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Abstract—Randomized Byzantine Consensus can be an inter-
esting building block in the implementation of asynchronous
distributed systems. Despite its exponential worst-case com-
plexity, which would make it less appealing in practice, a
few experimental works have argued quite the opposite. To
bridge the gap between theory and practice, we analyze a well-
known state-of-the-art algorithm in normal system conditions,
in which crash failures may occur but no malicious attacks,
proving that it is fast on average. We then leverage our
analysis to improve its best-case complexity from three to two
phases, by reducing the communication operations through
speculative executions. Our findings are confirmed through an
experimental validation.
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I. INTRODUCTION

Is randomized consensus practical? Researchers have been
asking this question for the past few decades and yet they
cannot reach an unanimous conclusion. On the one hand,
theoreticians believe it is inefficient due to its exponen-
tial worst-case complexity. On the other hand, practicians
believe that many theoretical models are too extreme to
describe the real world, and eventually decide to integrate
in their systems well-performing algorithms, though theoret-
ically inefficient in the worst-case. In this paper we reconcile
these positions to some extent by providing a theoretical
analysis of a randomized consensus algorithm in a more
practical model, eventually proving that it is fast.

Bracha’s algorithm [5] has attracted a lot of attention
because of its pivotal contribution to the area and for
its simplicity. Today it still represents the state-of-the art
in Byzantine fault-tolerance, in terms of reliability and
resiliency. Improving on Ben-Or’s result [4], it is the first
algorithm able to tolerate the optimal bound of f = ⌊n−1
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malicious failures [14] in a completely asynchronous system
by leveraging randomization, thus eluding the impossibil-
ity result for deterministic algorithms [11], and without
resorting to public key cryptography. However, it is quite
inefficient in theory because it takes an exponential number
of rounds to terminate. The high complexity is related to the
worst-case scenario, in which up to f corrupted processes
and an adversarial scheduler having complete knowledge
of the system (i.e., processes’ internal states, exchanged
messages, etc.) aim at subverting it.

Although it is reasonable (and realistic) to assume that
the system does not always run in the worst-case scenario,
it is not wise to relax completely this assumption. First, the
worst-case clearly represents an abstraction of an attack the
system can suffer. Second, even if no attack is performed,
a bad execution run might simply happen. However, once
established that the distributed system is usually reliable,
then attacks and failures can only interfere with its efficiency,
thereby being detectable as they slow it down and reduce its
throughput. These issues can be considered transient because
either they can be solved through human intervention, or it
is unlikely that they are accidentally long-lasting.

The previous argument would not be useful if the im-
plemented algorithms were slow in all scenarios, simply
because normal and abnormal situations would be indistin-
guishable. In the first case, as the algorithm would keep the
same performance even in presence of good conditions, it
would raise no concern. The existence of fast algorithms in
the worst-case is still an open question but there is a wide
belief that it might be difficult to devise one.

In this paper, we prove that Bracha’s algorithm terminates
in constant time in normal conditions. The result is close to
the lower bound given by Attiya and Censor in [3]. Also,
building on it, we present a new extension to the Bracha’s
algorithm so that it converges more rapidly, in terms of
communication steps, while retaining the robustness against
colluding Byzantine processes. In particular, it uses a specu-
lative execution to reduce the number of phases from three to
two, with no additional computational cost in the worst-case.
Our experimental results ultimately give further and clearer
confirmation that randomized consensus is indeed practical,
even more attractive by using speculation.

II. RELATED WORK

As consensus cannot be attained by any deterministic
algorithm [11], two main techniques can be followed to
circumvent this limitation: relaxing the model, typically
assuming eventual synchrony (directly in the system model
or hiding it in a failure detector), or making the algorithm
non-deterministic, typically leveraging randomization. While
the first trades correctness with a weaker model, the second
instead maintains correctness in the strongest model, though



its performance is yet to be better understood and improved.
Our work makes a contribution in this direction.

In terms of resiliency, Bracha’s algorithm, as well as the
speculative one that we will describe, compares favorably
against several other works [4], [8] that employ up to 2f
more processes, though at the price of more expensive
communication primitives (i.e., reliable broadcast). Firstly,
it is widely believed that keeping the number of processes
low represents the main practical challenge due to its cost.
For several consensus applications more processes mean
more machines that need to run diverse software to avoid
common vulnerabilities, which could lead to the complete
compromise of the system. Secondly, the impact of sending
(moderately) more messages is typically noticeable when the
underlying hardware is limited or when they have to travel
over a wide area. Hence for several deployments (e.g., a
LAN with high speed routers) it is possible to maintain a
sustainable workload.

In [6], [2] it was shown that by assuming randomness
in the environment rather than within the algorithm is
sufficient to achieve consensus efficiently (i.e., deterministic
algorithms can be proved correct and fast). The drawback
of those protocols is that they cannot withstand actions that
fall in the scope of the strong adversary model, although in
this case only liveness is compromised.

Randomized consensus algorithms under the more realis-
tic message-oblivious model were first considered in [8]. In
this model, either no malicious entity acts, or it acts blindly,
independently from the message content. Also in this case,
the algorithms are not resilient-optimal, or cannot withstand
malicious failures. The work in [3] extends the previous one
and provides a new lower bound on the probability that an
algorithm does not terminate after k rounds, which is at least
⌈nf ⌉

−k. In our analysis we show that Bracha’s algorithm
provides a close (up to a constant factor) upper bound.

