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Robust and tunable signal processing in
mammalian cells via engineered covalent
modification cycles
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Engineered signaling networks can impart cells with new functionalities useful for directing

differentiation and actuating cellular therapies. For such applications, the engineered net-

works must be tunable, precisely regulate target gene expression, and be robust to pertur-

bations within the complex context of mammalian cells. Here, we use bacterial two-

component signaling proteins to develop synthetic phosphoregulation devices that exhibit

these properties in mammalian cells. First, we engineer a synthetic covalent modification

cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase

EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By reg-

ulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific

signaling responses and a new strategy for accurate cell type classification. Finally, we

implement a tunable negative feedback controller via a small molecule-stabilized phospha-

tase, reducing output expression variance and mitigating the context-dependent effects of

off-target regulation and resource competition. Our work lays the foundation for establishing

tunable, precise, and robust control over cell behavior with synthetic signaling networks.
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Across all organisms, sensing and processing of environ-
mental factors are critical for growth, proliferation, and
survival1. Engineering mammalian cells to transmute

specific intracellular and extracellular inputs into desirable output
behaviors has broad applications in cell therapy, biomanu-
facturing, and engineering stem cells, tissues, and organoids2–8.
Recently, work has accelerated to rewire natural signaling path-
ways and engineer synthetic receptors that sense extracellular
inputs9–11. A desirable engineered signaling system would have
tunable input/output responses, low output noise, and drive gene
expression that is robust to perturbations coming from the
extracellular, cellular, and genetic context of the system12. The
ability of the signaling system to exhibit such properties depends
on how input signals are processed to generate gene expression
outputs. However, relatively little work has been done to engineer
such signal processing behavior in mammalian cells.

To date, nearly all engineered signaling systems have utilized
either native intracellular signaling domains or proteolytic
mechanisms to transduce extracellular signals into intracellular
responses11. Interfacing with the cell’s natural signaling networks
has been a powerful method to rewire signaling pathways10, but it
is difficult to modulate signaling between natural receptors and
their gene expression targets due to the complexity of natural
signaling networks in mammalian cells. Using proteolysis to
liberate gene regulators from the plasma membrane enables
regulation independent from the cell signaling context through
non-native proteins such as dCas9 or tTA10,11. However, because
the effector proteins are irreversibly released from the receptor
and thus the signaling system cannot be easily reset to its initial
state, the ability to tune the input-output response is limited.
Recently, an alternate design strategy based on non-native protein
phosphorylation has been realized by fusing extracellular recep-
tors or dimerization domains to bacterial two-component sig-
naling (TCS) proteins; such receptors were shown to successfully
transmute extracellular ligand inputs to synthetic TCS-regulated
transcriptional outputs in mammalian cells13,14.

The use of TCS proteins in synthetic mammalian signaling net-
works has the potential for creating tunable, robust signaling circuits
that do not cross-react with existing networks in mammalian cells.
Although TCS pathways are ubiquitous in bacteria, with dozens in
Escherichia coli alone, they are generally rare in eukaryotes and
absent in animals15. TCS pathways typically comprise a trans-
membrane sensor protein called a histidine kinase (HK) and a
cognate intracellular effector protein called a response regulator
(RR). In response to specific signal inputs, the HK autopho-
sphorylates on a conserved histidine residue and then transfers the
phosphoryl group to a conserved aspartate residue in the receiver
(Rec) domain of the RR (referred to as the HK’s kinase activity).
Once phosphorylated, most RRs carry out transcriptional regulation,
though other modes of regulation are also possible16,17. Unlike
typical eukaryotic receptors, in the absence of signal inputs, most
HKs directly catalyze the removal of the phosphoryl group from
their cognate RRs (referred to as the HK’s phosphatase activity)17,18.
The presence of signal input alters the conformational state of the
HK, thereby tuning its relative kinase and phosphatase activities19.
The bifunctional nature of HKs is important for insulating TCS
pathways from off-target interactions20,21 and increasing the
responsiveness to signal inputs22. The recently developed TCS-based
receptors work by coupling ligand-induced dimerization of the
receptor to HK kinase activity and thus RR-driven gene
expression13,14. The lack of any known examples of histidine-
aspartate phosphorelays in mammalian cells strongly suggests that
these introduced TCS signaling pathways are insulated from
mammalian signaling pathways13,14,23.

Here, we introduce a framework for engineering signal pro-
cessing circuits in mammalian cells based on synthetic covalent

modification cycles (CMCs) built with bacterial TCS proteins
(Fig. 1). In phosphorylation cascades, phosphatases that are
constitutively active or part of a negative feedback loop can
impart tunability and robustness to perturbations into the system
through the reversal of substrate phosphorylation24–28. To
develop such circuits, we isolate monofunctional kinases and
phosphatases from the bifunctional E. coli HK EnvZ29, then use
specific phosphorylation and dephosphorylation of EnvZ’s cog-
nate RR OmpR to regulate transcriptional activation of down-
stream gene expression outputs. First, we illustrate the tunability
of this system by using the level of an EnvZ phosphatase to shift
the sensitivity of OmpR-driven gene expression output to the
levels of an EnvZ kinase. Further, we show that kinase-to-output
dose–responses can be tuned by regulating phosphatase expres-
sion with small molecule-inducible degradation domains. We
then build upon this tunability to create phosphorylation-based
miRNA sensors that are capable of cell type classification and
enable cell-type-specific tuning of signaling responses.

In addition to making tunable sensors, a major general challenge
for developing synthetic genetic circuits is undesirable context-
dependence due to factors such as off-target binding of gene reg-
ulators and overloading of cellular factors used in gene expression
(i.e. resources), which can perturb gene expression levels30,31. At
present, there is a lack of synthetic signaling circuits that are robust
to such context effects in mammalian cells. To address this pro-
blem, we used negative feedback control to impart robustness to
perturbations into the kinase-to-output process of our circuit. The
negative feedback is achieved by co-expressing the output protein
with a phosphatase that dephosphorylates OmpR, returning it to an
inactive form. The feedback strength and output level can be tuned
via a small molecule-inducible degradation domain fused to the
phosphatase. The addition of feedback control substantially reduces
cell-to-cell noise in output expression and mitigates the effects of
off-target post-transcriptional repression and loading of transcrip-
tional resources on the signaling input-output response. Overall, we
present the design and characterization of phosphorylation-
regulated genetic modules that enable tunable, precise, and robust
control of signaling outputs in mammalian cells.

Results
Engineering EnvZ to isolate kinase and phosphatase activity.
As a model system for engineering synthetic signal processing
circuits, we utilized the well-characterized EnvZ-OmpR TCS
pathway from E. coli32. Like many HKs, EnvZ is bifunctional,
actuating both kinase and phosphatase activity onto its cognate
RR OmpR29. We thus reasoned that we could isolate the indivi-
dual kinase and phosphatase activities of EnvZ to generate
enzymes suitable for implementing a CMC. In particular, we
expected that by starting with a bifunctional enzyme, we could
selectively mutate or otherwise disrupt the kinase or phosphatase
activity of EnvZ, yielding an enzyme significantly biased towards
one activity or the other (Fig. 2a). Both in vitro and in vivo in
bacteria, it has been shown that this objective can be achieved
through various mutations33–35, truncations36,37, and domain
rearrangements38. In mammalian cells, it was shown that wild-
type (WT) EnvZ is constitutively active23, indicating that it has
net-kinase activity. However, we hypothesized that EnvZ may still
retain some phosphatase activity and thus not operate as potently
as a pure kinase. To begin creating more monofunctional kinases
and phosphatases from EnvZ in mammalian cells, we generated
several variants of EnvZ using established mutations, truncations,
domain rearrangements, and novel combinations thereof
(Fig. 2b–d).

