the curve, the input image was first rotated (or
sheared) to give a larger image padded appropriately with zeros. This image was then cropped to exclude the zeros and resized to a pre-determined canonical
size. The hash of the resulting image was computed and the normalized Hamming distance from the hash of original image is shown in the Y -axis.
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Fig. 5. Performance of various hashing schemes under (a) bending and (b) cropping. Cropped images were obtained by retaining the central portion of the
image and removing the boundaries. The cropped image is resized to a pre-determined canonical size before computing the hash.
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Fig. 6. Performance of various hashing schemes under additive noise. The noisy images were artificially generated by adding uniform/Gaussian distributed
noise of different variances to the original image.

desynchronization distortions. The performance for rotation

and shearing distortions, averaged over the 1200 images,

are shown in Fig. 4. In the case of rotation distortions, we

observe that the Hamming distance between the quantized

feature vectors of the proposed schemes is smaller than

those of the existing schemes, especially for large rotation

angle. This is expected since the summation along the θ-

axis reduces the effects of rotation. We can also observe

that scheme−2 gives better results than scheme−1, in terms

of the normalized Hamming distance. This is attributed to
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Fig. 7. Performance of various hashing schemes under filtering.
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Fig. 8. Performance of various hashing schemes under JPEG compression.

the fact that performing a weighted sum along the θ-axis

as in the proposed scheme−1 no longer preserves rotation

invariance. The proposed algorithms also achieve comparable

performance with most existing algorithms under shearing

distortions. The performance results for random bending [39]

and cropping are shown in Fig. 5(a) and (b) respectively. We

observe that the proposed schemes perform very well for both

these distortions. This is because the magnitude of the low

frequency coefficients of the Fourier transform that contribute

to the hash does not change much under moderate bending

and cropping.

We show the performance of the hash algorithms under

additive noise in Fig. 6. We observe from the figure that

the proposed scheme−2 does well compared to the proposed

scheme−1 and other existing schemes. We further note that

the normalized Hamming distance between the hashes of the

noisy image and the original image is very small and on the

order of 0.02. This performance is attributed to the low pass

filtering in the preprocessing step of the hash generation. The

results for filtering and JPEG compression are shown in Fig. 7

and Fig. 8. We observe that the performance of the proposed

schemes under these distortions is comparable to the existing

schemes.

3) The Discriminative Capability of Hash: Since image

hash should be able to distinguish malicious manipulations

from content-preserving ones, its performance in differentiat-

ing images with different contents is an important performance

aspect. For images with different contents, an ideal hash

algorithm should produce two statistically independent binary

hash vectors, where half of the hash bits are expected to be

the distinct and the other half the same. This would result in a

normalized Hamming distance of around 0.5. Our experiments

with a set of 1200 different images indicate that the mean

of normalized Hamming distance of the resulting 719,400

combinations was around 0.48. To further demonstrate the

performance of the proposed scheme to inauthentic modifica-

tions, we consider the following cut-and-paste image editing

as shown in Fig. 9, where a new image (c) is created by

combining approximately equal parts from image (a) and

(b). An ideal image hashing scheme should classify (c) as

inauthentic. We perform this test on 500 images and list

the normalized Hamming distance between the obtained hash

vectors for different algorithms in Table III. We can see from

the table that the proposed schemes find the image (c) to have

large distances from (a) and (b), and thus correctly declare it

inauthentic; on the other hand, the existing algorithms suggest

a smaller distance and have lower reliability to distinguish (c)

from (a) and (b).

4) Image Authentication as a Hypothesis Testing Problem:

Generally speaking, the problem of image authentication can

be considered as a hypothesis testing problem with the fol-

lowing two hypotheses

• H0: Image is not authentic; and

• H1: Image is authentic.

Now, we examine the robustness and discriminative capabil-

ities of various hashing schemes in terms of the Receiver

Operating Characteristics (ROC) [40], [41]. The ROC curve

characterizes the receiver’s performance by classifying the

received signal into one of the hypothesis states. For each

original image, we compute and store the hash values, which

we denote as h1. Given the received image, we find its hash

value h2 and declare it to be authentic if the normalized

Hamming distance between the hashes satisfies d(h1, h2) < η
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(a) (b) (c)

Fig. 9. An example of inauthentic manipulations obtained by combining parts of multiple images. (a) and (b) are two original 512 × 512 images. Image
(c) is obtained by combining parts of image (a) and (b).

TABLE III

PERFORMANCE OF THE ALGORITHM FOR DISSIMILAR IMAGES UNDER THE

TYPE OF MANIPULATION SHOWN IN FIG. 9. HERE, dAB DENOTES THE

DISTANCE BETWEEN IMAGES (A) AND (B).

Hashing Method used dAB dAC dBC

Mihçak’s Algorithm B [16] 0.50 0.20 0.28
Venkatesan’s scheme [4] 0.37 0.15 0.31
Fridrich’s scheme [13] 0.41 0.26 0.34

Proposed Scheme 1 0.49 0.28 0.37
Proposed Scheme 2 0.48 0.32 0.39

where η is a decision threshold. Based on ground truth, we

record the number that are correctly classified as authentic to

give us an estimate of the probability of correct detection (PD).

