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Abstract

Route following is defined as the ability to
repeat the same route after having traversed
it once under the control of a human opera-
tor. This paper presents a fast and robust ap-
pearance based route following algorithm that
utilises only monocular panoramic vision and
odometry in large scale outdoor environments.
Extensive experimental results have shown ro-
bustness against lighting variations and occlu-
sion not yet demonstrated in the literature.
The cumulative distance traveled by the robot
in these experiments exceeds 20km and the
longest repeated route is 732 meters.

1 Introduction

This paper presents a robust appearance based solution
to the problem of route following in large scale outdoor
environments. Route following is defined as the abil-
ity to repeat the same route after having traversed it
once under external control. A potential area of appli-
cation is robotic couriers where human operators drive
the robot from one destination to another, subsequently
with the robot able to repeat the route autonomously.
The system targets urban environments during daylight
hours. Passive vision has been chosen as the primary
sensing modality due to it possessing a number of at-
tractive properties. In comparison to laser range find-
ers, which have finite range, vision is not constrained
by distance to features. The appearance of the environ-
ment is also richer in information than the geometry of
the environment. Vision sensors are small in size, low in
power consumption, inexpensive, as well as being passive
in nature. The challenge associated with vision however,
is mainly two fold: loss of information when a 3D world
is projected onto a 2D image plane, and the variation
of appearance of visual features depending on lighting
conditions. Possible solutions to vision based route fol-
lowing are discussed next.

Building a geometric map of the environment is a
possibility. If the robot is capable of building a map
of the environment during route teaching and subse-
quently localise in the map then its offset from the route
can be compensated for, hence achieving route follow-
ing. However, vision based SLAM (Simultaneous Lo-
calisation And Mapping) algorithms are still far from
mature. A number of additional constrains make the
route following problem a member of a superset of prob-
lems solved by SLAM. Construction of a globally con-
sistent geometric map is the goal of SLAM. Whereas
in route following, provided that a route could be re-
peated successfully, the form of representation in which
information regarding the environment is encoded is ir-
relevant. Significant deviations from the route is not
expected to occur during normal operation. Thus there
is no need to predict the appearance of features from
different viewing angles. A convergent feedback system
only requires the correct sign of the lateral offset from
the teaching route. Furthermore, ground surface can be
assumed to be locally flat, resulting in the vertical orien-
tation of the camera being the same when revisiting the
same part of the route. Thus any differences in robot ori-
entation while retracing the route introduce only a shift
in the azimuth angle of the visual features. Under these
constraints it is proposed that an algorithmically sim-
pler approach would suffice for the route following prob-
lem. Many apparently simple algorithms, often biologi-
cally inspired, have been remarkably successful at solving
navigation problems in robotics [Srinivasan et al., 2004;
Chahl and Srinivasan, 1999]. The appearance based ap-
proach presented in this paper is algorithmically simple
and operates very fast, at the same time achieving ro-
bustness against occlusion and lighting variations that
has yet to be demonstrated in the literature.

2 Hardware

Figure 1 shows the Pioneer P3-AT outdoor robot that
was used as the mobile platform. A webcam directed
towards a panoramic mirror of the profile given in [Chahl





ten not accompanied by adequate experimental results,
this paper presents a comprehensive set of experiments.

4 Appearance Based Route Following

4.1 System Overview

Route following consists of two phases, route teaching
and autonomous route following. The core concept is to
capture a sequence of reference panoramic images dur-
ing route teaching. During the autonomous phase, mea-
surement image is compared against the closest reference
image to recover a relative orientation. Only the frontal
180 degrees field of view is used to ensure a convergent
behaviour. The robot then corrects its heading to zero
the relative orientation. Both lateral offset and orienta-
tion error can be corrected with this behaviour. Rela-
tive orientation is recovered by first unwarping the image
into azimuth-elevation coordinates, followed by a cross-
correlation in the azimuth axis and detecting for peaks
in the correlation coefficients. Figure 2 shows the overall
system architecture. Following sections concentrate on
the main components in Figure 2: image pre-processing,
image cross-correlation, along route localisation, and rel-
ative orientation tracking. Reference image selection is
discussed in Section 4.4.

4.2 Image Pre-processing

Identical image pre-processing steps are applied to both
reference and measurement images. Input colour image
is first converted into greyscale (colour information is
unstable under changing lighting conditions) then “un-
warped” (i.e. remapped) onto azimuth-elevation coordi-
nates. An example of the original colour image and its
unwarped greyscale image is shown in Figures 3a and 3b
respectively, where horizontal axis is azimuth and verti-
cal axis is elevation. Vertical field of view is restricted to
[−50◦, 20◦]. Patch normalisation is then applied to com-
pensate for changes in lighting condition. It transforms
the pixel values as follows:

I ′(x, y) = ((I(x, y) − µ(x, y)) /σ(x, y) (1)

where I(x, y) and I ′(x, y) are the original and normalised
pixels respectively, µ(x, y) and σ(x, y) are the mean and
standard deviation of pixel values in a neighbourhood
centred around I(x, y). Figure 3c shows the result of
applying patch normalisation to Figure 3b. A neigh-
bourhood size of 17 by 17 pixels has worked well in the
experiments.