A few works [7], [1] addressed successfully the problem
of Byzantine failures when the adversary only controls the
corrupted processes — he does not look at the internal
state of the correct processes nor at the messages they
exchange with each other. Contrarily to [5], they all prove
that consensus can be achieved fast under that model, in
polynomial [1] and constant [7] time, respectively. The main
limitation of these protocols is that, beyond the fact that they
cannot withstand a strong adversary, the low time complexity
is attained at the expense of an extremely high number
of message exchanges, making their implementation hardly
feasible. However, in presence of a weaker adversary and
of crash-only failures, it is possible to improve it through
gossip algorithms [12].

Finally, we notice that the literature is somewhat poor
of experimental evaluation of randomized consensus algo-
rithms, probably because simple algorithms are theoretically
inefficient, while more specific ones are rather complex to
implement and/or not viable due to the number of processes.

In [19] it is investigated the practical impact in a LAN of
the impossibility result [11] in a replicated system under
high load, ultimately observing that it maintains a positive
throughput even in adverse network conditions. In [17],
Bracha’s algorithm is evaluated in a LAN, and the results
show that it takes at most a couple of rounds to terminate.
In [16] the same algorithm is instead evaluated in a wireless
network, showing that the latency increases a lot with the
number of processes. However, as suggested in [20], this is
probably due to the high contention among the processes in
accessing the wireless medium. Our work provides: theoret-
ical fundaments that sustain and predict these experimental
results; and a methodology for the analysis of randomized
consensus algorithms in practical scenarios.

III. THE CONSENSUS PROBLEM AND ITS SOLUTION

The Randomized Binary Consensus problem is defined
by 3 properties [10]. The first two are safety properties,
which are common to most solutions present in the literature:
validity, if all correct processes start the computation with
the same proposal v, this is the only value that can be
decided on; agreement, no two correct processes decide
differently. The third one is the liveness property, which
specifies that the system must eventually make progress in
its computation, eventually taking a decision: termination,
all correct processes eventually decide with probability 1.
This property is the one that usually differentiate randomized
from deterministic consensus, since the second one always
ensures decision.
Bracha’s Solution. Algorithm 1 presents the main structure
of the algorithm [5]. We voluntarily overlooked two primi-
tives of the original algorithm (and so we dubbed it weak),
which are crucial to withstand Byzantine failures under
the strong adversary model: the reliable broadcast primitive
(see Section VI) and the message validation procedure. The
reason is that our analysis is for the normal conditions where
no malicious entity exists, thereby making them unnecessary.
In turn, even though we use this simplification, our result
still holds for the full algorithm.

The algorithm is composed of three phases. In each one, a
process performs a broadcast, waits to receive at least n−f
messages, and then makes some computation. Specifically,
in the first phase the processes run a sort of pre-agreement,
in which a process sets its proposal to the one present in
the majority of the received messages. In the second phase
instead, a value is set only if the majority of processes
proposed it, otherwise a process opts for a default value
⊥. Such a majority implies (by reasoning about intersecting
quorums) that if one value is ever set, then that is the only
one any other process can ever choose (beyond the default
value). In the third phase, if the processes notice that enough
of them have set a particular value, then they safely decide
on it, otherwise they toss a coin and start over.



1: r = 1 # round number

2: ϕ # phase number

3: v = initial proposal
4: while true do
5: ϕ = 1 # 1st Phase

6: broadcast(<r, ϕ, v>)
7: Mϕ

r = receive n− f <r, ϕ, ∗>-messages
8: if ∃w ∈ {0, 1}, |{m ∈ Mϕ

r ,m =<r, ϕ,w>}| > f
then

9: v = w
10: end if
11: ϕ = 2 # 2nd Phase

12: broadcast(<r, ϕ, v>)
13: Mϕ

r = receive n− f <r, ϕ, ∗>-messages
14: if ∃w ∈ {0, 1}, |{m ∈ Mϕ

r ,m =<r, ϕ,w>}| > n
2

then
15: v = w
16: else
17: v = ⊥ # default value

18: end if
19: ϕ = 3 # 3rd Phase

20: broadcast(<r, ϕ, v>)
21: Mϕ

r = receive n− f <r, ϕ, ∗>-messages
22: if ∃w ∈ {0, 1}, |{m ∈ Mϕ

r ,m =<r, ϕ,w>}| > 2f
then

23: v = vd = w # decision

24: else if ∃w ∈ {0, 1}, |{m ∈ Mϕ
r ,m =<r, ϕ,w>}| >

f then
25: v = w
26: else
27: v = coin() # toss a coin

28: end if
29: r = r + 1 # next round

30: end while
Algorithm 1: Weak Bracha’s Algorithm f = ⌊n−1

3
⌋

IV. NORMAL CONDITIONS

We consider a system of n processes, f of which might
experience failures (we will define this better later on). The
computation proceeds in asynchronous rounds. Rounds are
structured in phases, each one composed by a communica-
tion operation and some computation. The asynchrony that
characterizes the system implies that no assumption is taken
on the relative speed of both the processes and the message
delivery. The channels are reliable, so a message broadcast
eventually reaches all recipients, or a subset of them in case
the sender is faulty and crashes. Also, it is assumed that a
process can correctly identify the sender of a message, so to
avoid impersonation attacks. The computation is said to be
message-driven to indicate that processes take steps based
only on the information that they receive. Progress occurs
with the reception of n− f distinct messages for the same
round and phase, but processes do not get necessarily the
same set of messages.