For a given η, we also record the number of processed versions

of other images that are falsely classified as original image

and obtain an estimate of the probability of false alarm (PF ).

We repeat this process for different decision thresholds η, and

arrive at the ROC. The ROC obtained from the experiments

using 1200 different images is shown in Fig. 10. We can

observe from the ROC curves that the proposed schemes attain

a PD = 0.95 when the PF is 0.05, while the other schemes

attain the same PD when PF is close to 0.15. Hence, the

proposed scheme has a higher probability of correct detection

for a given probability of false alarm and hence achieves a

better performance. This further demonstrates the advantages

of the proposed hashing schemes over the existing schemes.

IV. SECURITY ANALYSIS

In addition to robustness, another important performance

aspect of image hashing is security, i.e. the hash values should

not be easily forged or estimated without the knowledge of

the secret key. In this section, we introduce a framework to

evaluate and compare the security of image hashing schemes.

We propose to use differential entropy as a metric to study the

security of randomized image features and derive analytical

expressions of the proposed metric for some representative

classes of image hashing algorithms. Further extensions of the

proposed framework and other possible approaches to study

security are described later in Section V-C.

A. The Proposed Security Evaluation Framework

We propose to evaluate the security of image hashing

schemes from an adversary view point. The adversary knows

the hashing algorithm g(·) and the image I , and tries to esti-

mate the hash values without the knowledge of the secret key.

The degree of success that can be attained by the adversary

depends on the amount of randomness in the hash values.

The higher the amount of randomness in the hash values, the

tougher it would be to estimate or duplicate the hash without

knowing the key. In the subsequent discussions, we shall focus

on the security of the output of the feature extraction stage.

Since the quantization and the compression stages are chained

with feature extraction stage, once the entropy of this stage is

obtained, the entropy measure for the following stages can be

obtained subsequently.

We start the discussion by reviewing the definition of dif-

ferential entropy [42]. The differential entropy of a continuous

random variable X is denoted by ℵ(X) and given by

ℵ(X) =

∫

Ω

f(x) log2

(

1

f(x)

)

dx (8)

where f(x) is the probability density function of X and Ω is

the range of support of f(x). In most image hashing schemes,

the output of the feature extraction stage consists of two

components – a deterministic part and a random part. The

deterministic part is contributed by the image content, which

we will consider to be known or can be well approximated

from the test version of the image that the attacker can acquire.

The random part is contributed by the pseudo-random numbers

generated using the secret key. In our analysis, we model

the output of the feature extraction stage as random variables

and find the degree of uncertainty in terms of the differential

entropy to arrive at the security metric [15]. In the following

sections, we present the security analysis for our proposed

scheme, and compare it with the results obtained for a number

of representative prior works on image hashing [4], [13], [16].

B. Analytic Expressions of the Security Metric for the Pro-

posed Schemes

In this part, we derive analytic expressions of the security

metric for the proposed schemes. In the proposed scheme−1,

the randomness in the hash is introduced by the variables

{βρk,i}, which are key-dependent pseudo-random numbers,

normally distributed with mean m and variance σ2. The final

hash can be considered as a weighted summation of these

Gaussian distributed random variables as shown in (5), where
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Fig. 10. The Receiver Operating Characteristics of the hypothesis testing problem. The plots display the probability of correct decision (PD) with respect
to the probability of false alarm (PF ). A greater the value of PD for the same PF indicates more robustness. The original curve is shown on the left and
the magnified version is shown on the right.

the weights of the summation are determined by the image

content and known to the users. Since the sum of Gaussian

random variables is also Gaussian, the hash value hk will be

Gaussian distributed with mean and variance given by

E(hk) = m

K−1
∑

i=0

∣

∣

∣

∣

I ′
(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

, (9)

V ar(hk) = σ2
K−1
∑

i=0

∣

∣

∣

∣

I ′
(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

2

. (10)

Therefore, the differential entropy of the feature extraction

stage for the proposed scheme−1 can be written as

ℵ(hk) =
1

2
log2

(

(2πe)σ2
K−1
∑

i=0

∣

∣

∣

∣

I ′
(

ρk,
(2i + 1)π

K

)∣

∣

∣

∣

2
)

.

(11)

We observe that the differential entropy increases as the

variance σ2 becomes large and the scheme becomes more

secure as expected. Additionally, we note that the differential

entropy rises as the number of sample points K is increased.

This is also expected since a higher value of K implies that we

involve more random numbers for generating each hash value

as shown in (5); and hence the hash would be more difficult

to forge.

