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Abstract—Barcode reading mobile applications that identify
products from pictures taken using mobile devices are widely
used by customers to perform online price comparisons or to
access reviews written by others. Most of the currently available
barcode reading approaches focus on decoding degraded bar-
codes and treat the underlying barcode detection task as a side
problem that can be addressed using appropriate object detection
methods. However, the majority of modern mobile devices do not
meet the minimum working requirements of complex general
purpose object detection algorithms and most of the efficient
specifically designed barcode detection algorithms require user
interaction to work properly. In this paper, we present a novel
method for barcode detection in camera captured images based
on a supervised machine learning algorithm that identifies one-
dimensional barcodes in the two-dimensional Hough Transform
space. Our model is angle invariant, requires no user interaction
and can be executed on a modern mobile device. It achieves excel-
lent results for two standard one-dimensional barcode datasets:
WWU Muenster Barcode Database and ArTe-Lab 1D Medium
Barcode Dataset. Moreover, we prove that it is possible to enhance
the overall performance of a state-of-the-art barcode reading
algorithm by combining it with our detection method.

I. INTRODUCTION

In the last few years, online shopping has grown constantly,

and so have the number of customers that buy online using

their smartphones or tablets. Those devices often integrate high

quality cameras; as such, many researchers and companies

focused on solving the problem of identifying products shown

in camera captured images on the basis of their visual fea-

tures [1]. However, the task of recognizing both the brand and

the model of a product in a real world image has yet to be

efficiently solved; this is mostly due to the large number of

issues that need to be addressed when using camera captured

images, such as poor light conditions or occlusions. An easier

way to approach the object identification task in the field

of e-commerce lies in exploiting the barcodes that nowadays

appear on almost every item in the market: since each barcode

univocally identifies a product, it is possible to precisely

recognize an object just by detecting and decoding its bar-

code [2]. While both the detection and the decoding tasks have

already been exhaustively faced for two-dimensional barcodes

(e.g., Quick Read codes) [3]–[5], the same does not hold

for one-dimensional (1D) barcodes, even though Universal

Product Codes (UPC) and European Article Numbers (EAN)

are widely diffused all over the world.

The task of reading 1D barcodes from camera captured

images has been approached in different ways [6]–[12]. Most

of the currently available barcode reading mobile applications

read the gray intensity profile of a line in the processed

image, thus they usually require the user to place the barcode

in a specific position within the camera screen [12]. Some

industrial approaches obtain excellent results using hardware

implementations of their barcode reading softwares [13] but

they usually exploit some prior knowledge related to the

specific domain, e.g., the dimension and the position in which

a barcode may appear inside the processed image. Other works

propose different techniques of decoding 1D barcodes to deal

with camera related issues, such as poor light conditions or

lack of focus [9]–[11].

Overall, most of the works presented in literature mainly

address the barcode decoding phase and treat the underlying

barcode detection task as a side problem. Nonetheless, we

argue that the task of detecting multiple arbitrary rotated

barcodes in real world images is crucial to reduce the amount

of user interaction involved in the subsequent decoding pro-

cess. Moreover, real time angle invariant barcode detection

algorithms may be exploited by automated systems to identify

products without defining placement or ordering constraints.

Obviously, 1D barcodes may be effectively detected by general

purpose object detection methods, such as the one presented by

Lempitsky et al. [14], however this is not an optimal solution

since most of the interesting applications of barcode reading

algorithms lie in the mobile field and the majority of currently

available mobile devices do not meet the minimum working

requirements of those object detection approaches.

In this paper, we propose an angle invariant method for

barcode detection in camera captured images based on the

properties of the Hough Transform [15]. A properly trained

supervised machine learning model identifies the rotation

angle of every barcode in real world images by analyzing their

Hough Transform spaces and a subsequent phase detects the

bounding boxes surrounding those barcodes. We prove that

our method can obtain excellent results for three different

1D barcode datasets and that it is also effective in detecting

barcodes that are twisted, partially occluded or illegible due to

reflections. The main novelties of our approach are that: (i) it

detects the exact positions and rotation angles of 1D barcodes

without exploiting prior knowledge, thus it does not require

any user interaction, (ii) the bounding boxes identified by our

model can be exploited by a subsequent decoding phase to

efficiently read barcodes without wasting any time searching

for them in the processed image. We publicly release the



Fig. 1. Examples showing the barcode bounding boxes detected by the proposed method for arbitrary rotated 1D barcodes appearing in camera captured
images; the detected bounding boxes are correct even when the barcodes are twisted, occluded or partially illegible due to reflections.

source code used in our experiments as it can be used by

most of the barcode reading algorithms presented in literature

and we present a new dataset specifically designed to evaluate

the performances of angle invariant 1D barcode detection

methods1.

