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Abstract

Rewired and synthetic signaling networks can impart cells with new functionalities and enable efforts in

engineering cell therapies and directing cell development. However, there is a need for tools to build synthetic

signaling networks that are tunable, can precisely regulate target gene expression, and are robust to perturbations

within the complex context of mammalian cells. Here, we use proteins derived from bacterial two-component

signaling pathways to develop synthetic phosphorylation-based and feedback-controlled devices in mammalian cells

with such properties. First, we isolate kinase and phosphatase proteins from the bifunctional histidine kinase EnvZ.

We then use these proteins to engineer a synthetic covalent modification cycle, in which the kinase and phosphatase

competitively regulate phosphorylation of the cognate response regulator OmpR, enabling analog tuning of

OmpR-driven gene expression. Further, we show that the phosphorylation cycle can be extended by connecting

phosphatase expression to small molecule and miRNA inputs in the cell, with the latter enabling cell-type specific

signaling responses and accurate cell type classification. Finally, we implement a tunable negative feedback

controller by co-expressing the kinase-driven output gene with the small molecule-tunable phosphatase. This

negative feedback substantially reduces cell-to-cell noise in output expression and mitigates the effects of cell

context perturbations due to off-target regulation and resource competition. Our work thus lays the foundation for
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establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.
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1 Introduction1

Across all organisms, sensing and processing of environmental factors is critical for growth, proliferation, and2

survival1. Engineering of mammalian cells to transmute specific intracellular and extracellular inputs into desirable3

output behaviors has broad applications in cell therapy, biomanufacturing and the engineering of stem cells, tissues,4

and organoids2–8. Recently, work has accelerated to rewire natural signaling pathways and engineer synthetic5

receptors that sense extracellular inputs9,10. A desirable engineered signaling system would have tunable input/output6

responses, low output noise, and drive gene expression that is robust to perturbations coming from the extracellular,7

cellular, and genetic context of the system11. The ability of the signaling system to exhibit such properties depends on8

how input signals are processed to generate gene expression outputs. However, relatively little work has been done to9

engineer such signal processing behavior in mammalian cells.10

To date, nearly all engineered signaling systems have utilized either native intracellular signaling domains or11

proteolytic mechanisms to transduce extracellular signals into intracellular responses10. Interfacing with the cell’s12

natural signaling networks has been a powerful method to rewire signaling pathways10, but it is difficult to modulate13

signaling between natural receptors and their gene expression targets due to the complexity of natural signaling14

networks in mammalian cells. Alternatively, using proteolysis to liberate gene regulators from the plasma membrane15

enables regulation independent from the cell signaling context through non-native proteins such as dCas9 or tTA10.16

However, since the effector proteins are irreversibly released from the receptor, the ability to tune the input-output17

response is limited. Recently, synthetic receptors comprising extracellular receptors or dimerization domains fused to18

a bacterial two-component signaling (TCS) protein were shown to successfully transmute ligand inputs to19

TCS-regulated transcriptional outputs in mammalian cells12,13.20

The use of TCS proteins in synthetic mammalian signaling networks has the potential for creating tunable, robust21

signaling circuits that do not cross-react with existing networks in mammalian cells. TCS pathways are ubiquitous in22

bacteria, but are generally rare in eukaryotes and absent in animals14. TCS pathways typically comprise a23

transmembrane sensor protein called a histidine kinase (HK) and a cognate intracellular effector protein called a24

response regulator (RR). In response to specific signal inputs, the HK autophosphorylates on a conserved histidine25

residue and then transfers the phosphoryl group to a conserved asparate residue in the receiver (Rec) domain of the26

RR (referred to as the HK’s kinase activity). Once phosphorylated, most RRs carry out transcriptional regulation,27

though other modes of regulation are possible15,16. Unlike typical eukaryotic receptors, in the absence of signal28

inputs, most HKs catalyze removal of the phosphoryl group from their cognate RRs (referred to the HK’s29

phosphatase activity)16,17. The presence of signal input alters the conformational state of the HK, thereby tuning its30

relative kinase and phosphatase activities18. The bifunctional nature of HKs is important for insulating TCS pathways31

from off-target interactions19,20 as well as for increasing the responsiveness to signal inputs21. The recently developed32
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TCS-based receptors work by coupling ligand-induced dimerization of the receptor to HK kinase activity and thus33

RR-driven gene expression12,13. The lack of any known examples of histidine-aspartate phosphorelays in mammalian34

cells strongly suggests that these introduced TCS signaling pathways are insulated from mammalian signaling35

pathways12,13,22.36

Here, we introduce a framework for engineering signal processing circuits in mammalian cells based on synthetic37

covalent modification cycles (CMCs) built with bacterial TCS proteins (Figure 1). In phosphorylation cascades,38

phosphatases that are constitutively active or part of a negative feedback loop can impart tunability and robustness to39

perturbations into the system through the reversal of substrate phosphorylation23–27. To develop such circuits, we40

isolate monofunctional kinases and phosphatases from the bifunctional E. coli HK EnvZ28, then use specific41

phosphorylation and dephosphorylation of EnvZ’s cognate RR OmpR to regulate downstream gene expression. First,42

we illustrate the tunability of this system by using the level of an EnvZ phosphatase to shift the sensitivity of43

OmpR-driven gene expression output to the levels of an EnvZ kinase. Further, we show that kinase-to-output dose44

responses can be tuned by regulating phosphatase expression with small molecule-inducible degradation domains.45

We then build upon this tunability to create novel phosphorylation-based genetic sensors that are capable of cell type46

classification and enable cell-type specific signaling responses.47

A major challenge for developing synthetic genetic circuits is undesirable context-dependence due to factors such48

as off-target binding of gene regulators and overloading of cellular factors used in gene expression (i.e. resources),49

which can perturb gene expression levels29,30. Currently, there is a lack of synthetic signaling circuits that are robust50

to such context effects in mammalian cells. To address this problem, we introduced robustness to perturbations into51

the kinase-to-output process via negative feedback control. The negative feedback is achieved by co-expressing the52

output protein with a phosphatase that dephosphorylates OmpR, returning it to an inactive form. The feedback53

strength and output level can be tuned via a small molecule-inducible degradation domain fused to the phosphatase.54

The addition of feedback control substantially reduces cell-to-cell noise in output expression and mitigates the effects55

of off-target translational repression and transcriptional resource loading on the signaling input-output response.56

Overall, we present the design and characterization of phosphorylation-regulated genetic modules that will enable57

tunable, precise, and robust control of signaling outputs in mammalian cells.58

2 Results59

2.1 Isolation of kinase and phosphatase activity from EnvZ60

As a model system for engineering synthetic signal processing circuits, we utilized the well-characterized61

EnvZ-OmpR TCS pathway from E. coli31. Both in vitro and in vivo in bacteria, it has been shown that the kinase and62
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phosphatase activities of the bifunctional HK EnvZ can be isolated through various mutations32–34, truncations35,36,63

and domain rearrangements37. In mammalian cells, it was shown that wild-type (WT) EnvZ is constitutively active22,64

indicating that it has net-kinase activity, but may still retain some phosphatase activity and thus not operate as65

potently as a pure kinase. To create more monofunctional kinases and phosphatases from EnvZ in mammalian cells,66

we generated several variants of EnvZ using established mutations, truncations, domain rearrangements, and novel67

combinations thereof (Figure 2 & Supplementary Figure 4).68

To test for kinase activity, we evaluated the ability of EnvZ variants to activate an OmpR-driven reporter when69

transfected into HEK-293FT cells (Supplementary Figure 5). OmpR-activated promoters were made by placing three70

to nine OmpR binding sites upstream of a minimal CMV promoter or a synthetic minimal promoter (YB_TATA22,71

referred to as minKB), of which the 6xOmpRBS-minCMV variant was chosen for use in most downstream72

experiments due to its high fold-change in response to OmpR phosphorylation (Supplementary Figure 6). The levels73

of OmpR-driven gene expression induced by full-length mutants of EnvZ are shown in Figure 2a. From this initial74

screen, we identified two variants, EnvZm2 [T247A] and EnvZm2[AAB], the latter having an extra DHp domain75

fused to EnvZ[223+]37, that induced higher levels of output expression than WT EnvZ, suggesting that their76

phosphatase activity is reduced. Variants expected to be deficient in ATP binding or autophosphorylation based on77

previous studies in bacteria were indeed found to lack activation of OmpR-VP64, indicating that in mammalian cells78

they also lack kinase activity (Supplementary Figure 5). Moving forward, we used EnvZm2 as our kinase of choice79

due to the highly conserved ability of the T247A mutation to reduce or eliminate phosphatase activity in other80

HKs38,39.81

To test for phosphatase activity, we co-expressed EnvZm2 with OmpR-VP64 to generate phosphorylated82

OmpR-VP64 (P-OmpR-VP64), and then evaluated the ability of our EnvZ variants to deactivate expression of an83