To test for improved kinase activity, we evaluated the ability of
EnvZ variants to activate an OmpR-driven reporter when
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transfected into HEK-293FT cells (Fig. 2e, left). OmpR-activated
promoters were made by placing three to nine OmpR binding
sites upstream of a minimal CMV promoter or a synthetic
minimal promoter (YB_TATA23, referred to as minKB), of which
the 6xOmpRBS-minCMV variant was chosen for use in most
downstream experiments due to its high fold-change in response
to OmpR phosphorylation (Supplementary Figure 1). From this
initial screen, we identified two EnvZ variants, EnvZm2 [T247A]
and EnvZm2[AAB], the latter having an extra DHp domain fused
to EnvZ[223+]38, that induced higher levels of output expression
than WT EnvZ, suggesting that their phosphatase activity is
reduced (Fig. 2e, right; see Supplementary Figure 2 for further
experimental details and data analysis). Variants expected to be
deficient in ATP binding or autophosphorylation based on
previous studies in bacteria were indeed found to lack activation
of OmpR-VP64, indicating that in mammalian cells they also lack
kinase activity (Fig. 2e, right). Moving forward, we used EnvZm2
as our kinase of choice due to its improvement in kinase activity
and the highly conserved ability of the T247A mutation to reduce
or eliminate phosphatase activity in other HKs39,40.

To test for phosphatase activity, we co-expressed EnvZm2 with
OmpR-VP64 to generate phosphorylated OmpR-VP64 (P-
OmpR-VP64), and then evaluated the ability of our EnvZ
variants to deactivate the expression of an OmpR-driven reporter
(Fig. 2f, left). Although several EnvZ variants predicted to be
phosphatases based on previous studies indeed showed deactiva-
tion of OmpR-driven expression at high concentrations, this
deactivation was comparable to that of a variant mutated to

eliminate all catalytic activity (EnvZm0m1m2m3 [H243A/
D244A/T247A/N343K]) (Fig. 2f, right; & Supplementary Fig-
ure 3). Thus, it is possible that these variants were primarily
inhibiting output expression through sequestration of P-OmpR-
VP64 from its target promoter, rather than through depho-
sphorylation. Indeed, we found that high dosages of one such
variant (EnvZm1, [T247A]) reduces “leaky" activation of the
output reporter by non-phosphorylated OmpR-VP64, indicating
that the observed reduction in output can occur absent depho-
sphorylation (Supplementary Figure 4). Notably, at both low
(Fig. 2f) and high (Supplementary Figure 4) dosages of the variant
EnvZ[A] (DHp domain only), we found no apparent phosphatase
activity, contrasting with the original report37. Only variant
EnvZm1[AAB], having an extra DHp domain fused to
EnvZ[223+] with the mutation [D244A] in both DHp domains,
was found to deactivate OmpR-driven expression more strongly
than EnvZm0m1m2m3 (which lacks catalytic activity) (Fig. 2f,
far-right), suggesting EnvZm1[AAB] has phosphatase activity in
mammalian cells. However, at higher dosages of EnvZm1[AAB]
and in the absence of EnvZm2, OmpR-VP64 appears to become
activated, indicating that this variant may still retain some kinase
activity (Supplementary Figure 4). We thus sought another means
to generate a strong monofunctional EnvZ phosphatase that is
functional in mammalian cells.

Derivation of strong EnvZ phosphatases through DHp domain
rotations. Because of the constitutive kinase activity of WT EnvZ
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improved kinase activity. Constitutively expressed OmpR-VP64 (OmpR fused to the activation domain VP64) was co-transfected with a reporter plasmid
comprising a promoter (POmpR) with 6xOmpR binding sites and a minimal CMV promoter driving TagBFP as the output. Each EnvZ variant (EnvZV) was co-
delivered with EnvZV Marker, a fluorescent reporter that indicates dosage per cell, and poly-transfected against the other plasmids to evaluate the EnvZV-
to-output dose–responses (see Supplementary Figure 2 for additional details). The solid arrow from EnvZV to the phosphorylation cycle indicates the
desired kinase activity, while the dashed arrow indicates the possibility of residual phosphatase activity. The plots on the right show the expression of
OmpR-driven TagBFP (Output) in response to increasing EnvZV dosages, as measured by EnvZV Marker. f Evaluation of EnvZ variants for phosphatase
activity. The experiment is similar to e, except that the variant EnvZm2, which has a strong kinase bias, is constitutively expressed to set a baseline level of
OmpR phosphorylation. The solid and dashed arrows are swapped to indicate the desire for phosphatase activity and the possibility of residual kinase
activity. All data in e and f were measured by flow cytometry at 48 hours post transfection in HEK-293FT cells. All error bars represent the mean ± s.d. of
measurements from three experimental repeats. Source data are provided as a Source Data file.
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and the lack of clear monofunctional phosphatase activity by
purported phosphatase variants of EnvZ, we hypothesized that in
mammalian cells, EnvZ may take on a structural conformation
that is unfavorable for phosphatase activity. Previously, it was
shown that the autophosphorylation rate of another HK, AgrC,
can be modulated by changing the rotational state of the alpha-
helices comprising the DHp domain41. We hypothesized that this
rotational conformation may likewise affect access to the phos-
phatase state. We therefore followed the approach of Wang
et al.41 to force the alpha-helices in the DHp domain of EnvZ into
fixed rotational states using GCN4 leucine zippers (Fig. 3a).

We generated a library of 10 rotationally-locked variants
(EnvZt#1–10) with and without a mutation to eliminate ATP
binding and hence kinase activity (m3 – [N343A])34. As expected,
we observed a range of OmpR-driven gene expression levels that
depend on the putative rotational angle of the DHp domain

(Fig. 3b and c). Interestingly, compared with WT EnvZ, all of the
EnvZt# variants drive equivalent or weaker output activation by
OmpR-VP64, while also reducing EnvZm2-induced expression
by at least threefold (Fig. 3b). Comparing the exact levels of
output with and without EnvZm2, we found that EnvZt# variants
are capable of overriding the initial phosphorylation state of
OmpR-VP64 to ultimately set a defined level of output
(Supplementary Figure 5). Most strikingly, all EnvZm3t# variants
showed potent and nearly identical deactivation of OmpR-driven
expression back to baseline levels, regardless of their rotational
conformation (Fig. 2c), indicating that all GCN4-fused trunca-
tions possess similar phosphatase activities. These data suggest
that the fusion protein itself takes on a conformation that is
amenable to phosphatase activity, possibly due to the formation
of a more rigid structure19, whereas the rotational state of the
DHp domains primarily affects autophosphorylation.
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To more quantitatively compare the activation and deactiva-
tion of OmpR-driven expression by each of the EnvZ variants
described above, we fit simple first-order models to estimate the
dosages of each variant needed for half-maximal activation or
deactivation (K1/2) of the output (Supplementary Figure 6).
Notably, the EnvZm3t# variants deactivated output expression
with K1/2 values two- to threefold smaller than our previous best
putative phosphatase, EnvZm1[AAB], and 10- to 20-fold smaller
than the enzymatically null variant EnvZm0m1m2m3 (Supple-
mentary Figure 6), indicating potent phosphatase activity.
Moving forward, we chose to use the variant EnvZm3t10 as our
phosphatase because it has one of the lowest values of K1/2 among
all EnvZ variants and completely deactivates the output down to
basal levels (Fig. 3b and Supplementary Figure 6).

To ensure that the observed putative phosphatase activity is not
explained by the formation of partially or completely inactive
heterodimers between any putative phosphatases and EnvZm2, we
repeated the experiments described above with CpxA in place of
EnvZm2 (Supplementary Figure 7a). CpxA has weak off-target
kinase activity for OmpR21 and, broadly, heterodimerization
between different HKs is rare42. In the presence of CpxA, the
putative phosphatases similarly, and in some cases more potently,
deactivate OmpR-driven expression (Supplementary Figure 7b, c).
Thus, the observed output deactivation is independent of how
OmpR-VP64 is phosphorylated.

Direct cellular verification of EnvZm3t10 phosphatase activity
is challenging due to the acid-lability of phosphohistidine and
phosphoaspartate bonds43,44 and lack of commercial antibodies
against P-OmpR. To verify that EnvZm3t10 acts as a phospha-
tase, we thus carried out additional control experiments.
Deactivation of OmpR-driven output by EnvZm3t10 is abolished
when adding mutations predicted to eliminate its phosphatase
activity (m3 – [N343A]), or using constitutively active variants of
OmpR-VP64 (Supplementary Figure 8). Thus, the observed
putative phosphatase activity is not caused by blocking interac-
tions between the kinase and OmpR-VP64, nor by sequestration
of OmpR-VP64. It is thus unlikely that EnvZm3t10 is acting
through a mechanism other than direct dephosphorylation of P-
OmpR-VP64.