Next, we derive the security metric for the proposed

scheme−2. In this scheme, we use the secret key to generate

random sets of radii {Γk}, and the weights (βρ) for the

summation in (6). To facilitate discussions, we define qρ as

the summation of the polar Fourier transform coefficients at

the radius ρ given by

qρ =

K−1
∑

i=0

∣

∣

∣

∣

I ′
(

ρ,
(2i + 1)π

K

)∣

∣

∣

∣

. (12)

The ρ values chosen for generating the hash are from Γρ =
{ρ1, ρ2, . . . , ρN}. Let λik be Bernoulli distributed random

variables such that P (λik = 0) = P (λik = 1) = 0.5. We

rewrite (6) in terms of qρ and λik to obtain

hk =

N
∑

i=1

λikβikqρi
. (13)

We observe that each hash value obtained is a weighted

summation of N terms and each of these terms is a product

of a Bernoulli and a Gaussian distributed random variable.

Therefore, the hash value hk is not Gaussian. To find the

differential entropy of hk, we first find the probability density

function (pdf) of hk using the (13) and then use the pdf to find

the entropy. To derive the pdf, we compute the characteristic

function of hk and apply its inverse Fourier transform [43]. It

can be shown that the pdf, fhk
(x), has a rather complicated

form with 2N terms and is given by

fhk
(x) =

1

2N
δ(x) +

1

2N

1√
2π

N
∑

i=1

e
−

(x−mqρi
)2

2σ2q2
ρi

+
1

2N

1√
2π

N
∑

i1=1

N
∑

i2=1

i2 6=i1

e
−

(x−m(qρi1
+qρi2

))2

2σ2(q2
ρi1

+q2
ρi2

)

+
1

2N

1√
2π

N
∑

i1,i2,i3=1

i1 6=i2 6=i3

e
−

(x−m(qρi1
+qρi2

+qρi3
))2

2σ2(q2
ρi1

+q2
ρi2

+q2
ρi3

)

+ . . . +
1

2N

1√
2π

e
−

(x−m
∑N

i=1 qρi
)2

2σ2(
∑N

i=1
q2
ρi

)
, (14)

where δ(·) denotes the dirac delta function. We observe that

the pdf of hk is a sum of many Gaussian pdf’s and finding

the exact expression for the differential entropy by integrating

(8) would not be feasible. We instead find the lower and

upper bounds of the differential entropy. Using the concavity

property of the entropy, we arrive at a lower bound for the
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Fig. 11. The entropy of the hash values for the proposed scheme−2 plotted with respect to the number of sampling points N. The plots show the lower
bound, the upper bound and the actual value. The actual plot is shown on the left and the magnified version is shown on the right.

differential entropy

ℵ(hk) ≥ 1

2N

N
∑

i=1

1

2
log2(2πeσ2q2

ρi
)

+
1

2N

N
∑

i1=1

N
∑

i2=1

i1 6=i2

1

2
log2(2πeσ2(q2

ρi1
+ q2

ρi2
))

+

N
∑

i1,i2,i3=1

i1 6=i2 6=i3

log2(2πeσ2(q2
ρi1

+ q2
ρi2

+ q2
ρi3

))

2N+1

+ . . . +
1

2N+1
log2

(

2πe

N
∑

i=1

σ2q2
ρi

)

. (15)

This lower bound can be simplified using the following energy

compaction property of the Fourier transform. Without any

loss of generality, we assume that the radii are ordered as

ρ1 < ρ2 < ρ3 < . . . < ρN . Now, since qρi
is the summation

of the absolute values of the Fourier transform coefficients

along the circumference of the circle of radius ρi, we have

qρ1
≥ qρ2

≥ . . . ≥ qρN
(16)

for most natural images. Using this inequality, (15) can be

simplified to give a compact lower bound

ℵ(hk) ≥ 2N − 1

2N+1
log2(2πe σ2q2

N ) +
1

2N

N
∑

i=1

(

N
i

)

log2(i).

(17)

Next, to derive the upper bound, we use the fact that the

Gaussian distribution has the maximum differential entropy

among all distributions with the same variance. Moreover, the

differential entropy of a Gaussian distributed random variable

depends only on its variance. Therefore, we obtain an upper

bound on ℵ(hk) by finding variance of the hash values hk,

from the pdf. in (14), to arrive at

ℵ(hk) ≤ 1

2
log2



(2πe)

(

σ2

2
+

m2

4

) N
∑

j=1

q2
ρj



 . (18)

In Fig. 11, we show the derived lower and upper bounds

along with the actual value, for different number of sampling

points (N ). The true values were obtained by numerically

computing the differential entropy from the pdf. of the hash

values. We observe that the upper bound plotted using (18)

is very tight and is almost equal to the actual value. This is

because the true pdf. of the hash values is close to Gaussian

with the same mean and variance as those used in the upper

bound calculation.

C. Extending the Security Evaluation to Other Image Hashing

Schemes

In this subsection, we show that the proposed security metric

can be extended to study the security of various classes of

image hashing schemes and is thus generally applicable. For

our study, we consider two representative methods, namely, the

scheme by Fridrich et al. [13] and the hashing algorithm by

Venkatesan et al. [4]. These schemes were chosen as they have

very different approaches to introduce randomness in the fea-

ture extraction stage. For instance, the Fridrich’s scheme [13]

secures the hash by projecting the image onto random low-pass

images; and the Venkatesan’s scheme [4] introduces security

by extracting image features from randomly chosen regions of

the image.