OmpR-driven reporter (Supplementary Figure 7). While several EnvZ variants predicted to be phosphatases based on84

previous studies indeed showed deactivation of OmpR-driven expression at high concentrations, this deactivation was85

comparable to that of a variant predicted to lack any catalytic activity (EnvZm0m1m2m386

[H243A/D244A/T247A/N343K]) (Supplementary Figure 7). Thus, it is possible that these variants were primarily87

inhibiting output expression through sequestration of P-OmpR-VP64 from its target promoter, rather than through88

dephosphorylation. Indeed, high dosages of such a variant (EnvZm1, [T247A]) can reduce "leaky" activation of89

output reporter by non-phosphorylated OmpR-VP64, indicating that the observed reduction in output can occur90

absent dephosphorylation (Supplementary Figure 8). Notably, at both low (Supplementary Figure 7) and high91

(Supplementary Figure 8) dosages of the variant EnvZ[A] (DHp domain only), we found no apparent phosphatase92

activity, contrasting with the original report36. Only variant EnvZm1[AAB], having an extra DHp domain fused to93

EnvZ[223+] with the mutation [D244A] in both DHp domains, was found to deactivate OmpR-driven expression94

more strongly than EnvZm0m1m2m3 (which lacks catalytic activity) (Supplementary Figure 7), suggesting95
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EnvZm1[AAB] has phosphatase activity in mammalian cells. However, at higher dosages of EnvZm1[AAB] and in96

the absence of EnvZm2, OmpR-VP64 appears to become activated, indicating that this variant may still retain some97

kinase activity (Supplementary Figure 8).98

Because of the constitutive kinase activity of WT EnvZ and the lack of clear monofunctional phosphatase activity99

by purported phosphatase variants of EnvZ, we hypothesized that in mammalian cells, EnvZ may take a structural100

conformation that is unfavorable for phosphatase activity. Previously, it was shown that the capability for101

autophosphorylation by the HK AgrC can be modulated through changing the rotational state of the DHp domain40.102

We hypothesized that this rotational conformation may also affect access to the phosphatase state. We therefore103

followed the approach of Wang et al.40 to force the alpha helices in the DHp domain of EnvZ into fixed rotational104

states using GCN4 leucine zippers (Figure 2c & Supplementary Figure 4). We generated a library of 10105

rotationally-locked variants (EnvZt#1-10) with and without a mutation to eliminate ATP binding and hence kinase106

activity (m3 – [N343A])33. As expected, we observed a range of OmpR-driven gene expression levels that depend on107

the putative rotational angle of the DHp domain (Figure 2c). Interestingly, compared to WT EnvZ, all of the EnvZt#108

variants yielded equivalent or weaker output activation by OmpR-VP64, while also reducing EnvZm2-induced109

expression by at least 3-fold (Figure 2c). Comparing the exact levels of output with and without EnvZm2 in Figure110

2c, we found that EnvZt# variants are capable of overriding the initial phosphorylation state of OmpR-VP64 to111

ultimately set a defined level of output (Supplementary Figure 9). Most strikingly, all EnvZm3t# variants showed112

potent and nearly identical deactivation of OmpR-driven expression back to baseline levels regardless of their113

rotational conformation, indicating that all GCN4-fused truncations possess similar phosphatase activities. These114

data suggest that the fusion protein itself takes on a conformation that is amenable to phosphatase activity, possibly115

due to the formation of a more rigid structure18, whilst the rotational state of the DHp domains mostly affects116

autophosphorylation.117

To more quantitatively compare the activation and deactivation of OmpR-driven expression by each of the EnvZ118

variants described above, we fit simple first-order models to estimate the dosages of each variant needed for119

half-maximal activation or deactivation (K1/2) of the output (Supplementary Figure 10). Notably, the EnvZm3t#120

variants deactivated output expression with K1/2 values 2- to 3-fold smaller than our previous best putative121

phosphatase, EnvZm1[AAB], and 10- to 20-fold smaller than the enzymatically null variant EnvZm0m1m2m3122

(Supplementary Figure 10), indicating potent phosphatase activity. Moving forward, we chose to use the variant123

EnvZm3t10 as our phosphatase because it has one of the lowest values of K1/2 among all EnvZ variants and124

completely deactivates the output down to basal levels (Figure 2 & Supplementary Figure 10).125

To ensure that the observed putative phosphatase activity is not explained by formation of partially or completely126

inactive heterodimers between any putative phosphatases and EnvZm2, we repeated the experiments described above127

with CpxA in place of EnvZm2 (Supplementary Figure 11a). CpxA has weak off-target kinase activity for OmpR20,128
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and broadly, heterodimerization between different HKs is rare41. In the presence of CpxA, the putative phosphatases129

similarly, and in some cases more potently, deactivate OmpR-driven expression (Supplementary Figure 11b-c). Thus,130

the observed output deactivation is independent of how OmpR-VP64 is phosphorylated.131

Direct cellular verification of EnvZm3t10 phosphatase activity is challenging due to the acid-lability of132

phosphohistidine and phosphoaspartate bonds42,43 and lack of commercial antibodies against P-OmpR. To verify that133

EnvZm3t10 acts as a phosphatase, we thus carried out additional control experiments. Deactivation of OmpR-driven134

output by EnvZm3t10 is abolished when adding mutations predicted to eliminate its phosphatase activity, or using135

constitutively active variants of OmpR-VP64 (Supplementary Figure 12). Thus, the observed putative phosphatase136

activity is not caused by blocking interactions between the kinase and OmpR-VP64, nor by sequestration of137

OmpR-VP64. It is thus unlikely that EnvZm3t10 is acting through a mechanism other than direct dephosphorylation138

of P-OmpR-VP64.139

2.2 Tuning kinase-output responses via phosphatase activity140

We next constructed a family of tunable genetic devices in which the tunability arises from a CMC between our141

preferred kinase (EnvZm2) and phosphatase (EnvZm3t10) acting on OmpR-VP64 (Figure 3a). The inputs to these142

devices are the enzymatic activities of the kinase (uK) or phosphatase (uP), or factors that affect such rates. The143

device outputs are the transcriptional and translational products driven by OmpR-VP64. To evaluate the tunability of144

our engineered CMC, we compared the level of OmpR-VP64-driven output across combinations of kinase and145

phosphatase levels, with the phosphatase level regulated at the DNA and protein levels (Figure 3b-d).146

First, we titrated both kinase and phosphatase levels by dosing in different amounts of plasmid DNA per sample147

using poly-transfection44 (Figure 3b). The 2D input-output map indicates that output expression increases gradually148

with the ratio of kinase to phosphatase dosages (Figure 3b, left). As the dosage of phosphatase increases, the amount149

of kinase needed to activate the output increases (Figure 3b, center), indicating a decreased sensitivity to kinase input150

levels. Likewise, as the level of kinase increases, the amount of phosphatase needed to deactivate the output also151

increases (Figure 3b, right). Both results are in accordance with standard models of CMCs23 (see Supplementary152

Note 1 for our derivation).153

Following the above results, we predicted that we could tune output expression through modulation of154

phosphatase stability (Figure 3c). To do so, we fused the phosphatase to small molecule-inducible degradation155

domains (DDs) DDd45 and DDe46, which are stabilized by addition of trimethoprim (TMP) and 4-hydroxytamoxifen156

(4-OHT), respectively. N-terminal fusions of both DDd and DDe showed the highest fold-changes in output157

expression upon addition of the cognate small molecule (Supplementary Figure 13); we chose to move forward with158

DDd/TMP for further testing due to lower background signal than DDe/4-OHT. Titration of both the kinase dosage159
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and TMP concentration shows that the output is high only when the kinase is high and TMP is low (Figure 3c, left).160

Addition of TMP decreases the sensitivity of the output to kinase (Figure 3c, center) and addition of kinase decreases161

the sensitivity of the output to TMP (Figure 3c, right).162

The response of the TMP-tuned design to kinase and TMP levels depends on the initial level of phosphatase in the163

cell. If the level of phosphatase is initially too high, the miRNA cannot suppress it enough to enable output induction164

by the kinase; conversely, if the initial level of phosphatase is too low, the kinase dominates the CMC even without165

any miRNA added (Supplementary Figure 14). Thus, there is an optimal level of phosphatase at which the ability of166

TMP to induce deactivation of gene expression is maximized.167

2.3 Engineered, cell type-specific signaling responses168

In addition to ectopically-expressed factors, endogenous cellular factors can also be plugged in as inputs to the169

kinase (uK) and phosphatase (uK) in our engineered CMC, enabling device performance to be tuned based on factors170

such as the state of the cell. One particularly useful class of intracellular inputs are miRNAs, which are differentially171

expressed across cell types47 and can be used to identify specific cell states48. Building on our CMC, we expected172

that miRNAs can be targeted to the mRNAs of the kinase or phosphatase to decrease or increase output expression,173

respectively (Figure 4a). An important and difficult challenge in miRNA sensing is to achieve good on/off responses174

from the conversion of "high" miRNA inputs into high levels of output expression44. We thus investigated our CMC175

as a scaffold for improving miRNA input processing and generating cell-type specific signaling responses.176