Tuning kinase-output responses via phosphatase activity. We
next constructed a family of tunable genetic devices in which the
tunability arises from a CMC between our preferred kinase
(EnvZm2) and phosphatase (EnvZm3t10) acting on OmpR-VP64
(Fig. 4a). The inputs to these devices are the enzymatic activities
of the kinase (uK) or phosphatase (uP), or factors that affect such
rates. The device outputs are the transcriptional and translational
products driven by OmpR-VP64. To evaluate the tunability of
our engineered CMC, we compared the level of OmpR-VP64-
driven output across combinations of kinase and phosphatase
levels, with the phosphatase level modulated at the DNA and
protein levels (Fig. 4b–c).

First, we titrated both kinase and phosphatase levels by dosing in
different amounts of plasmid DNA per sample using poly-
transfection45 (Fig. 4b). The 2D input–output map shows that
output expression increases gradually as the ratio of kinase-to-
phosphatase increases (Fig. 4b, left). As the dosage of phosphatase
increases, the amount of kinase needed to activate the output
increases (Fig. 4b, center), indicating a decreased sensitivity to kinase
input levels. Likewise, as the level of kinase increases, the amount of
phosphatase needed to deactivate the output also increases (Fig. 4b,
right). Both results are in accordance with standard models of
CMCs24 (see Supplementary Note 1 for our derivation).

Following the above results, we predicted that we could tune
output expression through the modulation of phosphatase

stability (Fig. 4c). To do so, we fused the phosphatase to either
of the small molecule-inducible degradation domains (DDs)
DDd46 and DDe47, which are stabilized by the addition of
trimethoprim (TMP) and 4-hydroxytamoxifen (4-OHT),
respectively. N-terminal fusions of both DDd and DDe showed
the highest fold-changes in output expression upon addition of
the cognate small molecule (Supplementary Figure 9); we chose
to move forward with DDd/TMP for further testing due to
lower background signal than DDe/4-OHT. Titration of both
the kinase dosage and TMP concentration shows that the
output is high only when the kinase is high and TMP is low
(Fig. 4c, left). The addition of TMP decreases the sensitivity of
the output to a kinase (Fig. 4c, center) and the addition of
kinase decreases the sensitivity of the output to TMP (Fig. 4c,
right).

The response of the TMP-tuned design to kinase and TMP
levels depends on the initial level of phosphatase in the cell. If the
level of phosphatase is initially too high, the DDs cannot suppress
it enough to enable output induction by the kinase; conversely, if
the initial level of phosphatase is too low, the kinase dominates the
CMC even without any TMP added (Supplementary Figures 10
and 11). Thus, there is an optimal level of phosphatase where
TMP-induced deactivation of gene expression is maximized.

Engineered, cell-type-specific signaling responses. In addition
to ectopically expressed factors, endogenous cellular factors can
also be plugged in as inputs to the kinase (uK) and phosphatase
(uP) in our engineered CMC, enabling device performance to be
tuned based on factors such as the state of the cell. One parti-
cularly useful class of intracellular inputs are miRNAs, which are
differentially expressed across cell types48 and can be used to
identify specific cell states49. Building on our CMC, we expected
that endogenous miRNAs can be targeted to the mRNAs of the
kinase or phosphatase to decrease or increase output expression,
respectively (Fig. 5a). An important and difficult challenge in
miRNA sensing is to achieve good on/off responses from the
conversion of “high" miRNA inputs into high levels of output
expression45. We thus investigated our CMC as a scaffold for
improving miRNA input processing and generating cell-type-
specific signaling responses.

As a proof of concept, we built a sensor for a cancer-associated
miRNA, miRNA-21-5p (miR-21), which has previously been used
to classify HeLa cells as distinct from HEK cells45,49. To do so, we
placed four miR-21 target sites (T21) in both the 5′- and 3′-UTRs
of the phosphatase transcription unit (Fig. 5b). As a control, we
replaced the miR-21 target sites with four target sites for the
synthetic miR-FF4 (TFF4)50. In cells expressing miR-21, we
expected the phosphatase to be knocked down, thereby dramati-
cally shifting the balance of the CMC to favor phosphorylation of
OmpR-VP64 and thus activation of the output. Since P-OmpR has
only a ~10–30-fold higher affinity for DNA binding compared to
OmpR51 (which we validated in HEK-293FT cells—Supplementary
Figure 12), we included an endoribonuclease (endoRNase)-based
incoherent feedforward loop (iFFL)52 to constrain cell-to-cell
variance in the expression level of OmpR-VP64 (Supplementary
Figure 13). This is helpful due to the high DNA dosage variance of
transfections, within which only a small subset of cells typically
receive the ideal dosage of OmpR-VP64, and cells that receive high
DNA dosages are susceptible to spurious activation of output
expression by unphosphorylated OmpR.

To test the circuit, we first considered the effect of miR-21 on
the kinase-output dose-response curve. We expected that
endogenous expression of miR-21 would selectively sensitize
output expression to kinase levels in HeLa cells. Without the
phosphatase, the kinase can induce output expression in both
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HEK and HeLa cells with either circuit variant (T21 or TFF4),
though with stronger output in HeLa cells (Fig. 5c, left). As
expected, at high dosages of phosphatase DNA, output induction
by the kinase is suppressed by the phosphatase in all cases except
in HeLa cells with the T21 circuit variant (Fig. 5c, right). Note
that without the iFFL, the output expression has a higher “leaky”
background expression at low ratios of kinase-to-phosphatase
dosages (Supplementary Figures 14 and 15). Depending on the
phosphatase dosage, the T21 variant in HeLa cells has between
10- and 1000-fold higher sensitivity to kinase input than the TFF4
variant (Supplementary Figure 16). Thus, these results illustrate
the ability to use miRNA sensors for cell-type-specific tuning of
signaling responses.

To optimize our sensor for cell-type classification, we followed
the approach of Gam et al.45 and used poly-transfection to
systematically compare the percent of cells positive for output
expression at different ratios of each circuit component. In our
previous classifier designs, a transcriptional repressor such as
LacI49 or BM3R145 is repressed by the miRNA, thereby

de-repressing output transcription. Poly-transfection analysis
showed that miRNA sensing in such systems is difficult to
optimize, requiring the expression level of the repressor to be not
too high to prevent de-repression and not too low to prevent
repression in the first place45. In our current design, miRNA
sensing is instead optimized by the ratio of kinase-to phosphatase
activity, which is a more flexible and easily tuned quantity.

We found that a 1:1:0.5 ratio of Kinase:Phosphatase:Output
plasmids (the latter of which was co-delivered with the CasE/
OmpR-VP64 iFFL) maximized classification accuracy for the T21
vs TFF4 variants in HeLa cells (Supplementary Figure 17). At this
ratio, we obtained a significant ~50 percentage point increase in
cells positive for output reporter between circuit variants in HeLa
cells and a ~55 percentage point increase between HeLa and
HEK-293 for the T21 variant (p= 0.0017 and 0.0056, respec-
tively, paired two-tailed Student’s T test—Fig. 5d). The area under
the curve (AUC) of the ROC curve of the circuit was 0.83 ± 0.01
when comparing T21 vs TFF4 variants in HeLa cells and
0.93 ± 0.01 when comparing the T21 variant in HEK-293 vs HeLa
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to the N-terminus of the phosphatase (see Supplementary Figure 10 for different arrangements and comparison with DDe/4-OHT). The addition of TMP
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cells (Supplementary Figure 17). Examining various combinations
of dosages of the kinase, phosphatase, and output reporter, we
found that the AUC of the resulting ROC-like curve of our
phosphorylation-based classifier (0.93 ± 0.04—Supplementary
Figure 18) is higher than that of our recently optimized
transcriptional repressor-based classifier (0.84—see SI Fig. 16 in
Gam et al.45) for discriminating HEK vs HeLa cells, suggesting
improved overall performance for cell-type classification. Thus,
the CMC can be used for robust miRNA input processing with
minimal tuning effort by finding the optimal ratio of kinase-to-
phosphatase activities.