The Strong Adversary Model. The definition of the
powers that an hypothetical adversary has to disrupt the
successful execution of the protocol gives an abstraction
of the environment. In the literature, the strong adversary
model typically characterizes the worst-case scenario. In
this model, a computationally unbounded adversary (i.e.,
cryptography cannot be used) is able to: access the internal
state of the processes, eavesdrop on the communication
among them, tune their execution speed, delay and reorder
messages, adaptively corrupt up to f processes which, in
case of Byzantine failures, collude against the correct ones.
Normal Situations. A model for normal conditions should
describe what we would expect in practice, during most
of the system execution time. Firstly, we can assume that
usually there are no Byzantine failures. Secondly, as we
noticed in several experiments [17], [16], [19], the presence
of an adversarial scheduler does not also occur. For example,
it is safe to make no assumption on: which process first
acquires the transmission medium; what scheduling algo-
rithm is used at the switch/router to serve the processes’
communication requests; how the channel polling is per-
formed at the process, since there are logical/real links that
connect it with all the others. It is also hard (though possible)
that each process receives in every phase the worst possible
set of messages, potentially delaying the decision and the
algorithm’s termination.

Therefore, we do not lose generality by considering that
each message has the same probability of being received,
for several reasons: 1) the algorithm is decentralized, in the
sense that there is no leader and all messages have the same
weight; 2) the identity of the sender of a message does not
really matter, what is important is that the messages received
by a process are distinct; 3) randomization is already present
within the algorithm itself and in particular in the value
each message carries. It must be noted that this is not in
contrast with the asynchrony assumption. Also, the model
considers that no malicious entity is acting, and thus the
messages are delivered independently from their content and
internal status of the processes. Finally, crash failures can
occur obliviously (i.e., they may not necessarily slow down
the algorithm).

V. PROBABILISTIC ANALYSIS

In this section we provide the complexity analysis of the
Bracha’s protocol in normal conditions. As the correctness
is preserved from the stronger model, the algorithm inherits
the exponential time complexity as an upper-bound. We
will show however that at each round the algorithm has a
constant probability to terminate, so an expected constant
time complexity.
Preliminaries. In order to derive our result, we employ some
of the tools and techniques from [6]. In particular, we make
extensive use of approximations, but we avoid using Markov



chains for the analysis. We also take advantage of another
old approximation provided in [9].

The approximations are asymptotically precise. In particu-
lar, for a large enough population of size n and a probability
p that an element of the population is considered a success,
the number of successes is modeled through the Binomial
distribution B(n, p), and the probability to get less than
(or equal to) i successes is approximated using the Normal
distribution N (np, np(1− p)) as follows:

P (B (n, p) ≤ i) ≈ Φ

(
i− np√
np(1− p)

)
where Φ(x) represents the Standard Normal distribution.

Moreover, we frequently use the following inequality
between the Hypergeometric (H) and the Binomial (B)
distribution. Let n be defined as above, k the number
of items considered successes, ns the sample size. For
i ≤ kns

n = E(H), it can be stated that

P (H (n, k, ns) ≤ i) ≤ P

(
B
(
ns,

k

n

)
≤ i

)
The inequality is true because, according to the parameters
of the distributions, they both have the same average andH’s
variance is less or equal to B’s. So H is more concentrated
around the average.

Additionally, we will use the following Chernoff Bound
(CB, Theorem 1), which shows that in a stochastic process
involving n binary independent random variables, the sum
of the variables is concentrated around the average with high
probability (w.h.p.).

Theorem 1 (Chernoff Bound [15]): Let X1, . . . , Xn be
independent poisson trials such that Pr(Xi) = pi. Let
X =

∑n
i=1 Xi and µ = E[X]. Then, for 0 < δ < 1,

Pr(|X − µ| ≥ δµ) ≤ 2e−µδ2/3.
Finally, the following theorem describes the normal ap-

proximation to a general Binomial distribution.
Theorem 2 (De Moivre-Laplace [9]): Consider a Bino-

mial distribution B (n, p), with average µ = np and
standard deviation σ =

√
np(1− p). For fixed z1, z2,

P (µ+ z1σ ≤ B (n, p) ≤ µ+ z2σ)
n→∞
= Φ(z2)− Φ(z1)

Overview of the Analysis. We proceed phase by phase,
describing the properties of the array of proposals in the
system. In particular, we will be focused in understanding
under what conditions in the second phase (most of) the
processes either set a default value, so they will not reach a
decision, or a specific value that is then decided on.

Lemma 1 specifies a well-known property of the original
algorithm [5]. Basically it states that the decision of one
process at some round implies the consensus termination
property. Lemma 2 represents the crucial part of the final
theorem. It allows us to understand under what condition
processes can set a bad (default value) or a good (either

0 or 1) proposal following the message exchange in the
second phase. Surprisingly, we get an “everyone or no one”-
style result, asymptotically. Lemma 3 describes under what
conditions, by the end of the first phase, the difference
between the number of processes that propose the two
value is O(n). Lemma 4 quantifies the initial difference
in the number of processes that propose the two values,
such that they have a biased constant probability to set the
most frequent one at the end of the first phase. Finally,
Theorem 3 constitutes our main result. We proceed bottom-
up: starting from a good configuration in the last phase that
leads the processes to a decision with high probability, we
go back to the coin tossing procedure, investigating what
conditions must be ensured in order to reach that good final
configuration. Eventually, the first condition can be met with
constant probability.
Analysis in Normal Conditions.

Lemma 1: If a process p decides at the end of round r,
then all processes decide by the end of round r + 1.