As a proof of concept, we built a sensor for a cancer-associated miRNA, miRNA-21-5p (miR-21), which has177

previously been used to classify HeLa cells separately from HEK cells44,48. To do so, we placed four miR-21 target178

sites (T21) in the UTRs of the phosphatase transcription unit (Figure 4b). As a control, we replaced the miR-21 target179

sites with four target sites for the synthetic miR-FF4 (TFF4)49. In cells expressing miR-21, we expected the180

phosphatase to be knocked down, thereby dramatically shifting the balance of the CMC to favor phosphorylation of181

OmpR-VP64 and thus activation of the output. Since P-OmpR has only a ∼10-30-fold higher affinity for DNA182

binding compared to OmpR50 (which we validated in HEK-293FT cells – Supplementary Figure 17), we included an183

endoribonuclease (endoRNase)-based incoherent feedforward loop (iFFL)51 to constrain cell-to-cell variance in the184

expression level of OmpR-VP64 (Supplementary Figure 16). This is helpful due to the high DNA dosage variance of185

transfections, within which only a small subset of cells typically receive the ideal dosage of OmpR-VP64, and cells186

that receive high DNA dosages are susceptible to spurious activation of output expression by unphosphorylated187

OmpR.188

To test the circuit, we first considered the effect of miR-21 on the kinase-output dose-response curve. We expected189

that endogenous expression of miR-21 would selectively sensitize output expression to kinase levels in HeLa cells.190
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Without the phosphatase, the kinase can induce output expression in both HEK and HeLa cells with either circuit191

variant (T21 or TFF4), though with stronger output in HeLa cells (Figure 4d, left). When the phosphatase is present192

and highly expressed, it suppresses output induction by the kinase in all cases except in HeLa cells with the T21193

circuit variant (Figure 4d, right). Note that without the iFFL, the output expression has higher ‘leaky’ background194

expression at low ratios of kinase to phosphatase dosages (Supplementary Figures 18 & 19). Depending on the195

phosphatase dosage, the T21 variant in HeLa cells has between 10- to 1000-fold higher sensitivity to kinase input196

than the TFF4 variant (Supplementary Figure 22). Thus, these results illustrate a novel application of miRNA sensors197

for cell-type specific tuning of signaling responses.198

To optimize our sensor for cell type classification, we followed the approach of Gam et al.44 to systematically199

compare the percent of cell positive for output expression at different ratios of each circuit component using200

poly-transfection. In our previous classifier designs, a transcriptional repressor such as LacI48 or BM3R144 is201

repressed by the miRNA, thereby de-repressing output transcription. Poly-transfection analysis showed that miRNA202

sensing in this system is optimized at a particular expression level of repressor that is not too high to prevent203

de-repression and not too low to prevent repression in the first place, making optimization difficult44. In our current204

design, miRNA sensing is instead optimized by the ratio of kinase to phosphatase activity, which is a more flexible205

and easily tuned quantity.206

We found that a 1:1:0.5 ratio of Kinase:Phosphatase:Output plasmids (the latter of which was co-delivered with207

the CasE/OmpR-VP64 iFFL) maximized classification accuracy for the T21 vs TFF4 variants in HeLa cells208

(Supplementary Figure 20). At this ratio, we obtained a significant ∼50% increase in cells positive for output reporter209

between the circuit variants in HeLa cells and a ∼55% increase between HeLa and HEK-293 for the T21 variant (p =210

0.0017 and 0.0056 respectively, paired two-tailed Student’s T-test – Figure 4d). The area under the curve (AUC) of211

the receiver operating characteristic (ROC) curve of the circuit was 0.83 ± 0.01 when comparing T21 vs TFF4212

variants in HeLa cells and 0.93 ± 0.01 when comparing the T21 variant in HEK-293 vs HeLa cells (Supplementary213

Figure 20). Examining various combinations of dosages of the kinase, phosphatase, and output reporter, we found214

that the AUC of the resulting ROC-like curve of our phosphorylation-based classifier (0.93 ± 0.04 – Supplementary215

Figure 21) is higher than that of our recently-optimized transcriptional repressor-based classifier (0.84 – see SI Fig.216

16 in Gam et al.44) for discriminating HEK vs HeLa cells, indicating improved overall performance for cell-type217

classification. Thus, the CMC can be used for robust miRNA input processing with minimal tuning effort through218

finding the optimal ratio of kinase to phosphatase activities.219
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2.4 Design of a phosphorylation-based feedback controller220

The response of expressed genes to their extracellular (or intracellular) inputs are often stochastic and thus221

imprecise across individual cells52,53. In addition, the intracellular context affects the level of gene expression222

induced by signaling29,30, due to factors such as off-target interactions54 or resource competition51,55,56 among223

engineered genes. To remedy these issues and enable construction of signaling circuits that enforce precise and224

robust signaling responses across cells, we applied feedback control to our CMC (Figure 5a). In both natural57 and225

synthetic58 systems, feedback control can reduce cell-to-cell variance of gene expression in response to signal inputs.226

Negative feedback has also been used to make gene expression robust to perturbations that affect processes within the227

feedback loop59–61. An advantage of our controller design is that it can be applied without modifying any promoters228

or intermediate RNA or protein species in the pathway (e.g. via the generation of fusions), and simply requires a229

modification of the output mRNA.230

In our controller, the phosphatase is co-expressed with the output gene via a 2A linker62 and suppresses its own231

production via dephosphorylation of P-OmpR-VP64 (Figure 5b). Feedback strength can be tuned through TMP232

regulation of the DDd-fused phosphatase. The level of output set by the controller arises from competitive233

phosphoregulation of OmpR-VP64 by the kinase and feedback phosphatase. In an ideal system operating with both234

enzymes saturated, the concentrations of the phosphatase and the output species become insensitive to disturbances235

affecting their gene expression processes (see Model Box). As TMP selectively regulates phosphatase but not output236

stability, it can be used as an input to the controller to tune the strength of the feedback. Under the ideal conditions237

presented above and as long as OmpR-VP64 has not saturated the output promoter, the relationship between the238

levels of kinase and output is independent of both the exact mechanism by which OmpR-VP64 activates output239

expression as well as of any perturbations in the transcription and translation processes of the output/phosphatase (see240

Model Box).241

To evaluate the performance of the feedback controller, we first measured the kinase-output responses for open242

loop (OL) and closed loop (CL) variants. The OL system was made by replacing the phosphatase with Fluc2, which243

has no effect on OmpR phosphorylation (Figure 2b-c). Since the presence of negative feedback reduces the level of244

output expression for a given input level of kinase, we tested several OL variants in which the amount of output245

reporter in transfections was reduced by 3x, 9x, 27x, or 81x (respectively referred to as Fluc2/3, Fluc2/9, Fluc2/27,246

and Fluc2/81). We define kinase responsiveness as maximal output fold-change in the presence versus absence of247

kinase. The kinase responsiveness of the OL systems varies from ∼10- to ∼55-fold. For the CL system variant248

without DDd fused to the phosphatase, the kinase responsiveness is ∼3.5-fold (Figure 5c, left – see Supplementary249

Figures 23-26 for full poly-transfection scheme and data). Adding DDd to the phosphatase increases the CL kinase250

responsiveness to ∼7.6-fold without TMP, and 6.4-fold for the lowest non-zero amount of TMP that we tested: 0.001251
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µM (Figure 5c, right). The kinase responsiveness of the CL system decreases as more TMP is added (and thus the252

phosphatase is stabilized) to the point of approximately matching that of the non-DDd CL system (Figure 5c, right).253

The maximum output level of the DDd CL system is up to 10-fold higher than that of the non-DDd CL system and254

within ∼5-fold of that of the OL system. Thus, tuning the feedback strength via TMP allows the CL system to255

recover approximately one third of the dynamic range of the OL system.256

In the absence of kinase input, we see similar levels of noise in output expression for all OL and CL variants;257

however, as the dosage of kinase is increased, we observe a decrease in noise for CL variants and an increase in noise258

for OL variants (Figure 5d). At high dosages of kinase, the output noise for OL devices decreases again, but does not259

reach the low noise achieved in CL devices. The higher noise in OL systems can be attributed to a more digital-like260

transition in output expression per cell as the kinase dosage increases, whereas in CL systems we observe a smooth,261

unimodal shift in output expression per cell (Figure 5e, see Supplementary Figure 27 for all variants). The decrease262

in noise in CL expression as a function of increasing kinase can likely be attributed to the increasing concentration of263

P-OmpR-VP64 on which the phosphatase can actuate negative feedback. Interestingly, tuning feedback strength with264