1) Security of Fridrich’s scheme [13]: This scheme is based

on the observation that any significant change made in the

transform domain would be reflected as visible changes in

the image domain. Key-dependent pseudo-random patterns

{X(r)}, of the same size of the image, are initially generated.

These patterns are then spatially averaged with a m× n low-

pass filter {αij} to generate zero-mean smoothened random

patterns [Y (r)]kl. The rth hash value hr is obtained by

projecting the input image on to Y (r), as given by

hr =

H
∑

k=1

W
∑

l=1

Y
(r)
kl Ikl. (19)

To analyze the security of this scheme, we consider the hash

values {hr} as random variables and find their distributions.
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Using this estimated pdf, we compute the differential entropy

as

ℵ(hr) ≈
1

2
log2

(

2πe
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq

)

. (20)

Here, I(αα) is the image obtained by filtering I twice with

the filter {αij}. The details of the analysis is presented in

Appendix A.

Fig. 12 shows the plot of the differential entropy of the

Fridrich’s scheme for different orders of averaging filter. We

observe from the plot that the differential entropy decreases

as the order of the filter is increased. This result is expected

because on increasing the order of the averaging filter, the

degree of uncertainty in the smoothened patterns {Y (r)}
decreases, as the original random images {X(r)} are low-pass

filtered to a greater extent. Thus, the amount of randomness

of the final hash values reduce as a consequence.

2) Security of Venkatesan’s Scheme [4]: In this scheme,

the authors first perform a 3-level DWT of the image and

then a random tiling of each DWT sub-band of the image

is generated. The mean (or variance) of the pixel values in

the random rectangle is used to form the feature vectors [4].

These features are then randomly quantized and compressed

to generate the hash.

There are two aspects of security in this scheme. To estimate

the hash values, the adversary has to first find the locations

and sizes of the random partitions and compute the image

statistics in these partitions. Then, the adversary needs to

arrange the estimated hash values in the correct order to obtain

the hash vector. In our analysis, we consider these two aspects

separately and obtain the differential entropy in each case.

We first show that the exact size and location of the random

partitions is not required to estimate the hash. The attacker can

instead make an intelligent guess of the image statistics by

replacing the random partitions with uniformly spaced, equal

sized partitions. In [4], the width of the random partition is

uniform in [wmin, wmax], where wmin and wmax are the min-

imum and maximum widths of the random block. Therefore,

a good estimate of the partition width would be its expected

value Ew =
(

wmin+wmax

2

)

. Similarly, the height is uniform

in the range [hmin, hmax] and its expected value is Eh =
(

hmin+hmax

2

)

. The attacker can calculate the image statistics

using uniform size partitions of the size Ew × Eh to obtain

an estimate for the hash values. In Fig. 13, we plot the actual

hash values, our estimates and the corresponding difference

(i.e. the estimation error). Here, the estimates are obtained

by computing the statistics from the closest uniform spaced

partition. We note that the error has a much lower dynamic

range than the actual value even though the location and size

of the estimated partitions are not exactly the same as those

used in hash generation. The amount of randomness in the

hash values can be characterized by the degree of uncertainty

in our estimation. Therefore, the differential entropy of the first

aspect of security, h(1), can be numerically obtained by first

finding the pdf of the estimation error and then computing

the entropy from the pdf For the Lena image, h(1) can be

numerically computed to be around 5.74. We also note that

h(1) only characterizes one aspect of randomness in the hash

values. Therefore, the actual differential entropy of the hash

values ℵ(hk) would be greater than h(1).

The second aspect of the hash security that we consider

here is the randomness associated with the order in which

the individual hash values are concatenated together while

creating the hash vector. Here, we compare the true hash

vectors generated using the randomized block partitions and

the ones estimated using uniform partitions and assume that

both these hash vectors are obtained using a raster-scan order

of the partitioning blocks. It is to be noted that any further per-

mutation of the hash can be factored into the post-processing

stage which we shall not consider here as indicated before. A

good uniform partition that emulates the randomized partition

can be obtained as follows. We model the two-dimensional

randomized partitioning as a combination of first partitioning

the input image along the vertical direction into rows and then

further partitioning each row into blocks. Let M denote the

number of rows and Ni denote the number of partitions in the

ith row. We can show that the expected value of M and Ni

are

E(M) =
2H

hmin + hmax

,

E(Ni) = E(N) =
2W

wmin + wmax

∀ 1 ≤ i ≤ M. (21)

The derivation is presented in Appendix B.