Proof: If p decides on v then it received at least
2f+1 messages carrying that value in the third phase. Since
n = 3f + 1, all the other processes receive at least f + 1
messages with v. If they do not decide in round r, they do
not toss a coin but rather set v, thereby starting round r+1
with the same value. Since the algorithm is correct under the
validity property, then all the (remaining) processes decide
by the end of the round.

Lemma 2: Let 0 < k2 < 1
2 be a constant. If n

2 + k2n
processes propose v at the beginning of the second phase in
a round r, then at the end of the phase with probability 1:
if k2 < 1

4 , all processes set the default value; if k2 > 1
4 , all

processes set v.
Proof: A process p sets v in the second phase if it

receives more than n
2 messages carrying that value. The

probability that this happens follows a hypergeometric dis-
tribution that can be computed and bound as follows:

P
(
H
(
n,

n

2
+ k2n, n− f

)
>

n

2

)
=

= 1− P
(
H
(
n,

n

2
+ k2n, n− f

)
≤ n

2

)
P
(
H
(
n,

n

2
+ k2n, n− f

)
≤ n

2

)
≤

≤ P

(
B
(
n− f,

1

2
+ k2

)
≤ n

2

)

≈ Φ

 n
2 −

2n
3 ( 12 + k2)√

2n
3 ( 12 + k2)(

1
2 − k2)


= Φ

 n
6 −

2k2n
3√

2n
3

1−4(k2)2

4

 = Φ


√

2n
3

(
1
4 − k2

)√
1−4(k2)2

4


For a large enough n, the probability obtained is 1−O(e−n)



for k2 < 1
4 and it is O(e−n) for k2 > 1

4 . So, depending
on k2, either the considered event or its complement will
succeed with high probability. Hence, we have (for k2 > 1

4 )

P
(
H
(
n,

n

2
+ k2n, n− f

)
>

n

2

)
≥ 1−O(e−n)

P (each process sets v) ≥
(
1−O(e−n)

)n n→∞
= 1

The case when k2 < 1
4 is symmetrical.

Lemma 3: If a process has a constant probability p > 1
2

to set a value v at the end of the first phase then, for some
constant 0 < k2 < p − 1

2 , at least n
2 + k2n processes set v

with high probability at the end of the first phase.

Proof: Without loss of generality let us assume that, for
some constant c > 0, p = 1

2+c. Considering all n processes,
the number of those that set v follows a Binomial distribution
B(n, p), whose average is µ = n

2 +cn. A simple application
of the CB (Theorem 1) shows that, for any constant c′ > 0,
P (B(n, p) ≤ µ− c′n) ≤ e−Θ(n) (because, in Theorem 1, δ
would be a constant dependent on c and c′). In particular,
this still holds if we take 0 < c′ < c. Now consider a
constant k2 > 0 such that c′+k2 = c. The result immediately
follows because the complementary event happens with high
probability, that is P (B(n, p) > µ− c′n) ≥ 1− e−Θ(n), and
µ− c′n = n

2 + k2n.

Lemma 4: Let k1 > 0 be a constant. If n
2 + k1

√
n

processes propose v at the beginning of the first phase in a
round r, then there is at least a constant probability, namely
Φ(1.63k1) >

1
2 , that a process sets v at the end of the first

phase.

Proof: A process sets v in the first phase if it received
a majority of messages carrying that value. The probability
that this happens follows a hypergeometric distribution that
can be computed and bound as follows:

P
(
H
(
n,

n

2
+ k1
√
n, n− f

)
>

n

3

)
= (1)

= 1− P
(
H
(
n,

n

2
+ k1
√
n, n− f

)
≤ n

3

)

P
(
H
(
n,

n

2
+ k1
√
n, n− f

)
≤ n

3

)
≤

≤ P

(
B
(
n− f,

1

2
+

k1√
n

)
≤ n

3

)

≈ Φ

 n
3 −

2n
3 ( 12 + k1√

n
)√

2n
3 ( 12 + k1√

n
)(12 −

k√
n
)



= Φ

 − 2k1
√
n

3√
2n
3

n−4k2
1

4n

 = Φ

(
−

√
2k21(4n)

3(n− 4k21)

)

≤ Φ

(
−
√

8k21
3

)
= Φ(−1.63k1)

Substituting in the equation above and since k1 > 0

P
(
H
(
n,

n

2
+ k1
√
n, n− f

)
>

n

3

)
≥1− Φ(−1.63k1)

=Φ (1.63k1)>
1
2

Theorem 3: In normal situations, the Bracha’s algorithm
terminates at least with constant probability, namely 0.40,
hence in expected 2.5 rounds.

Proof: Let us assume that all processes propose v in
the third phase of a round r. This case is ensured with
probability 1 by Lemma 2 provided that there is a constant
k2 > 1

4 , such that n
2+k2n processes started the second phase

proposing v. This means that, with the same probability, all
processes necessarily take a decision by the end of round r
— actually the decision of one correct process in r would be
sufficient since it implies the termination of the algorithm,
from to Lemma 1.