TMP appears to have little effect on the magnitude of output noise observed (Supplementary Figure 28), suggesting265

that the faster degradation of the phosphatase did not push our system into a regime where the negative feedback is266

significantly attenuated.267

Comparing the noise as a function of output level for all CL and OL variants, we can see that the noise in the OL268

systems peaks at intermediate absolute levels of output (regardless of the kinase dosage needed to achieve such an269

output level for a given OL variant), whereas the noise in the CL systems decreases as the output increases due to the270

factors described above (Figure 5f). The pattern of noise in the OL variants can potentially be explained by stochastic271

transcriptional variation among cells when the output promoter is not saturated. Through negative feedback, the CL272

system is likely able to suppress this source of noise.273

2.5 Robustness to perturbations via feedback control274

According to our mathematical modeling comparing the OL and CL circuits, the presence of negative feedback is275

expected to impart robustness to perturbations that affect expression of the output protein (see Model Box). We276

analyzed robustness in terms of both fold-changes in gene expression resulting from the perturbations and a277

robustness score (100% minus the percent deviation from the unperturbed level); a high degree of robustness is278

indicated by small absolute fold-changes and high robustness scores. We tested the capability of the CL system to279

impart robustness of output expression levels to perturbations that model off-target regulation and resource loading280

(Figure 6a). To model off-target regulation by an endogenously- or ectopically-expressed gene regulator such as a281

miRNA, we expressed miR-FF4, which binds and cleaves a target site (TFF4) placed in the 3’ UTR of the282
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output/phosphatase mRNA, thereby causing mRNA degradation. To model resource loading, we expressed283

Gal4-VPR, which strongly sequesters transcriptional resources, such as those recruited by the VP64 activation284

domain fused to OmpR, thereby reducing transcription of other genes51. In addition to the modeled effects, these285

perturbations are useful because they affect output production both before (Gal4-VPR) and after (miR-FF4)286

transcription, enabling comparison of the CL system’s ability to respond to perturbations at different stages of gene287

expression.288

As expected, we found that the CL system is indeed more robust to miR-FF4 and Gal4-VPR perturbations than289

comparable OL variants (Figure 6b-e). Detailed comparisons of the response of all OL and CL variants to both290

perturbations are provided in Supplementary Figures 29 & 30. For illustration, we highlight and compare two OL and291

two CL variants with similar basal output levels in the absence of kinase (Fluc2, Fluc2/3, EnvZm3t10,292

DDd-EnvZm3t10 + 0.001 µM TMP – Figure 6b). Without kinase, there is little difference between the effects of293

miR-FF4 and Gal4-VPR on the OL and CL systems (Figure 6c, left panels), consistent with the expected lack of294

feedback actuation in the absence of P-OmpR-VP64 and our earlier findings of similar levels of noise in the same295

regime (Figure 5d). At higher kinase input levels, the fold-changes in output expression for the CL variants in296

response to both perturbations are substantially less than those of the OL variants (Figure 6c, right panels).297

The relative decrease in fold-changes as a function of kinase input dosage is plotted in Figure 6d for two levels of298

miR-FF4 and Gal4-VPR perturbations that knock down the OL systems to similar degrees. At medium-to-high299

kinase input levels, the feedback controller can respond to the perturbations by sustaining the output level to within300

2-4-fold of the nominal (unperturbed) levels, improving significantly over the 6-10-fold changes observed in the OL301

systems. The relatively weaker output suppression by Gal4-VPR for both the OL and CL variants at low kinase302

dosages may result from generally weaker effects of transcriptional resource sequestration on basal transcription vs303

activated transcription63. This may offset the general increased susceptibility of the CL system to perturbations in the304

low-kinase regime, causing the CL systems to be more evenly perturbed by Gal4-VPR across kinase dosages.305

Because negative feedback reduces output expression, and since both miR-FF4 and Gal4-VPR knock down gene306

expression, a full comparison of the effects of these perturbations on the OL and CL systems must account for307

differences in the nominal output expression level. This is because lower nominal output levels can have a reduced308

measurable dynamic range of knockdown due to detection limits imposed by the autofluorescence background. To309

account for varying nominal output levels for OL and CL systems at different kinase input levels, we compared the310

nominal output level versus robustness score for each device. Collating all CL and OL variants at the same miR-FF4311

and Gal4-VPR dosages as in Figure 6d, we can see that the CL systems are nearly always more robust than the OL312

systems for a given nominal output level (Figure 6e). The only substantial overlap in the plots between the OL and313

CL systems occurs at low kinase inputs to the CL system. Quantitatively, for a given nominal output level, we see a314

20-30 percentage point increase in robustness score for the CL systems compared to the OL variants. Comparisons315
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across additional dosages of each perturbation show similar results (Supplementary Figures 31 & 32). Thus, our316

phosphorylation-based feedback controller is capable of reducing the impact of perturbations on expression of the317

output gene at both the transcriptional and post-transcriptional levels. Coupled with the reduction in noise (Figure 5),318

these data indicate that the feedback controller can successfully impart precise, tunable, and robust control over gene319

expression in mammalian cells.320

3 Model Box321

Here we develop a mathematical model to show that covalent modification cycle (CMC)-mediated feedback

enables the expression level of a regulated gene to be robust to disturbances. In particular, for a fixed kinase level

(Kt), we treat the genetic circuit shown in Figure 6 as feedback interconnection of two dynamical processes with

input/output (I/O): an engineered CMC that takes phosphatase concentration (Pt) as input and outputs P-OmpR-VP64

concentration (X∗), and a gene expression process that takes X∗ as input to produce the phosphatase Pt as output. We

use a standard Goldbeter-Koshland model23 for the dynamics of the CMC:

d

dt
X∗ = θk

(Xt − X∗)Kt

(Xt − X∗) + KM,k

− θp

X∗Pt

X∗ + KM,p

, (1)

where θk and θp are catalytic rate constants of the kinase and the phosphatase, respectively, KM,k and KM,p are their

respective Michaelis-Menten constants, and Xt is the total amount of OmpR-VP64 (i.e., OmpR-VP and P-OmpR-VP).

The expression of Pt is regulated by an OmpR-activated promoter, which gives rise to the following dynamics:

d

dt
Pt = α(1 − w)φ(X∗) − γPt, (2)

where α is the production rate of Pt that lumps the rate constants for transcription, translation, and mRNA decay, φ(·)

is a Hill function satisfying φ′ > 0 for all X∗, γ is the protein decay rate constant, and 0 ≤ w < 1 is a disturbance that

models the fold change in production rate of Pt, which could either arise from indirect transcriptional repression via

resource loading or from direct post-transcriptional repression via miRNA (see Figure 6). The output from this

feedback-regulated gene is Y = ρPt, since the output protein and phosphatase are co-transcribed but produced as

separate proteins using a 2A-linker. We find that the relative sensitivity of output to disturbance w for this closed-loop

system (1)-(2) at a given output level Y is

SCL(Y) =
1

Y
·

∣
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


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. (3)

where h is the transfer curve of the CMC. In comparison, when the CMC in (1) is not connected with (2), the relative322

sensitivity of y to disturbance w for the open-loop system (2) is SOL =
1

1−w
. Hence, we have SCL < SOL for all y323

regardless of where the sensitivity is evaluated. This implies that the closed-loop system is always more robust than324
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the open-loop system to disturbance w. To enable near-perfect adaptation to w, it is sufficient to increase325

T :=
∣

∣

∣

∣

d
dy

(φ ◦ h)
∣

∣

∣

∣

=
∣

∣

∣h′ · φ′
∣

∣

∣. In particular, if T → ∞, then SCL → 0, implying that the closed-loop system can perfectly326

adapt to w. Specifically, for any fixed X∗ and y, there exists sufficiently small KM,p and sufficiently large Xt to make327

|h′| arbitrarily large. On the other hand, to ensure T is large, |φ′| must not be too small. This requires us to design the328

system so that the OmpR-activated promoter is not saturated. Hence, the KD of binding between phosphorylated329

OmpR and its target promoter must not be too small27. Promoter saturation limits the ability of the output to respond330

to changes in OmpR phosphorylation, and thus can limit the benefit of the negative feedback to achieve robustness to331

perturbations. Under the ideal operating conditions described above, both enzymes are saturated by their substrates,332

which is possible for a small KM,p and large Xt. Specifically, if KM,p ≪ X∗ and Xt ≫ KM,k, equation (1) can be333

approximated by dX∗/dt = θkKt − θpY/ρ, leading to quasi-integral feedback control27.334