II. RELATED WORKS

A. Hough Transform

The classical Hough Transform [15] is a feature extraction

technique commonly used in image processing and computer

vision for the detection of regular shapes such as lines, circles

or ellipses. The Hough Transform for lines detection adopts

a voting procedure to identify the set of linear shapes L in a

given image I . The normal form equation of a generic line

l ∈ L in I can be defined as follows:

ρ = xcosθ + ysinθ (1)

where ρ ≥ 0 is the distance of l from the origin of I and

θ ∈ [0, 2π) is the angle of l with the normal. Let the two-

dimensional Hough Transform space H be the (ρ, θ) plane,

for an arbitrary point (xi, yi) ∈ I , Eq. (1) corresponds to a

sinusoid in H . If two points (x0, y0), (x1, y1) ∈ I belong to

the same line l, their corresponding sinusoids intersect in a

point (ρl, θl) ∈ H . The same holds true for all the points of l.

Note that the coordinates of the point (ρl, θl) ∈ H correspond

to the main parameters of l, therefore it is possible to detect the

set of linear shapes L by identifying the points of intersection

in the Hough Transform space H of I .

In a discrete implementation, the Hough Transform algo-

rithm uses a two-dimensional array A, called accumulator, to

represent the plane H . In its first step, the algorithm executes

an edge detection algorithm on I . Let Ie be the edge map

computed for I , for each pixel p ∈ Ie the Hough Transform

algorithm determines if p corresponds to an edge in I; if so, for

every line lp (in the discrete space defined by A) that may pass

through p, the algorithm increases the value of the element in

A that corresponds to the main parameters of lp. Finally, the

linear shapes in I are identified by applying a local threshold

operator to A to detect its peaks.

B. Barcode detection

The barcode detection task consists in locating the barcodes

that appear in a given image; the output of a barcode detection

algorithm should consist of a set of bounding boxes surround-

ing those barcodes.

1http://artelab.dista.uninsubria.it/download/

This task has been faced using many different techniques,

for example: (i) in [12], [16] scan lines are drawn over

the image to detect the exact position of a barcode, (ii)

Basaran et al. [17] rely on the properties of the Canny Edge

Detector [18] to identify edges corresponding to barcodes, (iii)

Gallo and Manduchi [9] assume that the regions in the image

characterized by weak horizontal gradients and strong vertical

gradients correspond to barcodes. In order for the cited models

to operate effectively, the barcodes that appear in the processed

images need to satisfy a set of constraints, e.g., none of the

cited models can detect arbitrary rotated barcodes.

C. Barcode decoding

The barcode decoding task consists in exploiting the infor-

mation provided by a barcode detection algorithm to read the

barcodes that appear in a given image.

As for barcode detection, the decoding task has been

faced in literature in many different ways: (i) Gallo and

Manduchi [9] exploit deformable templates to efficiently read

extremely blurred barcodes, (ii) in [8], [12], [16] the authors

adopt different thresholding techniques to decode the bars of

1D barcodes, (iii) Zamberletti et al. [10] use a supervised

neural network to improve the performance of the Zebra

Crossing (ZXing) [19] algorithm, (iv) Muñiz et al. [20] decode

1D barcodes by exploiting the accumulator array of the Hough

Transform algorithm. Based on the results provided by the

authors, the algorithm proposed by Gallo and Manduchi [9]

proves to be significantly more robust than the others when

applied to camera captured images. The methods presented

in [9], [10], [19] are able to read 1D barcodes efficiently on

common mobile devices.