From Lemma 3, constant k2 exists if the processes have
a constant probability p > 1

2 of setting v following the mes-
sage exchange of the first phase. From Lemma 4, provided
that there exists a constant k1 such that n

2 +k1
√
n processes

propose v at the beginning of the first phase, such probability
is p = Φ(1.63k1). By combining the required bound on k2
with p, we have Φ(1.63k1)− 1

2 > k2 > 1
4 , so

Φ(1.63k1) >
3

4
⇒ 1.63k1 ≥ 0.68 ⇒ k1 ≥ 0.42 (2)

Since k1 is related to the distribution at the beginning of
the first phase, it depends on the coin tossing at the end of
round r−1. The coin tossing follows a Binomial distribution
B
(
n, 1

2

)
, hence from Theorem 2, we have

P (|B (n, p)− µ| ≥ 2k1σ)
n→∞
= 2 (1− Φ(2k1)) ≥ 0.40

Therefore, if the algorithm does not terminate (no process
decide) in round r, then there is at least a constant probabil-
ity to get a good coin tossing that would let the algorithm
terminate in round r + 1. Such constant probability implies
that the algorithm terminates in expected 2.5 rounds.

An Improved Approximation. According to our experi-
mental evaluation (see Section VII), the result obtained is
loose and does not describe exactly the behavior of the al-
gorithm. The reason is that there is a loss of precision in the
Binomial approximation to the Hypergeometric distribution.
Building on our analysis, we enhance it by using a result of
Feller [9], [18, p.194], which indicates how to approximate
the Hypergeometric distribution with the Normal distribution
under some conditions.



Feller shows that when the ratio between the sample and
the population size tends to a constant then the Hyperge-
ometric distribution H (n, k, n− f) can be approximated
by the Normal distribution as follows(

k
i

)(
n−k

n−f−i

)(
n

n−f

) ∼ 1√
2πσH

e−
x2

2 with
i− µH

σH
→ x

where µH and σH represent respectively the average and the
standard deviation of H, that is:

µH =
(n− f)k

n
σH =

√
(n− f)k(n− k)f

n2(n− 1)

Since in our case n = 3f + 1, we have n−f
n → 2

3 and
Feller’s approximation holds.

To show the impact of such approximation on our previous
analysis, we need to consider again the binomial approxi-
mation to the hypergeometric distribution, and in particular
its average and standard deviation, namely

µB =
(n− f)k

n
σB =

√
(n− f)k(n− k)

n2

It is now clear that µB = µH and σH = σB

√
f

n−1 = σB√
3

. By
translating Feller’s approximation in terms of the Standard
Normal distribution, we thus get

P (H(n, k, n−f) ≤ i)
Feller≈ Φ

(
i−µH

σH

)
= Φ

(
i−µB

σB

√
3

)
This means that we can easily get a more precise (ap-

proximated) result by adjusting with a constant the input
to the cumulative distribution function in Theorem 3. This
adjustment has no asymptotical impact when such input is
positively (resp. negatively) dependent on n, because in that
case the probability is exponentially high (resp. low), so it is
negligible. Instead, the impact is noticeable when the input is
constant, thereby giving a constant probability. This happens
in the analysis of the first phase (Lemma 4 and Equation 2).
Therefore we restate the main theorem as follows:

Theorem 4: In normal situations, the Bracha’s algorithm
terminates at least with constant probability, namely 0.63,
hence in expected 1.59 rounds.

Proof: Starting from Equation 2 of Theorem 3 and
adjusting equations and results according to Feller’s approx-
imation, then

Φ
(
1.63
√
3k1

)
>

3

4
⇒ 1.63

√
3k1 ≥ .68 ⇒ k1 ≥ 0.24

P (|B(n, p)− µ| ≥ 2k1σ)
n→∞
= 2 (1− Φ(2k1)) ≥ 0.63

Such constant probability implies that the algorithm termi-
nates in expected 1.59 rounds.

Crash-Failures are Already Included. In order to slow
down the algorithm, our analysis suggests that the best

strategy is to balance the proposals of 0 and 1 at the
beginning of each round by crashing O(

√
n) processes. In

this way the processes would reach a decision after the crash
of f of them, hence in O(

√
n) rounds. However, in normal

conditions, crashes occur obliviously and not selectively, so
this problem will not affect the performance in practice.

Our analysis did not consider crash failures because they
can be abstracted and thus the result still holds in that case.
Let us consider a somewhat stronger model in which the
adversary only controls the scheduler. In this case, either he
has the power, namely enough messages with each value
to schedule in some disrupting way, the postponement of
the termination, or he cannot succeed. It is clear that in the
first case he does not need to crash any process, while in
the second case crashes will not help him to acquire the
capability to delay the protocol. Therefore, if crash failures
do not help to slow down the algorithm in the stronger model
then, by reduction, crashes will not be of any aid in our
weaker model either.
Comparison with a Lower Bound. It is interesting to note
how tight the result is. Attiya and Censor [3] provide a lower
bound on the probability to reach consensus under a weak
adversary in presence of crash failures. They proved that:
for n = 3f+1, the probability that a randomized consensus
algorithm does not terminate in k(n − f) steps is at least
⌈nf ⌉

−k ≈ (0.25)
k. Roughly speaking, the definition of step

corresponds to the execution of one phase at one process,
in our context. Instead, our result states that the probability
that the algorithm does not terminate in r rounds (i.e., 3r
phases), is at most (1 − 0.63)r = (0.37)r. Hence, the two
bounds are close up to constant factors. The experimental
evaluation will show that ours is rather precise.

VI. THE RANDOMIZED CONSENSUS ALGORITHM

This section introduces our speculative algorithm. Overall,
the algorithm derives its robustness by being correct in the
strong adversary model in presence of f < n/3 Byzantine
failures. Additionally, we leverage our previous analysis to
gain speed in more benign scenarios, by reducing the number
of phases from three to two. We start by describing the
communication primitives that we use, then we present the
consensus algorithm.