4 Discussion335

Here, we developed tunable and precise signaling circuits in mammalian cells that are robust to perturbations336

using engineered CMCs derived from bacterial two-component signaling (TCS) proteins (Figure 1). We first337

screened engineered variants of the E. coli histidine kinase (HK) EnvZ to isolate kinase and phosphatase activity338

from this bifunctional protein (Figure 2). We demonstrated tunability in kinase-induced gene expression responses339

conferred by small molecule-inducible expression of a phosphatase (Figure 3). Building upon this tunability, we340

showed that incorporating target sites for endogenous miRNAs can be used to create cell type-specific signaling341

responses through knockdown of phosphatase expression. Co-expressing the phosphatase with the output, we created342

a tunable negative feedback loop that reduces both cell-to-cell variation and sensitivity to perturbations of343

kinase-induced gene expression (Figure 5 & 6).344

Combined with recent advances in utilizing TCS proteins to engineer synthetic receptors in mammalian cells12,13
345

and to rewire the specificity of response regulators (RRs) in bacteria64, our platform will enable construction of346

sophisticated synthetic signaling systems that can connect intracellular and extracellular inputs to diverse target347

output in mammalian cells. While much work has so far focused on synthetic receptor engineering10, incorporation348

of downstream signal processing moieties to improve signaling pathway function has only recently begun to be349

explored65. In particular, the ability to easily tune signaling pathway activity through phosphatase expression and the350

ability to robustly control downstream gene expression processes will facilitate the creation of synthetic signaling351

systems that can operate across diverse cellular contexts. In the future, our circuits can form the basis for advanced352

cellular computing66 and feedback control67 architectures. In addition, connecting signaling pathway activity to353

endogenous gene regulation, such as through miRNA regulation of pathway components, will facilitate applications354

in guiding differentiation or programming custom signaling for different cellular states.355
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The high degree of orthogonality among existing TCS pathways68–70 and the relative ease of finding new356

orthogonal HK/RR pairs71 indicates that TCS pathways will be a bountiful source of orthogonal signaling pathways357

for use in mammalian cells. To support this effort, we identified several HK-RR pairs that show good orthogonality in358

mammalian cells (Supplementary Figure 1-3). Though TCS pathays are absent in animals14, histidine and aspartate359

phosphorylation is more prevalent than previously thought43. The lack of observed histidine to aspartate360

phosphotransfer in animals indicates a strong likelihood of orthogonality between TCS pathways and existing361

signaling networks in animal cells, though future work will be needed to examine possible cross-talk.362

Through the implementation of feedback control via CMCs, we have opened the door to creating increasingly363

precise and robust responses in engineered signaling pathways. Reducing cell-to-cell variation in signaling output364

can be critical for ensuring that cells in a population make uniform, rather than multi-modal or stochastic, decisions.365

Reducing sensitivity of output expression to perturbations will help further control individual cellular366

decision-making and ensure that engineered signaling systems can operate across diverse cell types and states51. In367

the future, it may be possible to further improve the robustness to perturbations conferred by our feedback controller.368

To achieve near-perfect adaptation to perturbations, the system parameters need to be tuned such that it can operate as369

a quasi-integral feedback controller27,72. We identified that the KM of the phosphatase is likely similar to or higher370

than the KD of P-OmpR, reducing the efficacy of the feedback (see Model Box). Increasing KD

KM
helps ensure that the371

phosphatase is saturated with P-OmpR while the output promoter is not, both of which are critical conditions for the372

feedback to work in a quasi-integral manner27 (see Model Box). Further discussion of possible future approaches to373

achieve quasi-integral feedback control with our system are discussed in Supplementary Note 2.374

In natural systems, feedback control plays a critical role in regulating signaling pathway activities. Both negative375

and positive feedback are common in TCS pathways73. As with the robustness to perturbations conferred by our376

feedback controller, negative feedback in natural and engineered TCS pathways in bacteria also allows for adaptation377

to signal inputs25,68,73,74. A conceptually similar controller to our design is found in bacterial chemotaxis, in which378

feedback control via reversible methylation of the receptor protein Tar enables near-perfect adaptation of flagellar379

motion to chemoattractants72,75. Another close analog can be found in the human ERK1/2 MAPK (mitogen-activated380

protein kinase) pathway76. In this pathway, Mek is analogous to our HK kinase, Erk is analogous to OmpR-VP64381

(though Erk itself only indirectly activates transcription through its targets77,78), and the Erk-induced phosphatases382

DUSP5/6 are analogous to our HK phosphatase76,79. It has been observed that the expression levels of DUSP5/6 are383

unaffected by ERK1/2 knockdown80, which we propose may result from adaptation of DUSP5/6 levels to ERK1/2384

levels due to the negative feedback loop. Negative feedback in both natural and engineered systems, including the385

ERK1/2 MAPK pathway, has been shown to convert digital, multimodal input-output responses to more graded,386

linear, and uniform responses57,58,81. Likewise, our feedback controller is capable of imparting graded, uniform387

activation of gene expression in the cell population. Overall, these examples highlight how feedback control plays an388
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important role in the functions of natural systems and will thus serve as a key building block for future synthetic389

signaling pathways.390

In addition to feedback control, natural signaling pathways also incorporate constitutive phosphatase and391

regulators thereof to tune signaling functions across diverse cell types. For example, signaling through the T cell392

receptor (TCR) is regulated by several inhibitory receptors such as CD45 and phosphatases such as PTPN22, which393

suppress TCR pathway activation unless sufficiently high stimulus is encountered82. In developing thymocytes,394

miR-181a-5p suppresses expression of PTPN22, thereby allowing for TCR pathway stimulation at lower antigen395

affinities, providing critical signals for survival and development towards mature T cells83,84. In mature T cells, a396

variety of miRNAs regulate TCR signaling, other signaling pathways, the cell cycle, and secretion, thereby tuning the397

immunological responses of T cells to their environments85. Thus, tunable phosphatases and miRNA-regulated398

signaling responses similar to the ones we developed can be powerful tools for achieving stage-specific control of399

differentiation and tuning cell behavior in different contexts. Future designs may also incorporate miRNAs that400

regulate kinase expression to provide an additional layer of tunability, for example by miRNAs that are lower in cell401

types or states where higher signaling strengths are desired.402

As synthetic biology progresses, the development of artificial signaling pathways that reflect natural pathways403

through incorporation of multiples layers of negative feedback and tuning will facilitate increasingly sophisticated404

and robust control of cellular behavior. The customizable signaling responses enabled through platforms such as ours405

may be combined with engineered receptors12,13 and modular effectors64 to engineer signaling pathways that406

transmute extracellular inputs to various intracellular functions in mammalian cells. Such engineered signaling407

pathways will enable precise cell-cell communication and environmental sensing, with applications in engineering408

cell therapies, scaling up bioproduction, and programming development of stem cells into specific cells, tissues, and409

organoids.410

5 Methods411

Modular plasmid cloning scheme412

Plasmids were constructed using a modular Golden Gate strategy similar to previous work in our lab44,86. Briefly,413

basic parts ("Level 0s" [pL0s] – insulators, promoters, 5’UTRs, coding sequences, 3’UTRs, and terminators) were414

created via standard cloning techniques. Typically, pL0s were generated via PCR (Q5 and OneTaq hot-start415

polymerases, New England BioLabs (NEB)) followed by In-Fusion (Takara Bio) or direct synthesis of shorter inserts416

followed by ligation into pL0 backbones. Oligonucleotides were synthesized by Integrated DNA Technologies (IDT)417

or SGI-DNA. pL0s were assembled into transcription units (TUs – "Level 1s" [pL1s]) using BsaI Golden Gate418

reactions (10-50 cycles between 16degC and 37degC, T4 DNA ligase). TUs were assembled into multi-TU plasmids419
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("Level 2s" [pL2s]) using SapI Golden Gate reactions. All restriction enzymes and T4 ligase were obtained from420

NEB. Plasmids were transformed into Stellar E. coli competent cells (Takara Bio). Transformed Stellar cells were421

plated on LB agar (VWR) and propagated in TB media (Sigma-Aldrich). Carbenicillin (100 µg/mL), kanamycin (50422

µg/mL), and/or spectinomycin (100 µg/mL) were added to the plates or media in accordance with the resistance423

gene(s) on each plasmid. All plasmids were extracted from cells with QIAprep Spin Miniprep and QIAGEN Plasmid424

Plus Midiprep Kits. Plasmid sequences were verified by Sanger sequencing at Quintara Biosciences. Genbank files425

for each plasmid and vector backbone used in this study are provided in Supplementary Data. Plasmid sequences426

were created and annotated using Geneious (Biomatters).427

In addition to the above, we devised a new scheme for engineering synthetic promoters using what we call "Level428

Sub-0" (pSub0) plasmids. The approach for creating promoters from pSub0 vectors is illustrated in Figure 33. In this429

system, promoters are divided into up to 10 pSub0 fragments. Because the core elements of a promoter are typically430

at the 3’ end, we made the pSub0 position vectors start with the 3’-most element and move towards the 5’ of the431

promoter. Promoter position 1 (pP1) contains the transcription start site (TSS), the +1 position for transcription432

initiation, and surrounding sequences. pP1 can also optionally contain transcriptional repressor binding sites (not433

done in this study). pP2 contains the TATA box and other upstream core promoter elements87–89 as desired. Many of434

the pP1 and pP2 sequences were derived from the minimal promoters studied by Ede et al.90. Because the spacing435

between the TATA box and +1 site are critical91, we broke apart each minimal promoter at equivalent positions such436

that they can be interchanged. pP1 and pP2 parts were generally created via PCR reactions using the base pSub0437

backbone as a template and adding the inserts via primer overhangs and In-Fusion cloning. Positions 3-10 (pP3-10)438

are ‘enhancer’ positions, wherein we generally encode binding sites (i.e. response elements) for transcriptional439

activators (such as the RRs in this study), or enhancers from constitutive promoters (not done in this study). pP3-10440

plasmids were made by directly ligating annealed primers into pSub0 pP3-10 backbones or through PCR followed by441