III. PROPOSED MODEL

A detailed description of the proposed method is given in

the following paragraphs. Given an image I , we apply the

Canny Edge Detector [18] to I to obtain its edge map Ie.

Note that this step can be computed efficiently even on a

mobile device, as proved by many available mobile implemen-

tations. Once the edge map has been determined, we compute

the Hough Transform of Ie in the two-dimensional Hough

Transform space H . Finally, we detect the rotation angle θ of

the barcodes that appear in I as described in Section III-A

and we determine their bounding boxes by analyzing a neural

generated accumulator matrix as in Section III-B. In Fig. 2

we show the pipeline of our algorithm for an image of the

Rotated Barcode Database presented in Section IV-A.
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Fig. 2. A visual overview of the steps performed by the proposed model to detect the bounding boxes of the barcodes that appear in a given image.

A. Angle detection

Let AH be the accumulator matrix for the two-dimensional

Hough Space H , a regular grid of cells is superimposed over

AH ; the height and the width of each cell are defined as n

and m respectively. Every cell c of the grid is given as input

to a Multi Layer Perceptron (MLP) [21] neural network that

produces a new cell ct having the same size of c. Let c(i, j) be

the value of the element of c in position (i, j), with 0 ≤ i ≤ n

and 0 ≤ j ≤ m; the value assigned by the MLP network to

its corresponding element ct(i, j) is defined as follows:

ct(i, j) =

{

1 if c(i, j) denotes a barcode bar in I .

0 otherwise.
(2)

where an element c(i, j) denotes a barcode bar in I if the

line defined by Eq. (1) for (ρc(i,j), θc(i,j)) corresponds to a

barcode bar in I .

As stated by Eq. (2), the goal of the neural network is

to assign an high intensity value to an element of ct if it

corresponds to an element of c that denotes a barcode bar in

the original image I . We train the neural model using a set

of training patterns generated from the test set of the given

barcode dataset. Let It be a training image in the current test

set, a training pattern is composed of a pair (in, out) in which:

(i) in is the vector representation of a cell extracted from the

accumulator in the two-dimensional Hough Transform space

H of It, (ii) out is the vector representation of a cell in which

the elements of in that denote barcode bars in It are assigned 1

as intensity value, the others are assigned 0. Once all the cells

defined for AH have been processed by the neural model, we

combine them together to generate a new matrix AN in which

the elements having high intensity values represent potential

barcode bars.

The main feature of a 1D barcode is that its bars are parallel;

for this reason, we define the likelihood lr of a barcode

appearing in I rotated by the angle associated with a row

r in AN as the sum of all the elements of r. This process is

repeated for all the rows of AH to obtain an histogram hl in

which each bin br represents the likelihood that the elements

of the row r denote the bars of a barcode in I . An example

of such histogram is presented in Fig. 2. Let br be a bin in

hl and maxhl
be the maximum value in hl, if br = maxhl

then we assume that some of the elements of r denote the bars

of a barcode in I . Let θr be the rotation angle specified by

r, without further operations we could perform a set of scan

lines [12], [16] rotated by θr to decode the barcode associated

with r. This is an expensive operation since those scan lines

should be performed over all the lines of I whose rotation

angle is θr. However, it is possible to reduce the number of

scan lines required to decode the barcode by identifying its

bounding box as described in Section III-B.

B. Bounding box detection

Given AN , we obtain the rotation angle θb of every barcode

b in I as described in Section III-A. After that, we determine

the set S of all the segments in I by applying the same

technique of Matasyz et al. [22] to AN . For each barcode

b, we define Sb ⊆ S as the set of segments whose rotation

angles differ by at most ±5◦ from θb and we create a binary

image ISb
in which the intensity value assigned to the pixels of

the segments of Sb is 1, the others are assigned 0; the image

ISb
is then rotated so that the majority of its segments are

parallel to the vertical. Similarly to Section III-A, we define

two histograms hr
Sb

and hc
Sb

that describe the intensity profile

of the rows and the columns of ISb
respectively, as shown

in Fig. 2. More specifically, each bin of those histograms is

computed as the sum of the elements of a row/column in

ISb
. Finally, we apply a smoothing filter to each histogram to

remove low value bins corresponding to isolated non-barcode

segments and we determine the bounding box of the barcode

b as the intersection area between the rows and the columns

associated with the remaining non-zero bins in hr
Sb

and hc
Sb

respectively. All the operations previously described can be

performed in parallel for each detected barcode.