Design of a phosphorylation-based feedback controller. The
responses of expressed genes to their extracellular (or intracel-
lular) inputs are often stochastic and thus imprecise across
individual cells53,54. In addition, the intracellular context affects
the level of gene expression induced by signaling30,31, owing to
factors such as off-target interactions55 or resource
competition52,56,57 among engineered genes. To remedy these
issues and enable the construction of signaling circuits that
enforce precise and robust signaling responses across cells, we
applied negative feedback control to our CMC (Fig. 6a). In both
natural and synthetic systems, feedback control can reduce

cell-to-cell variance of gene expression in response to signal
inputs58–60. Negative feedback has also been used to make gene
expression robust to perturbations that affect processes within the
feedback loop61–63. An advantage of our controller design is that
it can be applied without modifying any promoters or inter-
mediate RNA or protein species in the pathway (e.g., via the
generation of fusions), and simply requires a modification of the
output mRNA.

In our controller, the phosphatase is co-expressed with the
output gene via a 2A linker64 and suppresses its own production
via dephosphorylation of P-OmpR-VP64 (Fig. 6b). Feedback
strength can be tuned through TMP regulation of the DDd-fused
phosphatase. The level of output ultimately set by the controller
thus arises from competitive phosphoregulation of OmpR-VP64 by
the kinase and feedback phosphatase. In an ideal system operating
with both enzymes saturated, the concentrations of the phospha-
tase and the output species become insensitive to disturbances
affecting their gene expression processes (see Model box). As TMP
selectively regulates phosphatase but not output stability, it can be
used as an input to the controller to tune the strength of the
feedback. Under the ideal conditions presented above and while
OmpR-VP64 has not saturated the output promoter, the relation-
ship between the levels of kinase and output is independent of both
the exact mechanism by which OmpR-VP64 activates output
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expression as well as any perturbations in the transcription and
translation processes of the output/phosphatase (see Model box).

To evaluate the performance of the feedback controller, we first
measured the kinase-output responses for open loop (OL) and
closed loop (CL) variants. The OL system was made by replacing
the phosphatase with Fluc2, which has no effect on OmpR
phosphorylation (Fig. 2b, c). Since the presence of negative
feedback reduces the level of output expression for a given input
level of kinase, we tested several OL variants in which the amount
of output reporter plasmid in transfections was reduced by 3×,
9×, 27×, or 81× (respectively, referred to as Fluc2/3, Fluc2/9,
Fluc2/27, and Fluc2/81). We define kinase responsiveness as
the maximal output fold-change in the presence versus absence of
kinase. The kinase responsiveness of the OL systems varies from
~10-to-55-fold, whereas for the CL system variant without DDd
fused to the phosphatase, it is ~3.5-fold (Fig. 6c, left – see
Supplementary Figures 19-22 for full poly-transfection scheme
and data). Adding DDd to the phosphatase increases the CL
kinase responsiveness to ~7.6-fold without TMP, and ~6.4-fold
for the lowest non-zero amount of TMP that we tested: 0.001 μM
(Fig. 6c, right). The kinase responsiveness of the CL system
decreases as more TMP is added (and thus the phosphatase is
stabilized) to the point of approximately matching that of the
non-DDd CL system (Fig. 6c, right). The maximum output level
of the DDd CL system is up to 10-fold higher than that of the
non-DDd CL system and within ~5-fold that of the OL system.
Thus, tuning the feedback strength via TMP allows the CL system
to recover approximately one-third of the dynamic range of the
OL system.

We next compared variance in circuit output levels across
cells. In the absence of kinase input, we see similar levels of noise
in output expression for all OL and CL variants; however, as the
dosage of the kinase is increased, we observe a decrease in noise
for CL variants and an increase in noise for OL variants (Fig. 6d).
At high dosages of kinase, the output noise for OL devices
decreases again but does not reach the low noise achieved in CL
devices. The higher noise in OL systems can be attributed to a
more digital-like transition in output expression per cell as the
kinase dosage increases, whereas in CL systems we observe a
smooth, unimodal shift in output expression per cell (Fig. 6e, see
Supplementary Figure 23 for all variants). The decrease in noise
in CL output expression as a function of increasing kinase can
likely be attributed to the increasing concentration of P-OmpR-
VP64, on which the phosphatase can actuate negative feedback.
Interestingly, tuning feedback strength via TMP appears to have
little effect on the magnitude of output noise (Supplementary
Figure 24), suggesting that the faster degradation of the
phosphatase did not push our system into a regime where the
negative feedback is substantially attenuated.

Comparing the noise as a function of output level for all CL
and OL variants tested, we can see that the noise in the OL system
peaks at intermediate absolute levels of output (regardless of the
kinase dosage needed to achieve such an output level for a given
OL variant), whereas the noise in the CL systems decreases as the
output increases due to the factors described above (Fig. 6f). The
pattern of noise in the OL variants can potentially be explained by
stochastic transcriptional variation among cells when the output
promoter is not saturated. Through negative feedback, the CL
system is likely able to suppress this source of noise.

Robustness to perturbations via feedback control. According to
our mathematical modeling comparing the OL and CL circuits,
the presence of negative feedback is expected to impart robust-
ness to perturbations that affect the expression of the output
protein (see Model box). We analyzed robustness in terms of both

fold-changes in gene expression resulting from the perturbations
and a robustness score (100% minus the percent deviation from
the unperturbed level); a high degree of robustness is indicated by
a small absolute fold-change and a high robustness score. We
tested the capability of the CL system to impart robustness of
output expression levels to perturbations that model off-tar-
get gene regulation and resource loading (Fig. 7a). To model off-
target regulation by an endogenously- or ectopically-expressed

Model box

Here, we develop a mathematical model to show that CMC-mediated
feedback enables the expression level of a regulated gene to be robust
to disturbances. In particular, for a fixed kinase level (Kt), we treat the
genetic circuit shown in Fig. 7 as feedback interconnection of two
dynamical processes with input/output (i/o): an engineered CMC that
takes phosphatase concentration (Pt) as input and outputs P-OmpR-
VP64 concentration (X*), and a gene expression process that takes X*

as input to produce the phosphatase Pt as output. We use a standard
Goldbeter-Koshland model24 for the dynamics of the CMC:

d
dt

X� ¼ θk
ðXt � X�ÞKt

ðXt � X�Þ þ KM;k
� θp

X�Pt
X� þ KM;p

; ð1Þ

where θk and θp are catalytic rate constants of the kinase and the
phosphatase, respectively, KM,k and KM,p are their respective
Michaelis–Menten constants, and Xt is the total amount of OmpR-VP64
(i.e., OmpR-VP and P-OmpR-VP). The expression of Pt is regulated by
an OmpR-activated promoter, which gives rise to the following
dynamics:

d
dt
Pt ¼ αð1� wÞϕðX�Þ � γPt; ð2Þ

where α is the production rate of Pt that lumps the rate constants for
transcription, translation, and mRNA decay, ϕ(⋅) is a Hill function
satisfying ϕ0 >0 for all X*, γ is the protein decay rate constant, and
0≤w < 1 is a disturbance that models the fold change in the production
rate of Pt, which could either arise from indirect transcriptional
repression via resource loading or from direct post-transcriptional
repression via miRNA (see Fig. 7). The output from this feedback-
regulated gene is Y= ρPt, since the output protein and phosphatase are
co-transcribed but produced as separate proteins using a 2A-linker. We
find that the relative sensitivity of output to disturbance w for this
closed-loop system (1–2) at a given output level Y is

SCLðYÞ ¼
1
Y
� dY
dw

����
���� ¼

1
1� w

1þ α

γ
ð1� wÞ d

dY
ðϕ � hÞ

����
����

� ��1

; ð3Þ

where h is the transfer curve of the CMC. In comparison, when the CMC
in (1) is not connected with (2), the relative sensitivity of y to
disturbance w for the open-loop system (2) is SOL ¼ 1