In-Fusion. The annealed primers were synthesized with 4 bp offsets at each end to naturally create overhangs when442

annealed. All pSub0 plasmids include BsaI binding sites in an analogous position to pL0s, such that pSub0s can be443

used directly in place of pL0s when generating pL1s (the overhangs are compatible for up to four pSub0 inserts, see444

Supplementary Table 1). Because pSub0s and pL0s use BsaI for cloning in the same way, insertion into pL0445

backbones using BsaI Golden Gate is inefficient. To more efficiently clone pSub0s into pL0 P.2 (level 0 promoter)446

plasmids, we thus generally first performed a Golden Gate reaction with the pSub0s separately from the pL0447

backbone, then ligated the Golden Gate product with a pre-fragmented and gel-extracted pL0 backbone.448

Cell culture449

HEK-293 cells (ATCC), HEK-293FT cells (Thermo Fisher), and HeLa cells (ATCC) were maintained in450

Dulbecco’s modified Eagle media (DMEM) containing 4.5 g/L glucose, L-glutamine, and sodium pyruvate (Corning)451

supplemented with 10% fetal bovine serum (FBS, from VWR). All cell lines used in the study were grown in a452
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humidified incubator at 37deg and 5% CO2. All cell lines tested negative for mycoplasma.453

Transfections454

Cells were cultured to 90% confluency on the day of transfection, trypsinized, and added to new plates455

simultaneously with the addition of plasmid-transfection reagent mixtures (reverse transfection). Transfections were456

performed in 384-, 96-, 24-, or 6-well pre-treated tissue culture plates (Costar). Following are the volumes, number457

of cells, and concentrations of reagents used for 96-well transfections; for 384-, 24- and 6-well transfections, all458

values were scaled by a factor of 0.2, 5, or 30, respectively. 120 ng total DNA was diluted into 10 µL Opti-MEM459

(Gibco) and lightly vortexed. For poly-transfection experiments, the DNA dosage was subdivided equally among460

each complex (e.g. for two complexes, we delivered 60 ng DNA in each, 40 ng for three complexes, etc.) The461

transfection regent was then added and samples were lightly vortexed again. The DNA-reagent mixtures were462

incubated for 10-30 minutes while cells were trypsinized and counted. After depositing the transfection mixtures into463

appropriate wells, 40,000 HEK-293, 40,000 HEK-293FT, or 10,000 HeLa cells suspended in 100 µL media were464

added. The reagent used in each experiment along with plasmid quantities per sample and other experimental details465

are provided in Supplementary Data. Lipofectamine 3000 was used at a ratio of 2 µL P3000 and 2 µL Lipo 300 per 1466

µg DNA. PEI MAX (Polysciences VWR) was used at a ratio of 3 µL PEI per 1 µg DNA. FuGENE6 (Promega) was467

used at a ratio of 3 µL FuGENE6 per 1 µg DNA. Viafect (Promega) was used at a ratio of 3 µL Viafect per 1 µg DNA.468

The media of the transfected cells was not replaced between transfection and data collection. For all transfections469

with TMP (Sigma-Aldrich) or 4-OHT (Sigma-Aldrich), the small molecules were added concurrently with470

transfection complexes. In each transfection reagent-DNA complex, we included a hEF1a-driven transfection marker471

to indicate the dosage of DNA delivered to each cell.472

Luciferase assays and analysis473

To measure RR-driven luminescence output in Supplementary Figure 1, we used the Promega Nano-Glo474

Dual-Luciferase Reporter Assay System, following the manufacturer’s instructions. Briefly, 6,000 HEK-293FT cells475

were transfected using the FuGENE6 reagent with 25 ng total DNA comprising the plasmids hPGK:Fluc2476

(pGL4.53), an hEF1a-driven HK, an hEF1a-driven RR, an RR-driven promoter expressing NanoLuc, and filler DNA477

at 5 ng each. The cells were cultured in 20 uL DMEM supplemented with 10% FBS in 384-well plates with solid478

white walls and bottoms (Thermo Fisher) to facilitate luminescence measurements. 48 hours post-transfection, cells479

were removed from the incubator and allowed to cool to room temperature. 20 µL of ONE-Glo EX Reagent was480

added directly to the cultures, and cells were incubated for 3 minutes on an orbital shaker at 900 revolutions per481

minute (RPM). Fluc2 signal was measured on a BioTek Synergy H1 hybrid reader, with an integration time of 1 s. 20482

µL of NanoDLR Stop & Glo Reagent was then added, and cells were again incubated for 3 minutes on an orbital483

shaker at 900 RPM. After waiting an additional 10 minutes following shaking, NanoLuc signal was measured on the484

same BioTek plate reader, with an integration time of 1 s. NanoLuc signals were normalized by dividing by the Fluc2485
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signals, thereby accounting for differences in transfection efficiency among wells.486

Identification of optimal orthogonal TCS pairs487

To identify the optimal set of orthogonal TCS interactions, we ran a MATLAB script to score all possible488

combinations of 4-7 HK-RR protein pairs. The script uses a scoring function to evaluate each particular subset of489

HKs and RRs. The data input into the scoring function is a matrix of output expression levels driven by the RRs in490

the presence of the selected HKs. The scoring function first identifies a reference value for each row and column by491

iteratively finding the maximum value in the matrix, blocking off the rest of the values in its row and column, then492

repeating until each row and column has one reference value. The reference value is then divided by the rest of the493

values in its row and column, and the quotients are multiplied together to give a score. The scores for each reference494

value are then again multiplied together to get a final score for a particular combination of HKs and RRs. After495

iterating through all possible such combinations, the highest final score for a given submatrix size is selected. The496

method gave qualitatively orthogonal combinations for up to 7 TCS pairs; we thus present the optimized 7-matrix in497

Supplementary Figure 1.498

Flow cytometry499

To prepare samples in 96-well plates for flow cytometry, the following procedure was followed: media was500

aspirated, 50 µL PBS (Corning) was added to wash the cells and remove FBS, the PBS was aspirated, and 40 µL501

Trypsin-EDTA (Corning) was added. The cells were incubated for 5-10 minutes at 37deg C to allow for detachment502

and separation. Following incubation, 80 µL of DMEM without phenol red (Gibco) with 10% FBS was added to503

inactivate the trypsin. Cells were thoroughly mixed to separate and suspend individual cells. The plate(s) were then504

spun down at 400 × g for 4 minutes, and the leftover media was aspirated. Cells were resuspended in 170 µL flow505

buffer (PBS supplemented with 1% BSA (Thermo Fisher), 5 mM EDTA (VWR), and 0.1% sodium azide506

(Sigma-Aldrich) to prevent clumping). For prepping plates of cells with larger surface areas, all volumes were scaled507

up in proportion to surface area and samples were transferred to 5 mL polystyrene FACS tubes (Falcon) after508

trypsinization. For standard co-transfections, 10,000-50,000 cells were collected per sample. For the509

poly-transfection experiment and transfections into cells harboring an existing lentiviral integration, 100,000-200,000510

cells were collected per sample.511

For all experiments, samples were collected on a BD LSR Fortessa equipped with a 405nm laser with 450/50nm512

filter (‘Pacific Blue’) for measuring TagBFP or EBFP2, 488 laser with 530/30 filter (‘FITC’) for measuring EYFP or513

mNeonGreen, 561nm laser with 582/15nm filter (‘PE’) or 610/20nm filter (‘PE-Texas Red’) for measuring mKate2 or514

mKO2, and 640 laser with 780/60nm filter (‘APC-Cy7’) for measuring iRFP720. 500-2000 events/s were collected515

either in tubes via the collection port or in 96-well plates via the high-throughput sampler (HTS). All events were516

recorded and compensation was not applied until processing the data (see below).517

Flow cytometry data analysis518
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Analysis of flow cytometry data was performed using our MATLAB-based flow cytometry analysis pipeline519

(https://github.com/Weiss-Lab/MATLAB_Flow_Analysis). Basic processing steps follow the procedures520

described previously51. In addition, we frequently utilized our new poly-transfection technique and associated521

methods44 to characterize and optimize circuits. Poly-transfection enables rapid and accurate assessment of522

dose-response curves for genetic components44, such as the kinases and phosphatases in our circuits. Full schematics523

describing each poly-transfection experiment are shown in the SI (e.g. Supplementary Figure 5a).524

Multi-dimensional binning of poly-transfection data was performed by first defining bin edges in each dimension525

(i.e. for the transfection markers for each poly-transfection complex), then assigning each cell to a bin where the526

cell’s expression of these markers was less-than-or-equal-to the high bin edges and greater-than the low bin edges.527