Since, we use a uniform partition to approximate the

randomized partition, there will be synchronization errors in

each row of the estimated partition. Let us now denote the

amount of synchronization errors in the nth row by Yn. The

synchronization error is cumulative and can be written as

Yn =

n
∑

i=1

(Ni − mN ). (22)

In order to facilitate combining the security analysis of the

synchronization error with the differential entropy h(1) derived

for first security aspect, we provide a continuous approxima-

tion of Yn and bound its maximum amount of uncertainty.
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Fig. 13. Security analysis results for Venkatesan’s scheme. (a) The plot of the actual and the estimated image statistics vector in the first stage of the
hashing scheme along with their differences; for the Lena image with wmin = 10, wmax = 40, and W = 512. (b) The entropy obtained by modeling the
synchronization errors plotted for different parameter values of wmax and wmin with W = H = 512, wmin = hmin, and wmax = hmax.

We note that among all continuous random variables with the

same variance, the Gaussian distribution has the maximum

differential entropy; and that the differential entropy is com-

pletely specified by the determinant of its correlation matrix.

So we construct a M × M correlation matrix RY for the set

of random variables {Y1, Y2, . . . , YM},

RY (i, j) = E(YiYj) = min(i, j)σ2
N . (23)

Here, σ2
N denotes the variance of Ni and can be computed

from its probability mass function (pmf) given in (38) of

Appendix B. It can be shown that |RY | = σ2M
N . Therefore,

using the Gaussian upper bound, the differential entropy of

the stage (h(2)) considering the synchronization errors alone

is given by

h(2) ≤ 1

2
log2(2πeσ2

N ) +
1

2mM

log2

(

1 +
1

12σ2
N

)

. (24)

In Fig. 13, we show the plot of the upper bound as given

by the RHS of (24) for different values of wmin and wmax.

We observe that the upper bound heavily depends on the

value of the variance σ2
N . For very small wmax, we have

σ2
N → 0 and therefore h(2) → −∞, suggesting that the

hashing algorithm becomes insecure for low σ2
N . This result

is expected because when wmax ≈ wmin, the window widths

and locations become approximately deterministic and the

errors caused by synchronization are small.

Overall, when an attacker replaces the random partitions by

uniformly spaced partitions to estimate the hash values, the

two aspects of security will both contribute to the uncertainty

of the hash algorithm. Thus, the final differential entropy can

be approximated by (h(1) + h(2)).

The above analysis method can be generalized and extended

to other hashing schemes alike. For example, analysis can be

applied to the hashing scheme by Mihçak et al. [16], which

also introduces security by the choice of random regions in

the image.

D. Comparison Results

In this subsection, we compare the security of image hash-

ing schemes in terms of the differential entropy as a metric.

We compute the differential entropy of the hash values on

the Lena image for various schemes and present the results in

Table IV.

The differential entropy of the proposed scheme−1 lies in

the range 8.2−15.6. This is due to the fact that each hash value

in the scheme−1 has different amount of randomness based

on the radius on which the summation in (5) is performed. If

the corresponding Fourier transform coefficients have a higher

magnitude, then the variance of the hash values would be

larger. Thus some of the hash values can be estimated easily,

while it might be difficult to estimate some others. This can

be considered as one of the disadvantages of the proposed

scheme−1. The disadvantage is overcome in the proposed

scheme−2 because the summation is done over randomly cho-

sen subsets and thus all the hash values would have a similar

amount of randomness. We note that the differential entropy

of the feature extraction stage of the proposed scheme−2 is

higher than that of the scheme−1. This is expected because

in the proposed scheme−2, the random weights are scaled by

larger factors and thus the overall variance of the hash values

would be higher

Next, we observe that the differential entropy of the pro-

posed scheme−2 is greater than that of Fridrich’s scheme.

This can be attributed to the low-pass filtering operations in

Fridrich’s scheme that reduces the variance of the random

variables and hence its entropy. The differential entropy of

Venkatesan’s scheme is lower than those of proposed schemes.

This is because, even without the knowledge of the exact block

partitions, the image statistics in Venkatesan’s scheme can be

estimated to reasonable accuracy. On the other hand, in the

proposed schemes, the attackers need to guess the random

variables in computing features (such as βik).

Notice that we only consider the security of the feature

extraction stage in this work. It should be noted that while

random permutation or other techniques alike can be applied to
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TABLE IV

COMPARISON OF DIFFERENTIAL ENTROPY OF VARIOUS HASHING SCHEMES SHOWN FOR THREE DIFFERENT IMAGES

Hashing Algorithm Differential Entropy
Lena Baboon Peppers

Proposed Scheme−1 8.2 − 15.6 13.58 − 16.18 8.76 − 15.46
Proposed Scheme−2 16.28 16.39 16.18

Fridrich’s scheme [13] 8.31 8.32 8.14
Venkatesan’s scheme [4] 5.74 − 11.48 5.96 − 11.70 5.65 − 11.39
Mihçak’s Algorithm B [16] 8 8 8

8.285 8.29 8.295 8.3 8.305 8.31 8.315
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Fig. 14. Robustness and Security trade-off for the Lena image for (a) Fridrich’s scheme (b) Proposed scheme−2

any scheme to bring further randomness, such post-processing

does not change the relative security results obtained in this

work. If the type of quantization and/or quantization step

size employed by various schemes are not identical, the gap

between the security metric for these schemes may change and

can be further analyzed.