1�w. Hence, we
have SCL <SOL for all y regardless of where the sensitivity is evaluated.
This implies that the closed-loop system is always more robust than the
open-loop system to disturbance w. To enable near-perfect adaptation
to w, it is sufficient to increase T :¼ d

dy ðϕ � hÞ
���

��� ¼ h0 � ϕ0
�� ��. In particular, if

T→∞, then SCL ! 0, implying that the closed-loop system can
perfectly adapt to w. Specifically, for any fixed X* and y, there exists
sufficiently small KM,p and sufficiently large Xt to make jh0j arbitrarily
large. On the other hand, to ensure T is large, jϕ0j must not be too small.
This requires us to design the system to prevent saturation of the
OmpR-activated promoter. Promoter saturation limits the ability of the
output to respond to changes in OmpR phosphorylation, and thus can
limit the benefit of the negative feedback to achieve robustness to
perturbations. Hence, the KD of binding between phosphorylated OmpR
and its target promoter must not be too small28. Under the ideal
operating conditions described above, both enzymes are saturated by
their substrates, which is possible for a small KM,p and large Xt.
Specifically, if KM,p≪ X* and Xt≫ KM,k, equation (1) can be
approximated by dX*/dt= θkKt− θpY/ρ, leading to quasi-integral
feedback control28.
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gene regulator such as a miRNA, we expressed miR-FF4, which
binds and cleaves a target site (TFF4) placed in the 3′-UTR of the
output/phosphatase mRNA, causing mRNA degradation. To
model resource loading, we expressed Gal4-VPR, which strongly
sequesters transcriptional resources, such as those recruited by
the VP64 activation domain fused to OmpR, reducing tran-
scription of other genes52. In addition to the modeled effects,
these perturbations are useful because they affect output

production both before (Gal4-VPR) and after (miR-FF4) tran-
scription, enabling comparison of the CL system’s ability to
respond to perturbations at different stages of gene expression.

As expected, we found that the CL system is indeed more
robust than comparable OL systems to miR-FF4 and Gal4-VPR
perturbations (Fig. 7b–e). Detailed comparisons of the response
of all OL and CL variants to both perturbations are provided in
Supplementary Figures 25 and 26. For illustration, we highlight
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perturbations between OL and CL variants across kinase dosages. The data represents the maximum dosage of miR-FF4 (miR Marker≈ 107.75 MEFLs) and
dosage of Gal4-VPR with a comparable level of knockdown to the OL (Gal4 Marker≈ 106.25 MEFLs). e Robustness scores (100%−% deviation due to
perturbations) for all OL and CL variants across each kinase input level at the same dosages of miR-FF4 and Gal4-VPR as highlighted in d. Nominal outputs
indicate the level of output in the absence of any perturbations. The individual points are drawn from all experimental repeats. All data were measured by
flow cytometry at 48 hours post transfection in HEK-293FT cells. All error bars represent the mean ± standard deviation of measurements from three
experimental repeats. Source data are provided as a Source Data file.
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and compare two OL and two CL variants with similar basal
output levels in the absence of kinase: Fluc2, Fluc2/3, EnvZm3t10,
and DDd-EnvZm3t10 + 0.001 μM TMP (Fig. 7b). Without
kinase, there is little difference between the effects of miR-FF4
and Gal4-VPR on the OL and CL systems (Fig. 7c, left panels),
consistent with the expected lack of feedback actuation in the
absence of P-OmpR-VP64 and our earlier findings of similar
levels of noise in the same regime (Fig. 6d). At higher kinase input
levels, the fold-changes in output expression in response to both
perturbations are substantially smaller for the CL variants than
the OL variants (Fig. 7c, right panels).

The relative decrease in fold-changes as a function of kinase
input dosage is plotted in Fig. 7d for two levels of miR-FF4 and
Gal4-VPR perturbations that knock down the OL systems to
similar degrees. At medium-to-high kinase input levels, the
feedback controller can respond to the perturbations by
sustaining the output level to within 2–4-fold of the nominal
(unperturbed) levels, improving significantly over the 6–10-fold
changes observed in the OL systems. The relatively weaker output
suppression by Gal4-VPR for both the OL and CL variants at
low-kinase dosages may result from generally weaker effects of
transcriptional resource sequestration on basal transcription vs
activated transcription65. This may offset the generally increased
susceptibility of the CL system to perturbations in the low-kinase
regime, causing the CL systems to be more evenly perturbed by
Gal4-VPR across kinase dosages.

Because negative feedback reduces output expression, and since
both miR-FF4 and Gal4-VPR knock down gene expression, a full
comparison of the effects of these perturbations on the OL and CL
systems must account for differences in the nominal output
expression level. This is because lower nominal output levels have
a reduced measurable dynamic range of knockdown due to detection
limits imposed by the autofluorescence background. To account for
varying nominal output levels for OL and CL systems at different
kinase input levels, we compared the nominal output level versus
robustness score for each device. Collating all CL and OL variants at
the same miR-FF4 and Gal4-VPR dosages as in Fig. 7d, we can see
that the CL systems are nearly always more robust than the OL
systems for a given nominal output level (Fig. 7e). The only
substantial overlap in the plots between the OL and CL systems
occurs at low-kinase inputs to the CL system. Quantitatively, for a
given nominal output level, we see a 20–30 percentage point increase
in robustness score for the CL systems compared with the OL
variants. Comparisons across additional dosages of each perturbation
show similar results (Supplementary Figures 27 and 28). Thus, our
phosphorylation-based feedback controller is capable of reducing the
impact of perturbations on the expression of the output gene at both
the transcriptional and post-transcriptional levels. Coupled with the
reduction in noise (Fig. 6), these data indicate that the feedback
controller can successfully impart precise, tunable, and robust control
over gene expression in mammalian cells.

Discussion
Here, we developed tunable and precise signaling circuits in
mammalian cells that are robust to perturbations using engi-
neered CMCs derived from bacterial TCS proteins (Fig. 1). We
first screened engineered variants of the E. coli HK EnvZ to isolate
kinase and phosphatase activity from this bifunctional protein
(Figs. 2 and 3). We demonstrated tunability in kinase-induced
gene expression responses conferred by small molecule-inducible
expression of a phosphatase (Fig. 4). Building upon this tun-
ability, we showed that incorporating target sites for endogenous
miRNAs can be used to create cell type-specific signaling
responses through knockdown of phosphatase expression.

Co-expressing the phosphatase with the output, we created a
tunable negative feedback loop that reduces both cell-to-cell
variation and sensitivity to perturbations of kinase-induced gene
expression (Figs. 6 and 7).

Combined with recent advances in utilizing TCS proteins to
engineer synthetic receptors in mammalian cells13,14 and to rewire
the specificity of RRs in bacteria66, our platform will enable the
construction of sophisticated synthetic signaling systems that can
connect intracellular and extracellular inputs to diverse target output
in mammalian cells. Although much work has so far focused on
synthetic receptor engineering10,11, incorporation of downstream
signal processing moieties to improve signaling pathway function
has only recently begun to be explored67. In particular, the ability to
easily tune signaling pathway activity through phosphatase expres-
sion and the ability to robustly control downstream gene expression
processes will facilitate the creation of synthetic signaling systems
that can operate across diverse cellular contexts. In the future, our
circuits can form the basis for advanced cellular computing68 and
feedback control69 architectures. In addition, the phosphorylation
cycles in our CMC-based systems may serve to effectively buffer the
effects of retroactivity70 from downstream target sites loading the
phospho-TF, provided that the phosphorylation reactions are suffi-
ciently fast and the enzyme concentrations are sufficiently high71.
Utilizing TCS components comprising multiple His-Asp
phosphorelays19 may further buffer the effects of retroactivity71,72.
Finally, connecting signaling pathway activity to endogenous gene
regulation, such as through miRNA regulation of pathway compo-
nents, will bolster applications in guiding differentiation or pro-
gramming custom signaling for different cellular states.

The high degree of orthogonality among existing TCS
pathways73–75 and the relative ease of finding new orthogonal
HK/RR pairs76 indicates that TCS pathways will be a bountiful
source of orthogonal signaling pathways for use in mammalian
cells. To support this effort, we identified several HK-RR pairs
that show good orthogonality in mammalian cells (Supplemen-
tary Figures 29–31). Though TCS pathways are absent in
animals15, histidine and aspartate phosphorylation are more
prevalent than previously thought44. The lack of observed histi-
dine to aspartate phosphotransfer in animals indicates a strong
likelihood of orthogonality between TCS pathways and existing
signaling networks in animal cells, though future work will be
needed to examine possible cross-talk.