C. Discussion

The computational complexity of the proposed model

strictly depends on the size of the accumulator AH . Note

that, due to the aspect ratio of a 1D barcode, it is possible

to successfully decode a barcode using a scan line if the

rotation angle of the scan line differs by at most ±30◦ from

the one of the barcode [9]. This feature enable us to obtain

good results even when a single row in AH is associated with

multiple consecutive rotation angles. The neural network is

also affected by the parameters n and m; in fact, as proved

in Section IV-C, the capability of the MLP network to detect

twisted barcodes depends on those two parameters. This is due

to the fact that the bars of a twisted barcode (e.g., a barcode

printed on an irregular object) are not parallel, therefore some

of the points generated in AH for such bars lie on different
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Fig. 3. Overall angle detection accuracy achieved by our model for the three 1D barcode datasets presented in Section IV-A while varying the cell size.

subsequent rows. If we increase n, each cell provided as

input to the MLP network covers multiple subsequent rows

of AH and this enables the neural model to successfully

detect multiple rows patterns. The computational complexity

of the bounding box detection phase depends on the size of

the original image I; in our experiments we always rescale

the input image to a 640x480 pixels resolution without losing

overall detection accuracy.

IV. EXPERIMENTS

A. Datasets

In this section we present the datasets used to measure

the performance of the proposed model. We employ two

standard 1D barcode datasets: ArTe-Lab 1D Medium Barcode

Dataset [10] and WWU Muenster Barcode Database [12].

We also build an additional publicly available dataset, called

Rotated Barcode Database, specifically designed to evaluate

the performances of angle invariant 1D barcode detection

algorithms. Since our method involves a supervised machine

learning algorithm, we split each dataset into a training and a

test sets. In details, for each dataset, we randomly select 66%
of its images as training set and the remaining 33% as test set.

In order to evaluate the accuracy of the bounding box detection

phase, described in Section III-C, we define the figure-ground

segmentation masks for all the images of the previously cited

datasets.

ArTe-Lab 1D Medium Barcode Dataset. It consists of 215

1D barcode images acquired using a Nokia 5800 mobile

phone. This dataset is not specifically designed to evaluate

the performances of angle invariant algorithms; as such, the

barcodes that appear in the images are rotated by at most ±30◦

from the vertical. Each image contains at most one non-blurred

EAN barcode. In our experiments, we do not employ the

extended version of the dataset because the proposed method

is not specifically designed to deal with unfocused images.

WWU Muenster Barcode Database. It consists of 1055 1D

barcode images acquired using a Nokia N95 mobile phone.

As for the ArTe-Lab 1D Medium Barcode Dataset, this dataset

has not been specifically designed for angle invariant detection

algorithms, for this reason most of the barcodes that appear

in the images are not rotated from the vertical. Each image

contains at most one non-blurred EAN or UPC-A barcode.

Rotated Barcode Database. It consists of 368 1D barcode

images acquired using multiple smartphones; all the images

are scaled to a 640x480 pixels resolution. This dataset is

specifically designed to evaluate the performances of angle

invariant barcode detection algorithms; as such, the barcodes

shown in the images are rotated by arbitrary angles. Each im-

age may contain multiple EAN and UPC barcodes. Moreover,

the barcodes may appear twisted, illegible due to reflections

or partially occluded. The dataset is publicly available for

download and use.

B. Evaluation metrics

We measure the performances of the two main phases

of the proposed model using the overall angle detection

accuracy for the angle detection phase of Section III-A and

the overall bounding box detection accuracy for the bounding

box detection phase of Section III-C.

Overall angle detection accuracy. Given a dataset D, the

overall angle detection accuracy achieved by the proposed

model for D is computed as follows:

OAθ
D =

tp

tp+ fn+ fp
(3)

where tp is the number of barcode rotation angles successfully

detected in the test set of D, tp + fn is the total number of

1D barcodes that appear in the images of the test set of D and

fp is the number of objects wrongly identified by the MLP

network as barcodes. The rotation angle detected for a barcode

b is considered correct if it differs by at most ±10◦ from the

true rotation angle θb.