Communication Primitives

The broadcast primitive is fundamentally an extension of
the Reliable Broadcast algorithm described in [6], which is
augmented to guarantee the FIFO property.
Reliable Broadcast. The reliable broadcast algorithm [6]
achieves asynchronous Byzantine agreement as specified in
[14]. It is composed by 3 message exchanges. In the first
step, the sender broadcasts m in an initial message. In
the second step, the processes that receive this message,
rebroadcast it in an echo message. In the third step, if a
process receives (n+ f)/2 echo messages, it broadcasts m



in a ready message. Finally, if a process receives 2f + 1
ready messages with m, then it delivers m. The algorithm
guarantees the following properties:
P1: if the sender of a message m is correct then all the
correct processes eventually deliver m;
P2: if a malicious process sends a message, then either all
or none of the correct processes deliver m.
FIFO (Reliable) Broadcast. FIFO Broadcast [13] further
achieves the following property:
P3: if a process sends a message m before sending a
message m′, then no correct process delivers m′ before
having delivered m.
It can be easily implemented on top of Reliable Broadcast
as follows. Each process maintains a sequence number seq,
that it uses to serialize all of its outgoing messages. Also, a
process keeps track, for each other process p, of the sequence
number of the last message belonging to p it delivered.
A process FIFO-delivers a message m if: 1) m has been
reliably delivered; 2) m carries the next expected sequence
number with respect to its sender.

One should notice that the cost of FIFO delivery is
fundamentally null because it does not involve any further
message exchange beyond the reliable broadcast. Further-
more, it is important to note that Byzantine processes cannot
arbitrarily break the FIFO property without being detected.
As the FIFO broadcast is built on top of reliable broadcast,
the lower communication level prevents them from sending
conflicting messages with the same sequence number.
Message Stratum. The FIFO broadcast gives the possibility
to reason about message strata. Let us assume that a process
p has just started a new round r of computation. Assume also
that all the old messages from the other correct processes
have been received. This can be easily achieved due to
the FIFO property: late messages from previous rounds are
delivered first in r by p and then discarded. Now let next[·]
be the array of the next sequence numbers of the messages
p expects to receive. For each correct process q, p can
associate the next[q]-th message to first phase of the round,
the (next[q] + 1)-th to the second, and so on. Hence, we
say that the set of (next[·] + i)-th messages characterizes a
(subset of a) message stratum (MS). In particular, a MS can
be associated to each phase in each round. In the following,
since late messages carrying old rounds are discarded and
messages with future rounds are buffered to be delivered
later, we deal only with the message strata belonging to the
round a process is currently computing.

In Algorithm 1 MSs are trivial because: 1) all processes
always execute the same phases; and 2) the round and
phase number fields (contained in the messages) altogether
characterize a sequence number. However, suppose that a
process p could voluntarily miss one phase, then the other
processes would get desynchronized, namely: a process q
waiting for a message from process p cannot distinguish
the case where p skipped the transmission or the message

lagged behind due to the asynchrony of the system. The
FIFO property helps to solve this problem, because the
sequence number of a message exposes the execution flow
of its sender, namely what it computed next.

1: mp # message received from p

2: stratumi[∀p] i = 1, 2, 3 # set of validated messages

3: s(p)=min{j| stratumj [p]=∅} # p’s lowest empty stratum

4: r # current consensus round

5: On is-expected(mp) :
6: (rp, ϕp) = (mp.r,mp.ϕ)
7: if (s(p), rp, ϕp) is (3, r+1, 1)
8: then SS # Speculation Successful

9: if (s(p),rp,ϕp)∈{(1,r,1),(2,r,2),(2,r,3spec),(3,r,3)}
10: then YES
11: else NO
12:

13: On is-justified(mp) :
14: in stratums(p)=1 : YES
15: in stratums(p)>1 :
16: if ∃ a set of n−f messages in stratums(p)−1 that

justifies that p might have set the value in mp

17: then YES
18: else NO
19:

20: On recv-validate(stratumi) :
21: stratumj≥i[∀p] = ∅ # clean current and higher strata

22: while |stratumi[]| < n− f messages :
23: mp ← FIFO-deliver # message received from p

24: if is-expected(mp)=SS & is-justified(mp) then
25: stratum3[p] = stratum2[p] # reuse p’s old msg

26: postpone mp’s delivery # mp has round r + 1

27: else if is-expected(mp) & is-justified(mp)
then stratums(p)[p] = mp

28: else postpone mp’s delivery or discard it
29: end if
30: end while

Algorithm 2: Message Stratum Validation

Description of the Consensus Algorithm

Message Stratum Validation. As processes may have dif-
ferent execution flows and some of them may be malicious, it
is important that every process is able to match each received
message to the correct MS. In other words, processes need a
message validation procedure, recv-validate in Algorithm 2,
to decide if a message belongs to the correct MS. This occurs
if the message is expected and justified.

A message is expected (Algorithm 2, line 5) if the
information it carries (i.e., round, phase number) belongs:
1) to the round the receiver is currently computing and the
index of the lowest empty stratum cell for the sender (at the
receiver) matches the phase number in the message (line
9) — for a speculative message (phase 3spec), the index to



be matched is 2 — or, 2) to the first phase of the round that
immediately follows the one that the receiver is currently
computing, provided that the message sequence number is
immediately adjacent to the one of the previous message
received from the same sender, which carried the phase
number 2 (line 7), and was thereby placed in the second
message stratum.