Through the implementation of feedback control via CMCs, we
have opened the door to creating increasingly precise and robust
responses in engineered signaling pathways. Reducing cell-to-cell
variation in signaling output is critical for ensuring that cells in a
population make uniform, rather than multimodal or stochastic,
decisions. Reducing the sensitivity of output expression to pertur-
bations will help further control individual cellular decision-making
and ensure that engineered signaling systems can operate across
diverse cell types and states52. In the future, it may be possible to
improve the robustness to perturbations conferred by our feedback
controller. To achieve near-perfect adaptation to perturbations, the
system parameters need to be tuned such that it can operate as a
quasi-integral feedback controller28,77. We suspect that the KM of the
phosphatase is likely similar to or higher than the KD of P-OmpR,
reducing the efficacy of the feedback (see Model box). Increasing KD

KM

helps ensure that the phosphatase is saturated with P-OmpR while
the output promoter is not, both of which are critical conditions for
the feedback to work in a quasi-integral manner28 (see Model box).
Further discussion of possible future approaches to achieve quasi-
integral feedback control with our system are discussed in Supple-
mentary Note 2.

In addition, to set point regulation, negative feedback may also
speed up the dynamics of a regulated system, as has been
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observed previously using transcriptional negative feedback78.
However, the faster dynamics of the regulated system depend on
controller architecture and parameters. In particular, whereas
controllers incorporating integral action are known to improve
steady-state regulation performance, they may not speed up
dynamics79, which is why integral control is usually combined
with proportional and derivative control in engineering80. In
terms of analyzing the dynamics of our system, it is important to
consider that it was tested with transient transfections, which
places limits on measurement fidelity as well as operational
responses. DNA dilution during transient transfection prevents
the system from achieving a non-zero steady-state, and also
causes the setpoint to change over time as the kinase level
increases then decreases. Further, DNA dilution causes controller
performance to degrade as the expression of OmpR decays and
the enzymes begin to operate outside the saturation regime
needed for integral control (see Model box). Thus, to precisely
evaluate the dynamic response of our controllers and any mod-
ified variants thereof, future studies will benefit from genomic
integration of the circuits.

In natural systems, feedback control plays a critical role in
regulating signaling pathway activities. Both negative and positive
feedback is common in TCS pathways81. As with the robustness
to perturbations conferred by our feedback controller, negative
feedback in natural and engineered TCS pathways in bacteria also
allows for adaptation to signal inputs26,73,81,82. A conceptually
similar controller to our design is found in bacterial chemotaxis,
in which feedback control via reversible methylation of the
receptor protein Tar enables near-perfect adaptation of flagellar
motion to chemoattractants77,83. Another close analog can be
found in the human ERK1/2 MAPK (mitogen-activated protein
kinase) pathway84. In this pathway, Mek is analogous to our HK
kinase, Erk is analogous to OmpR-VP64 (though Erk itself only
indirectly activates transcription through its targets85,86), and the
Erk-induced phosphatases DUSP5/6 are analogous to our HK
phosphatase84,87. It has been observed that the expression levels
of DUSP5/6 are unaffected by ERK1/2 knockdown88, which we
propose may result from adaptation of DUSP5/6 levels to ERK1/2
levels via the negative feedback loop. Negative feedback in both
natural and engineered systems, including the ERK1/2 MAPK
pathway, has been shown to convert digital, multimodal input-
output responses to more graded, linear, and uniform
responses58,59,89. Likewise, our feedback controller is capable of
imparting graded, uniform activation of gene expression in the
cell population. Overall, these examples highlight how feedback
control plays an important role in the functions of natural sys-
tems and will thus serve as a key building block for future syn-
thetic signaling pathways.

In addition to feedback control, natural signaling pathways also
incorporate constitutive phosphatases (and regulators thereof) to
tune signaling functions across diverse cell types. For example,
signaling through the T-cell receptor (TCR) is regulated by sev-
eral inhibitory receptors such as CD45 and phosphatases such as
PTPN22, which suppress TCR pathway activation unless suffi-
ciently high stimulus is encountered90. In developing thymocytes,
miR-181a-5p suppresses expression of PTPN22, allowing TCR
pathway stimulation at lower antigen affinities and providing
critical signals for survival and development towards mature
T cells91,92. In mature T cells, a variety of miRNAs regulate TCR
signaling, other signaling pathways, the cell cycle, and secretion,
thereby tuning the immunological responses of T cells in
response to their environments93. Thus, tunable phosphatases
and miRNA-regulated signaling responses similar to the ones we
developed can be powerful tools for achieving stage-specific
control of differentiation and tuning cell behavior in different
contexts. Future designs may also incorporate miRNAs that

regulate kinase expression to provide an additional layer of tun-
ability, for example by miRNAs that are lower in cell types or
states where higher signaling strengths are desired.

As synthetic biology progresses, the development of artificial
signaling pathways that reflect natural pathways through the
incorporation of multiple layers of negative feedback and tuning
will facilitate increasingly sophisticated and robust control of
cellular behavior. The customizable signaling responses enabled
through platforms such as ours may be combined with engi-
neered receptors13,14 and modular effectors66 to engineer sig-
naling pathways that transmute extracellular inputs to various
intracellular functions in mammalian cells. Such engineered sig-
naling pathways will enable precise cell-cell communication and
environmental sensing, with applications in engineering cell
therapies, scaling up bioproduction, and programming develop-
ment of stem cells into specific cells, tissues, and organoids.

Methods
Modular plasmid cloning scheme. Plasmids were constructed using a modular
Golden Gate strategy similar to previous work in our lab45,94. Briefly, basic parts
("Level 0s" [pL0s]—insulators, promoters, 5′-UTRs, coding sequences, 3′-UTRs,
and terminators) were created via standard cloning techniques. Typically, pL0s
were generated via PCR (Q5 and OneTaq hot-start polymerases, New England
BioLabs (NEB)) followed by In-Fusion (Takara Bio) or direct synthesis of shorter
inserts followed by ligation into pL0 backbones. Oligonucleotides were synthesized
by Integrated DNA Technologies (IDT) or SGI-DNA. pL0s were assembled into
transcription units (TUs—“Level 1s" [pL1s]) using BsaI Golden Gate reactions
(10–50 cycles between 16°C and 37 °C, T4 DNA ligase). TUs were assembled into
multi-TU plasmids ("Level 2s" [pL2s]) using SapI Golden Gate reactions. All
restriction enzymes and T4 ligase were obtained from NEB. Plasmids were
transformed into Stellar E. coli competent cells (Takara Bio). Transformed Stellar
cells were plated on LB agar (VWR) and propagated in TB media (Sigma-Aldrich).
Carbenicillin (100l μg/mL), kanamycin (50 μg/mL), and/or spectinomycin (100 μg/
mL) were added to the plates or media in accordance with the resistance gene(s) on
each plasmid. All plasmids were extracted from cells with QIAprep Spin Miniprep
and QIAGEN Plasmid Plus Midiprep Kits. Plasmid sequences were verified by
Sanger sequencing at Quintara Biosciences. Genbank files for each plasmid and
vector backbone used in this study are provided in Supplementary Data. Plasmid
sequences were created and annotated using Geneious (Biomatters).

In addition to the above, we devised a new scheme for engineering synthetic
promoters using what we call “Level Sub-0" (pSub0) plasmids. The approach for
creating promoters from pSub0 vectors is illustrated in Figure 32. In this system,
promoters are divided into up to 10 pSub0 fragments. Because the core elements of
a promoter are typically at the 3′-end, we made the pSub0 position vectors start
with the 3’-most element and move towards the 5′ of the promoter. Promoter
position 1 (pP1) contains the transcription start site, the +1 position for
transcription initiation, and surrounding sequences. pP1 can also optionally
contain transcriptional repressor binding sites (not done in this study). pP2
contains the TATA box and other upstream core promoter elements95–97 as
desired. Many of the pP1 and pP2 sequences were derived from the minimal
promoters studied by Ede et al.98. Because the spacing between the TATA box and
+1 site is critical99, we broke apart each minimal promoter at equivalent positions
such that they can be interchanged. pP1 and pP2 parts were generally created via
PCR reactions using the base pSub0 backbone as a template and adding the inserts
via primer overhangs and In-Fusion cloning. Positions 3–10 (pP3–10) are
“enhancer” positions, wherein we generally encode binding sites (i.e., response
elements) for transcriptional activators (such as the RRs in this study), or
enhancers from constitutive promoters (not done in this study). pP3–10 plasmids
were made by directly ligating annealed primers into pSub0 pP3–10 backbones or
through PCR followed by In-Fusion. The annealed primers were synthesized with
4 bp offsets at each end to naturally create overhangs when annealed. All pSub0
plasmids include BsaI binding sites in an analogous position to pL0s, such that
pSub0s can be used directly in place of pL0s when generating pL1s (the overhangs
are compatible for up to four pSub0 inserts, see Supplementary Table 1). Because
pSub0s and pL0s use BsaI for cloning, in the same way, insertion into pL0
backbones using BsaI Golden Gate is inefficient. To more efficiently clone pSub0s
into pL0 P.2 (level 0 promoter) plasmids, we thus generally first performed a
Golden Gate reaction with the pSub0s separately from the pL0 backbone, then
ligated the Golden Gate product with a pre-fragmented and gel-extracted pL0
backbone.