Bins with three or fewer cells were ignored (values set to NaN in the MATLAB code) to avoid skewing by outliers in528

sparsely-populated samples (e.g. HeLa cells). Such binning is demonstrated via colorization of cells by their bin529

assignment in the SI (e.g. Supplementary Figure 5b). In order to avoid the artefact of negative fold-changes,530

non-positive fluorescence values were discarded prior to making measurements on binned or gated populations. In531

the second and third experimental repeats of the miRNA-dependent signaling/classifier data in Figure 4 and532

Supplementary Figures 18-22, a newly-prepared Output Marker plasmid was later discovered to have ∼8-fold lower533

concentration than expected due to a measurement error on the nanodrop. To account for this, the bins for the Output534

Marker in those samples are shifted down by 10x (so as to match the same bin boundaries as in the first repeat).535

To find the optimal ratio of components in the miR-21 sensor for high cell classification accuracy, we scanned536

ratios between 1000:1 to 1:1000 of K:P and output plasmid:K/P, roughly halving the ratio between steps. At each537

combination of ratios, a trajectory was computed and all cells within 0.25 biexponential units of the trajectory based538

on euclidean distance were recorded. Accuracy was computed as described below, and accuracy values were539

compared across all ratios for each experimental repeat. From this scanning of trajectories at different ratios of540

components, we found that a 1:1:0.5 ratio of K:P:Output plasmid gave the highest accuracy. This optimal trajectory541

was used to sub-sample cells for display in Figure 4f & Supplementary Figure 20, finding percent positive for output542

in Figure 4g and calculating ROCs/AUCs in Supplementary Figure 20.543

In the case of simple co-transfections and sub-sampled trajectories, cells were considered to be transfected if they544

were positive for the output/transfection marker or the output reporter. When computing summary statistics from545

binned data, such thresholding is unnecessary since binning already isolates the cell sub-population for measurement.546

Calculation of cell classification metrics547

Sensitivity was defined as the percent of cells positive for the output reporter in HeLa cells transfected with the548

T21 circuit variant. Specificity was defined as 100 minus the percent of cells positive for the output in HeLa cells549

with the TFF4 variant or in HEK-293 cells with the T21 variant. The former was considered the more ideal550

comparison for evaluating classification performance due to higher overall expression of the circuit in HeLa cells551
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compared to HEKs (Supplementary Figure 18). Accuracy was computed by averaging sensitivity and specificity.552

ROC curves in Supplementary Figure 20 were generated by scanning thresholds starting at −108, then 0, then 15553

log-spaced steps between 103 and 108. The AUCs were computed individually for each experimental repeat by554

trapezoidal area approximation using the MATLAB function ‘trapz()’555

(https://www.mathworks.com/help/matlab/ref/trapz.html). The AUC-like curves in Supplementary556

Figure 21 were computed by fitting data from each experimental repeat with a bi-normal classification model in557

MATLAB (see below for details of the fitting algorithm used).558

Calculation of p-values559

P-values shown in Figure 4 were computed using the MATLAB function ‘ttest()’560

(https://www.mathworks.com/help/stats/ttest.html). Samples were paired per experimental repeat and561

the test was two-tailed.562

Calculation of fold-changes and robustness scores563

For quantifying the effects of EnvZ variants and perturbations, we measured fold-changes by dividing the median

output level of each sample by that of the equivalent sample in the absence of the EnvZ variant or perturbation. For

perturbation experiments, the level of output absent perturbation is referred to as the nominal output level.

Fold-∆(Input/perturbation binx) =
Output(Input/perturbation binx)

Output(Input/perturbation bin1)
(4a)

Where log2-transformed fold-changes are shown for experiments with multiple repeats, the values shown are the564

mean of the log2-transformed fold-changes, rather than the log2-transformation of the mean of the fold-changes. This565

order of operations ensures that standard deviations of the fold-changes can be computed directly on the566

log2-transformed scale.567

We computed robustness scores from the fold-changes using the formulae below:

Robustness(Perturbation binx) = 100 ·
(

1 −
∣

∣

∣1 − Fold-∆(Perturbation binx)
∣

∣

∣

)

(5a)

Quantification of cell-to-cell output variance568

To measure noise, we computed the interquartile range (IQR) of the output distributions. As we chose the median569

to represent the middle of the distribution, the IQR is a corresponding non-parametric measurement of noise. Since570

gene expression noise in approximately log-distributed, we log10-transformed the data prior to computing the IQR.571

As with calculations of the medians, negative fluorescent values were discarded when computing the IQR to avoid572

artefacts.573

Model fitting574

Where possible, fluorescent reporters were used to estimate the concentration of a molecular species for the575

purpose of model fitting.576
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For fitting all models, we used the MATLAB function ‘lsqcurvefit()’577

(https://www.mathworks.com/help/optim/ug/lsqcurvefit.html), which minimizes the sum of the squares578

of the residuals between the model and the data. In general, fits were made with cells subsampled from bins, as579

indicated for each figure. In Supplementary Figure 21, the fits were made using the true/false positive rates for each580

bin. Fits were always performed individually per experimental repeat, then means and standard deviations were581

computed for individual fit parameters.582

Goodness of fit was measured by computing the normalized root-mean-square error CV(RMSE) using the583

following formula:584

CV(RMSE) =

√

1
ȳ

∑

i(y(xi) − f (xi))2

ȳ

Where y(xi) is the value of the data at the input value xi, ȳ is the mean of y for all values of x, and f (xi) is the585

function output at input value xi.586

Fitting functions:587

Activation of transcription by OmpR-VP64:588

y = α0 + (α − α0)
x2

K2
1/2
+ x2

(6)

The cooperativity of OmpR was assumed to be two because it forms a dimer once phosphorylated to bind589

DNA15,92.590

Activation of OmpR-VP64-driven expression by kinase: (see Supplementary Note 1 for more details):591

y = α0 + (α − α0)
x2

K2
1/2
+ x2

(7)

Deactivation of OmpR-VP64 by phosphatase:592

y = α0 + (α − α0)
K2

1/2

K2
1/2
+ x2

(8)

While OmpR-VP64 has not been completely tuned over to P-OmpR-VP64, the amount of P-OmpR-VP64 is593

assumed to be proportional to the level of kinase because the production rate is only dependent on the kinase. In the594

presence of the phosphatase, the decay rate becomes overwritten by the dephosphorylation reaction. Thus, these595

proteins can be plugged directly into the OmpR-VP64 activation function, such that the kinase is proportional to596

OmpR and the phosphatase is inversely so. Because the of the inversion, the phosphatase function becomes a597

repression-form Hill function.598

The bi-normal fitting function for ROC curves is included with our MATLAB flow cytometry analysis package on599

GitHub (‘model_ROC.mat’). In short, the measurement of the fraction of cells positive for the output reporter is600

assumed to follow a normal distribution with µ1 = 0 and σ1 = 1 for the negative observations (TFF4 or HEK cells in601
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our case) and a normal distribution with unknown µ2 and σ2 for the positive observations (T21 in HeLa cells). µ2 and602

σ2 are fit such that the true positive rate for a given false positive rate approximates that of the data.603

6 Data Availability604

Sequences for all plasmids used in this study are provided as GenBank files in Supplementary Data. New plasmids605

used in this study will be available on Addgene upon publication. Raw .fcs files are available from the corresponding606

authors upon reasonable request.607

7 Code Availability608

General MATLAB code for use in .fcs file processing and analysis are available under an open-source license in609

our GitHub repository at https://github.com/Weiss-Lab/MATLAB_Flow_Analysis. Specific .m scripts for610

each experiment are available from the corresponding authors upon reasonable request.611
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Figure Legends817

Figure 1. Overview of engineered covalent modification cycle. (a) A covalent modification cycle (CMC) is818

composed of a substrate that is interconverted between an active and an inactive form by two different enzymes. Here819

we examine the CMC created by reversible phosphorylation/dephosphorylation of a transcription factor (TF) by a820

kinase and phosphatase. The inputs to this CMC, uK and uP, alter the production rate or catalytic rates of the kinase821

and phosphatase, respectively. The output(s) of the system are RNA and/or protein species produced in response to822

phosphorylation of the TF. Closed loop (CL) negative feedback control can be achieved by co-expressing a823

phosphatase with the output. Without the feedback, the expression of the outputs is open loop (OL). (b) The824

input/output (i/o) response of the system, i.e. the response of the TF-driven output(s) to kinase inputs (uK), can be825

tuned via phosphatase inputs (uP). (c) Negative feedback is expected to convert multimodal output responses into826

unimodal responses. (d) Negative feedback is expected to impart robustness to perturbations in the output production827

process.828

Figure 2. Isolation of kinase and phosphatase activity from bifunctional histidine kinases. (a) Model system829

to construct a covalent modification cycle (CMC): EnvZ/OmpR proteins from E. coli two-component signaling830