In the consensus algorithm, a process sets its proposal
according to the received set of messages. Hence, a message
carrying some proposal v is justified (Algorithm 2, line 13)
if the receiver has a set of (older) messages that could have
allowed itself to set that proposal previously. Any proposal
at the beginning of the round (i.e., in the first phase) is
immediately justified. This cannot create any deadlock in the
system when the processes wait to justify some messages,
because 1) at least n− f of them are correct and follow the
protocol, and 2) Property 2 of the reliable broadcast holds,
so the processes cannot send conflicting messages.

Our message stratum validation procedure completely
replaces Bracha’s message validation.
Consensus Algorithm. The consensus algorithm proceeds
in asynchronous rounds (see Algorithm 3). Each round is
represented by a full or a speculative execution of the while
loop (line 5), terminating in line 21 and 41, respectively.
Each round is structurally composed by 3 phases plus 1
speculative. The speculative phase is identified as 3spec, and
it may allow a process to execute only two phases in one
round. Each phase is identified by a computation block (line
6, 15, 30), starting with a communication operation. The
speculative phase 3spec is embedded together with phase 2.
Each message-receive operation is implemented in the recv-
validate primitive, which is useful for the processes to
recognize the message strata (line 8, 17, 32). A round is
full if a process participates in all the 3 strata, while it is
speculative if a process participates only in the first 2 strata,
before starting a new round.

If no process executes the speculative phase, processes
follow the same execution flow as in [5]. In the first phase,
following the message exchange, a process sets its proposal
to the value on the majority of the received messages (line 9).
If this majority is larger than n/2 (line 10) then it speculates
by setting phase 3spec, otherwise it sets phase 2. In the
next phase, if a process receives n−f speculative messages
(necessarily carrying the same proposal), then it speculated
successfully, and therefore decides and proceeds to the next
round. Instead, a process that cannot speculate successfully
must at least try to decide in the third phase.

Let us analyze how the configuration of stratum2 influ-
ences a process proposal in phase 3. If a process receives
at least f + 1 speculative messages (line 24), it may be
that some other process has already decided — due to asyn-
chrony the remaining f speculative messages may have been
delayed. Clearly, for validity’s sake, it must be mandatory for
it to follow those speculators, by setting the same proposal

1: r = 1 # round number
2: ϕ = 1 # phase number

3: v = input # initial proposal

4: stratumi # i-th stratum tag identifier

5: while 1 :
6: when ϕ = 1 : # 1st Phase/Stratum
7: FIFO-broadcast(<r, ϕ, v>)

8: S(r)1 = recv-validate(stratum1)
9: v = w s.t. |{m ∈ S(r)1 ,m =<r, ϕ,w>}| > f

10: if |{m ∈ S(r)1 ,m =<r, ϕ, v>}| > n
2 then

11: ϕ = 3spec # speculative execution

12: else
13: ϕ = 2 # normal execution
14: end if
15: when ϕ = 2 or ϕ = 3spec : # 2nd Phase/Stratum
16: FIFO-broadcast(<r, ϕ, v>)

17: S(r)2 = recv-validate(stratum2)
18: if |{m ∈ S(r)2 ,m =< r, 3spec, w >}| ≥ n− f &

ϕ = 3spec then
19: vd = v = w # decision
20: ϕ = 1
21: r = r + 1 # next round
22: else
23: ϕ = 3
24: if ∃w, |{m ∈ S(r)2 ,m =<r, 3spec, w>}| > f

25: or (|{m ∈ S(r)2 ,m =<r, 2, w>}| > n
2 &

|{m ∈ S(r)2 ,m =<r, 2, ∗>}| ≥ n− f)

26: or |{m ∈ S(r)2 ,m =<r, ∗, w>}| ≥ n−f
27: then v = w
28: else v = ⊥
29: end if
30: whenϕ = 3 : # 3rd Phase/Stratum
31: FIFO-broadcast(<r, ϕ, v>)

32: S(r)3 = recv-validate(stratum3)
33: if ∃w, |{m ∈ S(r)3 ,m =<r, ϕ,w>}| > 2f then
34: vd = v = w # decision

35: else if ∃w, |{m ∈ S(r)3 ,m =<r, ϕ,w>}| > f then
36: v = w
37: else
38: v = coin() # toss a coin
39: end if
40: ϕ = 1
41: r = r + 1 # next round

Algorithm 3: Speculative Randomized Consensus

for the next phase. On the other hand, if strictly less than
f+1 speculative messages are received, then the speculation
necessarily failed at all processes. In this case, it is trickier
to set a proposal, since both values 1 or 0 may appear in
stratum2 (but only one can be speculative). From the point
of view of a process, the speculators may be more than the
f it may be able to see, due to the asynchrony. This means
that some other process could have received, for instance,
f+1 speculative messages and thus set the speculative value.
Therefore, a process receiving less than f + 1 speculative
messages can set its proposal to a non-speculative value if:



1) either no speculative message has been received (line
25), which ensures that at most f processes speculated; or
2) the received speculative messages comply with the non-
speculative value to be set (line 261). In the other cases it is
safer for a process to set the default value, to avoid having
more than one proposal in phase 3, beyond the default value.
Hence, at most one proposal is locked.