Cell culture. HEK-293 cells (ATCC, CRL-1573), HEK-293FT cells (Thermo Fisher,
R70007), and HeLa cells (ATCC, CCL-2) were maintained in DMEM containing
4.5 g/L glucose, L-glutamine, and sodium pyruvate (Corning) supplemented with
10% fetal bovine serum (FBS, from VWR). All cell lines used in the study were
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grown in a humidified incubator at 37 °C and 5% CO2. All cell lines tested negative
for mycoplasma.

Transfections. Cells were cultured to 90% confluency on the day of transfection,
trypsinized, and added to new plates simultaneously with the addition of plasmid-
transfection reagent mixtures (reverse transfection). Transfections were performed
in 384-, 96-, 24-, or 6-well pre-treated tissue culture plates (Costar). Following are
the volumes, number of cells, and concentrations of reagents used for 96-well
transfections; for 384-, 24- and 6-well transfections, all values were scaled by a
factor of 0.2, 5, or 30, respectively. In all, 120 ng total DNA was diluted into 10 μL
Opti-MEM (Gibco) and lightly vortexed. For poly-transfection experiments, the
DNA dosage was subdivided equally among each complex (e.g., for two complexes,
we delivered 60 ng DNA in each, 40 ng for three complexes, etc.) The transfection
reagent was then added and samples were lightly vortexed again. The DNA-reagent
mixtures were incubated for 10–30 mins whereas cells were trypsinized and
counted. After depositing the transfection mixtures into appropriate wells, 40,000
HEK-293, 40,000 HEK-293FT, or 10,000 HeLa cells suspended in 100 μL media
were added. The reagent used in each experiment along with plasmid quantities per
sample and other experimental details is provided in Supplementary Data. Lipo-
fectamine 3000 was used at a ratio of 2 μL P3000 and 2 μL Lipo 300 per 1 μg DNA.
PEI MAX (Polysciences VWR) was used at a ratio of 3 μL PEI per 1 μg DNA.
FuGENE6 (Promega) was used at a ratio of 3 μL FuGENE6 per 1 μg DNA. Viafect
(Promega) was used at a ratio of 3 μL Viafect per 1 μg DNA. The media of the
transfected cells was not replaced between transfection and data collection. For all
transfections with TMP (Sigma-Aldrich) or 4-OHT (Sigma-Aldrich), the small
molecules were added concurrently with transfection complexes. In each trans-
fection reagent-DNA complex, we included a hEF1a-driven transfection marker to
indicate the dosage of DNA delivered to each cell.

Luciferase assays and analysis. To measure RR-driven luminescence output in
Supplementary Figure 29, we used the Promega Nano-Glo Dual-Luciferase
Reporter Assay System, following the manufacturer’s instructions. In brief, 6000
HEK-293FT cells were transfected using the FuGENE6 reagent with 25 ng total
DNA comprising the plasmids hPGK:Fluc2 (pGL4.53), an hEF1a-driven HK, an
hEF1a-driven RR, an RR-driven promoter expressing NanoLuc, and filler DNA at
5 ng each. The cells were cultured in 20 μL DMEM supplemented with 10% FBS in
384-well plates with solid white walls and bottoms (Thermo Fisher) to facilitate
luminescence measurements. 48 hours post-transfection, cells were removed from
the incubator and allowed to cool to room temperature. In all, 20 μL of ONE-Glo
EX Reagent was added directly to the cultures, and cells were incubated for 3 mins
on an orbital shaker at 900 revolutions per minute (RPM). Fluc2 signal was
measured on a BioTek Synergy H1 hybrid reader, with an integration time of 1 s.
20 μL of NanoDLR Stop & Glo Reagent was then added, and cells were again
incubated for 3 mins on an orbital shaker at 900 RPM. After waiting an additional
10 mins following shaking, NanoLuc signal was measured on the same BioTek
plate reader, with an integration time of 1 s. NanoLuc signals were normalized by
dividing by the Fluc2 signals, thereby accounting for differences in transfection
efficiency among wells.

Identification of optimal orthogonal TCS pairs. To identify the optimal set of
orthogonal TCS interactions, we ran a MATLAB script to score all possible
combinations of 4–7 HK-RR protein pairs. The script uses a scoring function to
evaluate each particular subset of HKs and RRs. The data input into the scoring
function is a matrix of output expression levels driven by the RRs in the presence of
the selected HKs. The scoring function first identifies a reference value for each row
and column by iteratively finding the maximum value in the matrix, blocking off
the rest of the values in its row and column, then repeating until each row and
column has one reference value. The reference value is then divided by the rest of
the values in its row and column, and the quotients are multiplied together to give a
score. The scores for each reference value are then again multiplied together to get
a final score for a particular combination of HKs and RRs. After iterating through
all possible such combinations, the highest final score for a given submatrix size is
selected. The method gave qualitatively orthogonal combinations for up to seven
TCS pairs; we thus present the optimized seven-matrix in Supplementary
Figure 29.

Flow cytometry. To prepare samples in 96-well plates for flow cytometry, the
following procedure was followed: media was aspirated, 50 μL PBS (Corning) was
added to wash the cells and remove FBS, the PBS was aspirated, and 40 μL Trypsin-
EDTA (Corning) was added. The cells were incubated for 5–10 mins at 37 °C to
allow for detachment and separation. Following incubation, 80 μL of Dulbecco’s
modified Eagle media (DMEM) without phenol red (Gibco) with 10% FBS was
added to inactivate the trypsin. Cells were thoroughly mixed to separate and
suspend individual cells. The plate(s) were then spun down at 400 × g for 4 mins,
and the leftover media was aspirated. Cells were resuspended in 170 μL flow buffer
(PBS supplemented with 1% BSA (Thermo Fisher), 5 mM EDTA (VWR), and 0.1%
sodium azide (Sigma-Aldrich) to prevent clumping). For prepping plates of cells
with larger surface areas, all volumes were scaled up in proportion to the surface
area, and samples were transferred to 5 mL polystyrene FACS tubes (Falcon) after

trypsinization. For standard co-transfections, 10,000–50,000 cells were collected
per sample. For the poly-transfection experiment and transfections into cells
harboring an existing lentiviral integration, 100,000–200,000 cells were collected
per sample.

For all experiments, samples were collected on a BD LSR Fortessa equipped
with a 405 nm laser with 450/50 nm filter (“Pacific Blue”) for measuring TagBFP or
EBFP2, 488 laser with 530/30 filter (“FITC”) for measuring EYFP or mNeonGreen,
561 nm laser with 582/15 nm filter (“PE”) or 610/20nm filter (‘PE-Texas Red’) for
measuring mKate2 or mKO2, and 640 laser with 780/60 nm filter (“APC-Cy7”) for
measuring iRFP720. 500-2000 events/s were collected either in tubes via the
collection port or in 96-well plates via the high-throughput sampler. All events
were recorded using FACSDiva version 8.0.1. Compensation was not applied until
processing the data (see below).

Flow cytometry data analysis. Analysis of flow cytometry data was performed
using our MATLAB-based flow cytometry analysis pipeline (https://github.com/
Weiss-Lab/MATLAB_Flow_Analysis) v0.3-beta, compatible with MATLAB 2018a+.
Basic processing steps with example data are shown in Supplementary Figure 33 and
follow the procedures described previously52. In addition, we frequently utilized our
new poly-transfection technique and associated methods45 to characterize and
optimize circuits. Poly-transfection enables rapid and accurate assessment of
dose–response curves for genetic components45, such as the kinases and phospha-
tases in our circuits. Full schematics describing each poly-transfection experiment are
shown in the SI (e.g., Supplementary Figure 2a).