V. DISCUSSIONS

A. Trade-off Between Robustness and Security

In this section, we jointly consider the two main perfor-

mance criteria for image hashing, namely, robustness and

security. We observe a trade-off between the two criteria for

each hashing scheme and illustrate this phenomenon with

some examples.

In Fig. 14(a), we show the trade-off between robustness

and security for the Fridrich’s scheme [13]. The scheme was

simulated for different orders of averaging filter; and the

ROC and the differential entropy was obtained in each case.

The ROC was sampled to obtain the probabilities of correct

decisions PD for three different probabilities of false alarm

PF , and plotted with respect to the differential entropy. We

observe that as the robustness increases, the scheme becomes

less secure and vice-versa. This trend is expected because

on increasing the order of the averaging filters, the patterns

Y (r) become more smooth making the scheme more robust

to content-preserving manipulations like the ones in Table I.

However, the scheme becomes less secure because the smooth

patterns Y (r) would be less random.

Similar behavior can also be observed for the proposed

scheme−2. The performance of the scheme was studied for

different parameter values; and the ROC and the differen-

tial entropy were obtained in each case. As shown in the

Fig. 14(b), we observe that for a fixed PF , as we increase the

variance of the random weights βik, the differential entropy

increases and the robustness decreases. However, it is to

be noted that proposed scheme exhibits a better trade-off

compared to Fridrich’s scheme. This is evident by comparing

the X-axis of Fig. 14(a) and (b). We observe that proposed

scheme−2 is more secure than the Fridrich’s scheme for the

same amount of robustness. This demonstrates the advantages

of the proposed scheme.

The robustness results in Fig. 10 and the differential entropy

values in Table IV show that the proposed scheme−2 pro-

vides better tradeoff between robustness and security against

guessing than the proposed scheme−1. This is attributed to the

fact that the circular summation along the θ-axis in proposed

scheme−2 can generate more robust features. In the mean

time, we also remark that the circular summation is a double-

edged sword and may reduce the resilience against collision

and forgery attacks. It is possible for malicious attackers to

perform meaningful changes by altering individual values of

the Fourier transform coefficients while preserving the overall

sum. In contrast, the proposed scheme−1 is more resilient

to such collision attacks, as the weights of the summation

are random and depend on a secret key unknown to ad-

versaries. A possible improvement is to employ a weighted

circular summation with gradually changing weights, where

the varying trend of the weights is specified by a secret

key. This hybrid scheme can combine the advantages of the

two proposed schemes, improving the collision resistance

compared to scheme−2 and also the robustness compared to

scheme−1.
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B. Extending the Security Analysis to Quantization Algorithms

We have shown that the differential entropy can be used as

a metric to study the security of the feature extraction stage in

image hashing. In this section, we extend the security analysis

beyond the feature extraction stage and show that entropy can

be used as a metric to study the degree of security of the

quantization stage that follows feature extraction.

As an example, we consider the randomized quantization

algorithm proposed in [5], which is an adaptive quantization

algorithm that takes into account the distribution of the input

data. The quantization bins [∆i−1, ∆i] are designed so that
∫ ∆i

∆i−1
pX(x)dx = 1

Q
, where Q is the number of quantization

levels and pX(·) is the pdf of the input data X . The central

points {Ci} are defined so as to make
∫ Ci

∆i−1
pX(x)dx =

∫ ∆i

Ci
pX(x)dx = 1

2Q
; and the randomization interval [Ai, Bi]

are chosen such that
∫ ∆i

Ai
pX(x)dx =

∫ Bi

∆i
pX(x)dx = r

Q
,

where r ≤ 1
2 is a randomization parameter. The overall

quantization method can be expressed as

q(x) =























i − 1 w.p. 1 if Ci ≤ x ≤ Ai,

i − 1 w.p.
(

Q
2r

∫ Bi

x
pX(t)dt

)

if Ai ≤ x ≤ Bi,

i w.p.
(

Q
2r

∫ x

Ai
pX(t)dt

)

if Ai ≤ x ≤ Bi,

i w.p. 1 if Bi ≤ x ≤ Ci+1.
(25)

We again use the conditional entropy ℵ(hk|I) as a security

metric. Based on the detailed derivation in Appendix C, we

can show that

H(q(X)|X) = r log2(e), (26)

which quantifies the amount of randomness introduced by the

randomized quantization. We note that the conditional entropy

is directly proportional on the randomization parameter r, and

is independent of the source distribution. Other quantization

algorithms can be analyzed similarly using conditional entropy

as a metric.

C. Further Discussions on Hash Security

In this paper, we have considered the conditional entropy of

the hash values as a metric to study security. Our analysis is

based on the premise that the adversary knows the image and

the hashing algorithm being used and does not know the key

used in generating the hash. Therefore, in our analysis, the

adversary does not have access to the actual hash values and

tries to estimate them based on his knowledge. Alternatively,

we can evaluate the security of a hashing scheme by measuring

the conditional entropy of the hashing key when the image,

the hashing algorithm and output hash values are known.