Overall bounding box detection accuracy. Given a dataset

D, the overall bounding box detection accuracy OAbb is

calculated by redefining tp in Eq. (3) as the number of barcode

bounding boxes correctly detected. Let bbb be the bounding

box for a barcode b, a detected bounding box db is considered

correct for b if bbb∩db

bbb∪db
≥ 0.5.

C. Results

In this section we discuss the results obtained by the model

presented in Section III for the three datasets of Section IV-A.

In all the experiments we adopt an MLP network composed

by a single hidden layer whose size is equal to n · m. We

extract 150 background and 50 foreground training patterns

from each image of the given test set and we exploit them

to train the neural model using the resilient backpropagation

algorithm. We define the accumulator AH as a matrix with

180 rows and
√
2 · max(h,w) columns, where h and w are

the height and the width of I respectively.



TABLE I
OVERALL BOUNDING BOX DETECTION ACCURACY.

Dataset OAbb

ArTe-Lab 1D Dataset [10] 0.86

Muenster BarcodeDB [12] 0.83

Rotated Barcode Database 0.84

TABLE II
OVERALL BARCODE READING ACCURACY WHILE VARYING THE

DETECTION METHOD.

Dataset
Barcode Reading Algorithm

ZXing [19] Our ∪ ZXing [19]

ArTe-Lab 1D Dataset [10] 0.82 0.85

Muenster BarcodeDB [12] 0.73 0.81

Rotated Barcode Database 0.61 0.82

In our first experiment we analyze the angle detection phase

described in Section III-A; the results we obtain are shown in

Fig. 3. It is possible to observe that, as stated in Section III-C,

the parameters n and m affect the overall angle detection

accuracy. The best value for m is 3; lower values do not

allow the MLP network to detect twisted barcodes while higher

values introduce too much noise in the patterns processed

by the MLP network. Overall, we achieve excellent angle

detection performances: if we set n = 3 and m = 61, we

obtain a 100% OAθ for the simple ArTe-Lab 1D Medium

Barcode Dataset and an average of 95.5% OAθ for the other

two datasets. In this configuration, the time required to process

an image is roughly 200 ms on a mobile device. Next, we

evaluate the overall bounding box detection accuracy obtained

by the bounding box detection phase for the same three

datasets; the results are presented in Table I. Unfortunately, we

cannot provide any comparison with other barcode detection

algorithms as they do not usually detect region of interests

within the processed images; in our experience, the only

method that performs a similar detection process is the one

in [9], however we cannot test it because its source code is

not currently available. The bounding box detection accuracies

we obtain are close to 85% OAbb for all the datasets analyzed,

this is a good result considering the fact that our method does

not impose constraints and requires no user interaction. The

completion time of the bounding box detection phase is 70
ms per image. We perform a final experiment to prove that it

is possible to improve the performance of an existing barcode

reading algorithm by replacing its detection algorithm with our

method. We chose the ZXing [19] algorithm because its source

code is available for download; we evaluate the perfomances

of both the original algorithm and our modified version using

the same metric of Zamberletti et al. [10]. From the results

presented in Table II, we observe that the algorithm obtained

by combining ZXing with our detection method achieves better

overall perfomance than the original algorithm for all the three

datasets, especially for our Rotated Barcode Database.

V. CONCLUSION

We have presented a method for detecting one-dimensional

barcodes in camera captured images that is angle invariant and

requires no user interaction. We proved the effectivness of the

proposed model using three EAN/UPC datasets. The obtained

results show that our method is able to precisely detect both

the rotation angles and the bounding boxes of one-dimensional

barcodes even when such barcodes are partially occluded,

twisted or illegible due to reflections. The time required by

our approach to process an entire image is roughly 270 ms on

a modern mobile device; this is an excellent results because, as

shown in our experiments, it is possible to obtain a robust one-

dimensional barcode reading algorithm simply by combining

our approach with a fast scan line decoding algorithm that

processes only the detected bounding boxes.
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