Multi-dimensional binning of poly-transfection data was performed by first
defining bin edges in each dimension (i.e., for the transfection markers for each
poly-transfection complex), then assigning each cell to a bin where the cell’s
expression of these markers was less-than-or-equal-to the high bin edges and
greater-than the low bin edges. Bins with three or fewer cells were ignored (values
set to NaN in the MATLAB code) to avoid skewing by outliers in sparsely-
populated samples (e.g., HeLa cells). Such binning is demonstrated via the
colorization of cells by their bin assignment in the SI (e.g., Supplementary
Figure 2b). In order to avoid the artifact of negative fold-changes, non-positive
fluorescence values were discarded prior to making measurements on binned or
gated populations. In the second and third experimental repeats of the miRNA-
dependent signaling/classifier data in Fig. 5 and Supplementary Figures 14–16, a
newly prepared Output Marker plasmid was later discovered to have an
approximately eightfold lower concentration than expected due to a measurement
error on the nanodrop. To account for this, the bins for the Output Marker in those
samples are shifted down by 10x (so as to match the same bin boundaries as in the
first repeat).

To find the optimal ratio of components in the miR-21 sensor for high cell
classification accuracy, we scanned ratios between 1000:1 to 1:1000 of K:P and
output plasmid:K/P, roughly halving the ratio between steps. At each combination
of ratios, a trajectory was computed and all cells within 0.25 biexponential units of
the trajectory based on euclidean distance were recorded. Accuracy was computed
as described below, and accuracy values were compared across all ratios for each
experimental repeat. From this scanning of trajectories at different ratios of
components, we found that a 1:1:0.5 ratio of K:P:Output plasmid gave the highest
accuracy. This optimal trajectory was used to sub-sample cells for display in Fig. 5f
and Supplementary Figure 17, finding percent positive for output in Fig. 5g and
calculating ROCs/AUCs in Supplementary Figure 17.

In the case of simple co-transfections and subsampled trajectories, cells were
considered to be transfected if they were positive for the output/transfection
marker or the output reporter. When computing summary statistics from binned
data, such thresholding is unnecessary since binning already isolates the cell sub-
population for measurement.

Calculation of cell classification metrics. Sensitivity was defined as the percent of
cells positive for the output reporter in HeLa cells transfected with the T21 circuit
variant. Specificity was defined as 100 minus the percent of cells positive for the
output in HeLa cells with the TFF4 variant or in HEK-293 cells with the T21
variant. The former was considered the more ideal comparison for evaluating
classification performance owing to the higher overall expression of the circuit in
HeLa cells compared with HEKs (Supplementary Figure 14). Accuracy was com-
puted by averaging sensitivity and specificity.

ROC curves in Supplementary Figure 17 were generated by scanning thresholds
starting at −108, then 0, then 15 log-spaced steps between 103 and 108. The AUCs
were computed individually for each experimental repeat by trapezoidal area
approximation using the MATLAB function “trapz()” (https://
www.mathworks.com/help/matlab/ref/trapz.html). The AUC-like curves in
Supplementary Figure 18 were computed by fitting data from each experimental
repeat with a bi-normal classification model in MATLAB (see below for details of
the fitting algorithm used).

Calculation of p values. P values shown in Fig. 5 were computed using the
MATLAB function “ttest()” (https://www.mathworks.com/help/stats/ttest.html).
Samples were paired per experimental repeat and the test was two-tailed.
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Calculation of fold-changes and robustness scores. For quantifying the effects
of EnvZ variants and perturbations, we measured fold-changes by dividing the
median output level of each sample by that of the equivalent sample in the absence
of the EnvZ variant or perturbation. For perturbation experiments, the level of
output absent perturbation is referred to as the nominal output level.

Fold� ΔðInput=perturbation binxÞ ¼ OutputðInput=perturbation binxÞ
OutputðInput=perturbation bin1Þ ð4aÞ

Where log2-transformed fold-changes are shown for experiments with multiple
repeats, the values shown are the mean of the log2-transformed fold-changes,
rather than the log2-transformation of the mean of the fold-changes. This order of
operations ensures that standard deviations of the fold-changes can be computed
directly on the log2-transformed scale.

We computed robustness scores from the fold-changes using the formulae
below:

RobustnessðPerturbation binxÞ ¼ 100 � 1� j1� Fold� ΔðPerturbation binxÞjð Þ
ð5aÞ

Quantification of cell-to-cell output variance. To measure noise, we computed
the interquartile range (IQR) of the output distributions. As we chose the median
to represent the middle of the distribution, the IQR is a corresponding non-
parametric measurement of noise. Since gene expression noise is approximately
log-distributed, we log10-transformed the data prior to computing the IQR. As with
calculations of the medians, negative fluorescent values were discarded when
computing the IQR to avoid artifacts.

Model fitting. Where possible, fluorescent reporters were used to estimating the
concentration of a molecular species for the purpose of model fitting.

For fitting all models, we used the MATLAB function “lsqcurvefit()” (https://
www.mathworks.com/help/optim/ug/lsqcurvefit.html), which minimizes the sum
of the squares of the residuals between the model and the data. In general, fits were
made with cells subsampled from bins, as indicated for each figure. In
Supplementary Figure 18, the fits were made using the true/false positive rates for
each bin. Fits were always performed individually per experimental repeat, then
means and standard deviations were computed for individual fit parameters.

The goodness of fit was measured by computing the normalized root-mean-
square error CV(RMSE) using the following formula:

CV(RMSE) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�y∑iðyðxiÞ � f ðxiÞÞ2

q

�y

Where y(xi) is the value of the data at the input value xi, �y is the mean of y for all
values of x, and f(xi) is the function output at input value xi.

Fitting functions:
Activation of transcription by OmpR-VP64:

y ¼ α0 þ ðα� α0Þ
x2

K2
1=2 þ x2

ð6Þ

The cooperativity of OmpR was assumed to be two because it forms a dimer
once phosphorylated to bind DNA16,100.

Activation of OmpR-VP64-driven expression by kinase: (see Supplementary
Note 1 for more details):

y ¼ α0 þ ðα� α0Þ
x2

K2
1=2 þ x2

ð7Þ

Deactivation of OmpR-VP64 by phosphatase:

y ¼ α0 þ ðα� α0Þ
K2

1=2

K2
1=2 þ x2

ð8Þ

Although OmpR-VP64 has not been completely tuned over to P-OmpR-VP64,
the amount of P-OmpR-VP64 is assumed to be proportional to the level of kinase
because the production rate is only dependent on the kinase. In the presence of
phosphatase, the decay rate becomes overwritten by the dephosphorylation
reaction. Thus, these proteins can be plugged directly into the OmpR-VP64
activation function, such that the kinase is proportional to OmpR and the
phosphatase is inversely so. Because of the inversion, the phosphatase function
becomes a repression-form Hill function.

The bi-normal fitting function for ROC curves is included with our MATLAB
flow cytometry analysis package on GitHub (“model_ROC.mat”). In short, the
measurement of the fraction of cells positive for the output reporter is assumed to
follow a normal distribution with μ1= 0 and σ1= 1 for the negative observations
(TFF4 or HEK cells in our case) and a normal distribution with unknown μ2 and σ2
for the positive observations (T21 in HeLa cells). μ2 and σ2 are fit such that the true
positive rate for a given false positive rate approximates that of the data.

For other comparisons where we present values of r or R2, the former is the
Pearson’s correlation computed with the MATLAB function “regression()” (https://
www.mathworks.com/help/deeplearning/ref/regression.html), and the latter is the
coefficient of determination between predicted and actual values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequences for all plasmids used in this study are provided as GenBank files
in Supplementary Data. New plasmids used in this study are available from Addgene.
Raw .fcs files are available from the corresponding authors upon reasonable
request. Source data are provided with this paper.

Code availability
General MATLAB code for use in .fcs file processing and analysis are available under an
open-source license in our GitHub repository at https://github.com/Weiss-Lab/
MATLAB_Flow_Analysis. Specific .m scripts for each experiment are available from the
corresponding authors upon reasonable request.
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