(TCS). EnvZ naturally exhibits both kinase and phosphatase activities, but favors one or the other depending on its831

conformation. EnvZ variants (EnvZV ) are co-delivered to cells with EnvZV Marker, a fluorescent reporter that832

indicates dosage per cell. (b) Evaluation of EnvZ mutants. Constitutively-expressed OmpR-VP64 (OmpR fused to833

the activation domain VP64) was co-transfected with a reporter plasmid comprising a promoter (POmpR) with834

6xOmpR binding sites and a minimal CMV promoter driving TagBFP as the output. Each EvnZ variant (EnvZV ) was835

poly-transfected against the other plasmids to evaluate the EnvZV -to-output dose-responses (see Supplementary836

Figure 5 for additional details). Further details about the mutants and other EnvZ variants tested are in Supplementary837

Figure 4. (c) Effect on EnvZ function by fixing its rotational conformation. GCN4 is fused directly to the N-terminus838

of EnvZ truncated between residues 212 and 221, thus connecting to the DHp domain and fixing the rotation of its839

alpha helices40. The top plots show the output response to each rotationally-locked variant. Samples were transfected840

with and without EnvZm2, which establishes a baseline of phosphorylated OmpR for testing dephosphorylation.841

EnvZm3t# have mutation ‘m3’ (N343K), which knocks out kinase activity. The radial plots in the bottom row842

indicate the maximum fold-change in output expression induced by each variant per the putative rotational843

conformation of the DHp domain, assuming 100◦ of rotation for each amino acid truncated between GCN4 and the844

DHp domain and setting EnvZt1 to 0◦. All data were measured by flow cytometry at 48 hours post-transfection in845

HEK-293FT cells. All errorbars represent the mean ± s.d. of measurements from three experimental repeats.846
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Figure 3. Tuning input/output signaling response by modulating kinase and phosphatase levels. (a)847

Implementation of a covalent modification cycle with kinase (EnvZm2) and phosphatase (EnvZm3t10) variants of848

EnvZ. The expression level of the output can be tuned as a function of both enzymes, and inputs to each that affect849

their production rate (uK and uP). (b) Tuning output expression through different dosages of kinase and phosphatase850

DNA. The heatmap shows the median level of output for each combination of kinase and phosphatase DNA dosages,851

assayed with poly-transfection44 (see Supplementary Figure 18 for full data). The line plots show the same data but852

broken out by rows or columns. Brighter lines correspond to bins with increasing phosphatase (left) or kinase (right).853

(c) Tuning output expression through small molecule-induced degradation of the phosphatase. DDd is fused to the854

N-terminus of the phosphatase (see Supplementary Figure 14 for different arrangements and comparison with855

DDe/4-OHT). Addition of TMP stabilizes the DDd-phosphatase fusion protein45. The data is extracted from the full856

poly-transfection results shown in Supplementary Figures 14 & 15, selecting the middle phosphatase bin (P Marker857

≈ 106). The line plots show the same data but broken out by rows or columns. Brighter lines correspond to samples858

with increasing TMP concentration (left) or bins with increasing kinase (right). All data were measured by flow859

cytometry at 48 hours post-transfection. HEK-293 cells were used for Panel (b) and HEK-293FT for Panel (c). All860

errorbars represent the mean ± s.d. of measurements from three experimental repeats. All heatmap values represent861

the mean of measurements from three experimental repeats.862

Figure 4. Cell type-specific signaling responses using covalent modification cycles. (a) miRNA classifier863

design based on covalent modification cycles. miRNAs expected to be low in the target cell can be used to knock864

down the kinase, OmpR-VP64, and/or the output. miRNAs expected to be high in the target cell can be used to knock865

down the phosphatase, effectively increasing the output expression. Not shown for brevity, the level of OmpR-VP64866

was optimized using a feedforward controller (Supplementary Figure 16). (b) Design of a miR-21 sensor for867

classification of HeLa cells. miR-21 knocks down phosphatase levels via 4x target sites in each of its 5’ and 3’868

untranslated regions (UTRs). As a control, a variant was made with miR-FF4 target sites (TFF4) in place of the869

miR-21 target sites (T21), thus preventing knockdown by miR-21. miR-21 is differentially expressed in HeLa870

compared to HEK-293 cells44,48. (c) Cell type-specific signaling responses enabled by miRNA regulation of871

phosphatase expression. The data is extracted from the full poly-transfection data (Supplementary Figure 18),872

comparing the second-highest phosphatase bin (P Marker ≈ 107) to the lowest (no phosphatase). (d) Comparison of873

the percent of transfected cells positive for the output for each circuit variant in HEK/HeLa cells. P-values are from874

two-tailed paired T-tests between each group of samples. Receiver-operator characteristic (ROC) curves are provided875

in Supplementary Figures 20 & 21. All data were measured by flow cytometry at 48 hours post-transfection. All876

errorbars represent the mean ± s.d. of measurements from three experimental repeats.877
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Figure 5. Design and implementation of a tunable phosphoryaltion-based feedback controller. (a) Block878

diagram of the feedback controller design. The phosphatase acts as an output sensor, and is fed back from the output879

to the phosphorylation cycle. The kinase sets the reference for output expression. The output responds to inputs both880

to the kinase and a small molecule (SM) regulator of phosphatase stability, the latter effectively serving to tune the881

feedback strength. (b) Implementation of the feedback controller. the kinase is EnvZm2, the phosphatase is882

DDd-EnvZm3t10, and the output is the fluorescent reporter TagBFP, and the output is 2A-linked62 to the phosphatase883

to ensure coupled transcription. Addition of TMP stabilizes DDd-EnvZm3t10 and thereby increases the feedback884

strength. An open loop (OL) version of the system was made by replacing the phosphatase with the luminescent885

protein Fluc2. Since negative feedback reduces output expression, OL variants with reduced output level were886

created for comparison at equivalent output levels by reducing the copy number of output reporter by fractional887

amounts (1:3, 1:9, 1:27, and 1:81). The kinase was poly-transfected in a separate complex to the other plasmids to888

measure the dose-responses of the OL and closed loop (CL) systems (see Supplementary Figures 23 for details). (c)889

Dose-responses of OL and CL system outputs to kinase input levels. The range of responsiveness to kinase (max fold890

change ± kinase) are given for the CL and OL variants are indicated to the left of the lines. The fold-difference891

between max output levels for select OL and CL variants are indicated to the right of the lines. Dose-responses of the892

DDd-CL system are given in Supplementary Figure 28. (d) Quantification of output noise as a function of kinase893

input dosages. Because the output variance is log-distributed, the interquartile range (IQR) is computed on the894

log-transformed data. (e) Comparison of output distributions for select OL and CL variants across kinase levels. The895

data is representative from the first experimental repeat. All OL and CL variants are compared in Supplementary896

Figure 27. (f) Noise as a function of median output levels for all CL and OL variants at all kinase inputs. The897

individual points are drawn from all experimental repeats. All data were measured by flow cytometry at 48 hours898

post-transfection in HEK-293FT cells. All errorbars represent the mean ± standard deviation of measurements from899

three experimental repeats.900

Figure 6. Mitigation of perturbations via feedback control. (a) The CL and OL systems introduced in Figure 5901

were tested against two perturbations: (i) indirect transcriptional inhibition via loading of transcriptional resource by902

Gal4-VPR and (ii) direct post-transcriptional knockdown by miR-FF4. The kinase, perturbations, and controllers903

were each poly-transfected in separate DNA-lipid complexes in order to measure the 2D dose-response of the OL and904

CL systems to the kinase and perturbations (see Supplementary Figures 23-26 for details). (b) Dose-responses of OL905

and CL systems highlighted in the following panels. The Fluc2 and Fluc2/3 OL variants were chosen since they have906

nearly identical output levels compared to the CL with and without DDd, respectively, in the absence of kinase.907

Dose-responses and detailed comparisons among all OL and CL variants are provided in Supplementary Figures908

29-32. (c) Fold-changes (Fold-∆s) in output expression in response to miR-FF4 (top row) and Gal4-VPR (bottom909
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row) perturbations. Each column represents an increasing amount of kinase input from left to right. The dashed lines910

indicate no fold-change (ideal). (d) Direct comparison of fold-changes to perturbations between OL and CL variants911

across kinase dosages. The data represents the maximum dosage of miR-FF4 (miR Marker ≈ 107.75 MEFLs) and a912

dosage of Gal4-VPR with a comparable level of knockdown to the OL (Gal4 Marker ≈ 106.25 MEFLs). (f)913

Robustness scores (100% −% deviation due to perturbations) for all OL and CL variants across each kinase input914

level at the same dosages of miR-FF4 and Gal4-VPR as highlighted in Panel (d). Nominal outputs indicate the level915

of output in the absence of any perturbations. The individual points are drawn from all experimental repeats. All data916

were measured by flow cytometry at 48 hours post-transfection in HEK-293FT cells. All errorbars represent the917

mean ± standard deviation of measurements from three experimental repeats.918
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