This conditional entropy can be written as ℵ(K|(I, h)), where

K denotes the key, I the image, and h the corresponding

hash value. In reality, if more information is available to

the adversary, he/she may be able to come up with more

sophisticated attacks to break the hashing algorithm. In such

a case, the conditional entropy of the key will reduce with the

increase in the number of observed image/hash pairs. Thus,

ℵ(K|(I1, h1), (I2, h2), ...(In, hn)) is a monotonically decreas-

ing function with n. When n is large enough, it would be pos-

sible to uniquely identify the key K with very high probability.

This is analogous to Shannon’s discussion on secrecy system

and his definition of unicity distance [44]. Along these lines,

we may define another notion of hashing security by requiring

that the conditional entropy ℵ(K|(I1, h1), (I2, h2), ...(In, hn))
is not negligible as long as the number of observed image/hash

pairs, n, is upper bounded by a polynomial in key length. We

note that for image hashing and other types of multimedia

hashing, an adversary may not need to exactly recover the

key in order to estimate a hash. The estimation type of attack

introduced in [30] is clearly an example.

VI. CONCLUSIONS

Robustness and security are two important requirements for

image hashing algorithms in applications involving authen-

tication, watermarking, and image databases. In this paper,

we have developed a new image hashing schemes that has

improved robustness and security features. We show that

the proposed schemes is resilient to moderate filtering, and

compression operations, and common geometric operations

up to 10 degrees of rotation and 20 percent of cropping.

The proposed hashing scheme also has good discriminative

capabilities and can identify malicious manipulations, such

as cut-and-paste type of editing, that do not preserve the

content of the image. In addition to the study on robustness,

we have introduced a general framework for analyzing the

security in image hashing. We derive analytical expressions

using differential entropy as a metric to study the security

of the feature extraction stage for both the proposed schemes

and several existing representative schemes. Our studies have

shown that the proposed image hashing algorithm is highly

secure in terms of this metric. The analysis can also be

extended to incorporate other stages of the hashing operation,

such as randomized quantization.

Overall, we developed a new image hashing algorithm. It

is more robust compared to existing image hashing schemes,

and at the same time, it is also secure against estimation

and forgery attacks. Thus, it can provide a robust and secure

representation of images for numerous applications.

APPENDIX A: DERIVING THE SECURITY METRIC FOR THE

FRIDRICH’S SCHEME [13]

In Fridrich’s scheme, key-dependent pseudo-random pat-

terns X(r)(r = 1, 2, . . . N) of the same size of the input

image are first generated. These pseudo-random patterns have

uniform distributed pixel values. These patterns are then

spatially averaged with a m×n low-pass filter {αij} to obtain

zero-mean random images [Y (r)]kl

Y
(r)
kl =

⌊m
2 ⌋

∑

i=−⌊m
2 ⌋

⌊n
2 ⌋

∑

j=−⌊n
2 ⌋

αijX
(r)
i+k,j+l. (27)

The input image I is projected on the N smooth patterns

{Y (r)} to obtain the intermediate hash values hr as given
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by

hr =

H
∑

k=1

W
∑

l=1

Y
(r)
kl Ikl. (28)

These intermediate hash values are then quantized to generate

the final hash. In our analysis, we model the intermediate hash

values hr as random variables and find its differential entropy

to generate the security metric. The hash values hr in (28) can

be rewritten as

hr =

⌊m
2 ⌋

∑

i=−⌊m
2 ⌋

⌊n
2 ⌋

∑

j=−⌊n
2 ⌋

αijV
(r)
ij , (29)

where the random variables V
(r)
ij are defined as

V
(r)
ij =

H
∑

k=1

W
∑

l=1

X
(r)
i+k,j+lIkl. (30)

We observe that V
(r)
ij is a weighted sum of W × H uni-

formly distributed random variables {X(r)
ij } with the weights

determined by the image pixel values (Ikl). According to the

Central Limit Theorem, we approximate V
(r)
ij to be Gaussian

distributed, with mean m
(r)
ij and variance σ

2(r)
ij that can be

shown to be

m
(r)
ij = E(V

(r)
ij ) =

1

2

(

H
∑

k=1

W
∑

l=1

Ikl

)

,

σ
2(r)
ij =

1

12

(

H
∑

k=1

W
∑

l=1

I2
kl

)

. (31)

We also note that all {V (r)
ij } are identically distributed, but

are not independent since the same random variables {X(r)
ij }

are used to generate various V
(r)
ij . The dependence among the

variables {V (r)
ij } can be expressed in terms of their correlation

given by

E(V
(r)
ij V

(r)
ab ) =

1

12

H
∑

k=1

W
∑

l=1

IklIi+k−a,j+l−b+

(

1

2

H
∑

k=1

W
∑

l=1

Ikl

)2

.