Finally, a process executes the phase 3 any time it is not
able to decide in the speculative phase. This phase resumes
the original protocol execution, where a process can safely
decide on a (locked) proposal (line 34), provided that it does
not receive default values in stratum3. However, stratum3

may contain strictly less than n − f phase-3 messages, if
a process decided on a speculative value, and this could
potentially lead to a deadlock. As we mentioned before,
this problem is prevented by the FIFO property and by the
assumption that at least n− f processes are correct. In fact,
a process expects that some message from some process q in
stratum3 may belong to the subsequent round (Algorithm
2, line 7). In this case, it can recognize that q’s speculation
was successful (Algorithm 2, line 8) and, therefore: 1) it
reuses q’s previous message, from stratum2, in the third
phase (Algorithm 2, line 25) and 2) it postpones the delivery
of the new message, which in fact belongs to the stratum1

of the next round. Once this problem is solved, if a process
can decide in a round r, then necessarily: 1) all the others
receive at least a majority of messages with that decision
value, thereby setting it for the subsequent round (line 35);
and 2) as all correct processes start round r+1 with the same
value, then they all decide by the end of round r+1. On the
other hand, if none of the previous events happens, then a
process tosses a coin (line 38) to escape the impossibility of
attaining consensus in deterministic asynchronous systems.
Discussion. The need to maintain the algorithm’s correctness
in the presence of Byzantine failures has a significant impact
on performance because several phases must be run. The
speculative phase instead is useful to recognize and speed up
the algorithm in normal situations: 1) in the worst-case, the
Byzantine processes and an adversarial message scheduler
can make the speculation either fail or be avoided, while 2)
in normal situations, particularly when most processes start
with the same proposal, they are able to reach a decision
after 2 communication steps (or phases). In the first case,
most importantly, since we treat any speculative message as
a particular phase-2 message, this means that speculation
failure does not impose any further computational cost.

Improving the complexity in normal situations makes
sense as these are expected to occur frequently. For instance,
let us consider a state machine replication application. Typ-
ically, processes that execute the algorithm receive from a
client a service request (using reliable-broadcast if the client

1The condition in line 26 is clearly stronger than the one described.
Nevertheless it allows for a succinct description while maintaining the
algorithm’s correctness.
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Figure 1: Round complexity of Algorithm 1 in a LAN
can be malicious) for which an agreement problem need to
be solved to maintain consistency across replicas. In this
case, all correct processes start the algorithm with the same
proposal and reach the agreement in one round. With the
speculative algorithm, our analysis shows that when n

2 +k2n
processes (from Lemma 2, with k2 > 1

4 ) propose the same
value, then the agreement is achieved in 2 phases.

VII. EXPERIMENTAL EVALUATION

The experiments evaluate the performance (in number
of rounds) of Algorithm 1 and 3. They were performed
in a cluster of 6 Dell PowerEdge 850 nodes, carrying an
Intel Xeon E5520 CPU, 2GB of RAM, and a Broadcom
NetXtreme BCM5721 Gigabit Ethernet card. Nodes ran the
2.6.32-21-server Linux kernel and were connected by a
Dell PowerConnect 5448 switch. We divided the processes
equally among the machines to avoid having faster priv-
ileged units. The algorithm was executed to withstand a
number of failures ranging in f = 1, . . . , 33. Each process
was assigned a unique ID in the range [0, . . . , 3f ]. The initial
proposal of a process was equal to the parity of its ID, so
the initial configuration was divergent. This configuration
corresponds to the worst-case scenario that leads to the larger
number of executed rounds.

The broadcast primitives were emulated using point-to-
point TCP channels. When a process had a message to be
transmitted, it randomly picked one of the receivers and
then sent the message. This procedure was repeated until
the message was transmitted to all destinations. The received
operation was carried out in a similar way, the channels were
randomly polled to check for available messages. Note that
this implementation does not change the algorithm’s essence.

Figure 1 provides the average number of rounds for
termination of Algorithm 1. For each point we present
the average of 10 runs and the 95% confidence interval.
The results confirm that the algorithm runs in expected
constant time. When the processes start to execute, they have
divergent proposals and therefore, with very high probability
they toss a coin at the end of the first round. At this point our
result begins to apply — that is consensus should terminate
in 1.59 rounds. Indeed it is possible to confirm that our
prediction represents a good approximation (the threshold
line is placed at 1 + 1.59 rounds).
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Figure 2: Complexity of Algorithm 3
In relation to Algorithm 3, we performed a simulation

with 100 processes, whose results are displayed in Figure 2.
We ran the algorithm for all possible initial configurations
(by setting the initial proposal of a subset of the processes to
0 and the remaining to 1). In the case of divergent proposals
(middle of the graph), the speculative version performs
similarly to the original Bracha’s algorithm (as it can be
confirmed by comparing Figure 1 and 2). For the other
cases, our former analysis applies and indeed the speculative
algorithm terminates in either 2 or 3 phases. In particular,
almost precisely as we predicted, it terminates in 2 phases
when n/2 + k2n processes (with k2 > 1

4 ) start with the
same proposal. The reason for such discrepancy lies in the
speculative decision condition (line 18), where even just one
process that does not speculate may make it false. According
to our analysis this event is not likely to happen for a large
enough number of processes. However, this problem exists
as long as the processes receive only n−f messages, as we
simulated. If they are able to base their decisions on larger
sets of messages, as it may frequently happen in practice,
then it is more likely that the speculation is successful.

VIII. CONCLUSION

In the paper we show that a well-known, resilient-optimal,
Byzantine fault-tolerant (for a strong adversary) algorithm
[5] is fast under normal conditions, thus making it attractive
for real implementations. Then, building on our analysis
we proposed a new speculative algorithm that reduces from
three to two the number of phases needed to achieve con-
sensus in the best-case. Our experimental analysis ultimately
confirmed our findings.
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