(32)

Now, from (29), we see that hr is a weighted sum of m × n

Gaussian distributed random variables. So hr is also Gaussian

and its differential entropy is completely specified by its

variance. The variance of hr can be computed as

σ2
hr

= E(h2
r) − m2

hr

= E





⌊m
2 ⌋

∑

i=−⌊m
2 ⌋

⌊n
2 ⌋

∑

j=−⌊n
2 ⌋

αijV
(r)
ij





2

−
(

1

2

H
∑

k=1

W
∑

l=1

Ikl

)2

=
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq , where (33)

I(αα)
pq =

⌊m
2 ⌋

∑

i,k=−⌊m
2 ⌋

⌊n
2 ⌋

∑

j,l=−⌊n
2 ⌋

αijαklIi+p−k,j+q−l. (34)

Fig. 15. Simplified model of the block partitioning algorithm in Venkatesan’s
scheme [4]

Note that I(αα) is the image obtained by filtering I the image

twice with the filter {αij}. Using the result in (33), we obtain

the differential entropy of hr as

ℵ(hr) ≈
1

2
log2

(

2πe
1

12

H
∑

p=1

W
∑

q=1

IpqI
(αα)
pq

)

. (35)

APPENDIX B: MODEL FOR BLOCK PARTITIONING IN

VENKATESAN’S SCHEME [4]

As indicated in Section IV-C.2, we approximate the 2-D

block partitioning as a combination of two 1-D problems,

namely, partitioning along the horizontal direction and then

along the vertical direction. To model the partition along the

width of the image, we divide the space (0,W ) into several

regions by successively generating random numbers {Uk} as

shown in Fig. 15, uniformly distributed in [wmin, wmax], and

wmin and wmax are the minimum and the maximum widths

of the random blocks. The location of the nth partition is then

given by a set of random variables Tn, where Tn =
∑n

k=1 Uk.

Since Tn is the sum of n uniformly distributed random

variables, we approximate Tn with a Gaussian distribution.

Its mean mTn
and variance σ2

Tn
can be shown to be

mTn
=

n

2
(wmin+wmax), σ2

Tn
=

n

12
(wmax−wmin)2. (36)

Let Ni denote the number of partitions in the ith row. Using

the distribution of Tn and noting that Ni is also the index for

the last partition in the row, we can write the pmf of Ni as

P (Ni = n) = Pr (Tn < W < Tn+1)

= Pr (max(W − Tn, wmin) < Un+1 < wmax)

=

∫ W−wmin

W−wmax

P (W − t < Un+1 < wmax)fTn
(t)dt

+

∫ W

W−wmin

P (wmin < Un+1 < wmax)fTn
(t)dt, (37)

where fTn
(·) is the pdf of Tn. Using the Gaussian assumption

on Tn, the above expression can be simplified as

P (Ni = n) =
σn√

2π(wmax − wmin)
e
−

(W−wmax−mTn
)2

2σ2
Tn

− σn√
2π(wmax − wmin)

e
−

(W−wmin−mTn
)2

2σ2
Tn

+
wmax + mTn

− W

wmax − wmin

FTn
(W − wmin)

− wmax + mTn
− W

wmax − wmin

FTn
(W − wmax)

+ (FTn
(W ) − FTn

(W − wmin)), (38)
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Fig. 16. The plot of the pmf of Ni−the number of blocks in ith row, where
the parameters are wmin = 10, wmax = 40, and W = 512. Note that the
random variable Ni has a very small variance and hence the mean would be
a good estimate.

where FTn
(x) is the cumulative distribution function (cdf) of

Tn, and is given by

FTn
(x) =

1√
2π

∫

�
x−mTn

σTn

�

−∞

exp

(

−z2

2

)

dz. (39)

The plot of the pmf of Ni is shown in Fig. 16. From this

pmf, we can derive the expected value of Ni as E(Ni) =
2W

wmin+wmax
.

APPENDIX C: DERIVING THE SECURITY METRIC FOR

RANDOMIZED QUANTIZATION [5]

In this appendix, we provide the detailed derivations of

the conditional entropy for the randomized quantization algo-

rithm [5]. The conditional entropy H(q(X)|X) can be written

as

H(q(X)|X) =

∫

x∈ℜ

H(q(X)|X = x)pX(x)dx

=

Q
∑

i=1

∫ Ci+1

Ci

H(q(X)|X = x)pX(x)dx

=

Q
∑

i=1

∫ Bi

Ai

H(q(X)|X = x)pX(x)dx,(40)

where pX(·) denotes the pdf of the input data X . The last

step follows from (25) since the quantizer q(X) is random

only in the interval Ai ≤ x ≤ Bi. Now, we note that in this

interval, q(X) takes a value i with probability pi = (PX(x)−
PX(Ai))

Q
2r

, and a value (i − 1) with probability (1 − pi).

Therefore, (40) can be calculated and simplified as

H(q(X)|X) = −
Q

∑

i=1

∫ Bi

Ai

(pi log2(pi)

−
Q

∑

i=1

∫ Bi

Ai

(1 − pi) log2(1 − pi))pX(x)dx

= r log2(e). (41)
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