4.3 Image Cross Correlation

This section addresses the problem of measuring an ori-
entation difference between a measurement image and a
reference image. Ground surface along the route is as-
sumed to be locally flat such that the radial axis of the

Figure 2: System Overview

panoramic vision system is perpendicular to the ground
plane. Orientation difference between reference and
measurement image is therefore only a shift along the
azimuth axis. This shift is recovered using Image Cross-
Correlation (ICC) performed efficiently in the Fourier
domain. Let θ denote azimuth and φ elevation. The
frontal 180◦ field of view of the reference image serves as
the template, i.e. θ ∈ [−90◦, 90◦]. Let the search range
be ±θsrch such that the measurement image is limited
to the angular range [−90◦ − θsrch, 90◦ + θsrch]. Be-
cause only a 1D cross-correlation along the azimuth axis
is performed, each row in the image is transformed into
Fourier domain separately. Reference image is padded
with zeros to the same size as the measurement image.
If the measurement image is Nφ by Nθ pixels, then the
Fourier domain image consists of Nφ sets of 1D Fourier
coefficients, each of a single row. Algorithmic complex-
ity for a single image is O(NφNθ log Nθ). Convolution in
spatial domain is equivalent to multiplication in Fourier



(a) Original image

(b) Unwarped greyscale image

(c) Patched normalised

Figure 3: (a) Original colour image. (b) Converted
to greyscale and mapped into azimuth-elevation coor-
dinates, where the azimuth-axis is horizontal. (c) Patch
normalised to remove lighting variations, using a neigh-
bourhood of 17 by 17 pixels.
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where λ is the ICC coefficients, Ri and M i are the
i’th row in the reference and measurement image re-
spectively, ∗ is the convolution operator and F{•} is
the Fourier transform operator. Equation 2 states that
each corresponding row of the measurement and refer-
ence images are multiplied in Fourier domain. The re-
sults are then summed followed by an inverse Fourier
transform to obtain the spatial domain cross-correlation
coefficients. Complexity for the multiplication in Fourier
domain is O(NφNθ) and for inverse Fourier transform is
O(Nθ log Nθ). Fourier transforms for the reference im-
ages are calculated offline after the teaching run and

stored. The complexity of a complete ICC is thus
O(NφNθ log Nθ) + O(mNφNθ) + O(mNθ log Nθ) where
m is the number reference images to compare against.
This is significantly better than the complexity of ICC
performed in spatial domain which is O(mNφNθθsrch).
Comparing against 11 reference images only takes 2.3ms
on a 2.4GHz Mobile Pentium 4 per measurement image.
More timing results are presented in Section 5.5.

4.4 Along Route Localisation

Existing works [Matsumoto et al., 1999; Jones et al.,
1997; Matsumoto et al., 2000] localise the robot to the
nearest reference image, where each measurement image
is compared to the current nearest reference image and
the next one along the route. If the next reference is a
better match then the robot is relocalised to this new
reference. This method is far too sensitive to errors in
image matching. The proposed approach uses a Markov
localisation filter [Fox et al., 1999] to track robot po-
sition along the route, where the state variable is the
distance from the starting point. States are discretised
at a uniform resolution of 7cm per state.

Distance between reference images are longer than the
distance between localisation states, and also at a vari-
able resolution. Selecting reference images is non-trivial.
They should be allocated densely at turns or when visual
features are close to the robot. One possible selection
method is presented in [Matsumoto et al., 2000]. This
paper concentrates on the online algorithm used to re-
peat the route. Hence a simple selection method was
employed where reference images are allocated with a
maximum separation of 35cm and 5◦ rotation according
to odometry.

Since the “kidnapped robot problem” is not one of
the operation scenarios and that the robot is always ini-
tialised at the starting point, there is no need for global
localisation. Thus at any instant in time, only a local
neighbourhood of localisation states centred at the most
likely robot location is considered to reduce computa-
tional complexity.

Prediction update involves shifting the probability dis-
tribution along the route according to odometry mea-
surement. During observation update, observation like-
lihood is calculated from ICC coefficients. ICC is per-
formed on the measurement image against 11 reference
images centred around the estimated current robot lo-
cation. Local maxima in the ICC coefficients are de-
tected. For each reference image, the score of a single
local maxima with an relative orientation value closest to
that of the current estimated robot relative orientation
determines the matching likelihood of that reference im-
age. The robot’s relative orientation and its estimation
is discussed in the next section. Because the localisation
states are denser than the reference images, each state



is then given a score via linear interpolation of scores
of the reference images in front and behind that state.
The actual observation likelihood is obtained by first nor-
malising the scores, followed by addition of a constant,
and renormalisation. A larger additive constant has the
effect of reducing the confidence placed in the observa-
tions. This constant was experimentally determined.

4.5 Relative Orientation Tracking

The robot’s “relative orientation” refers to the difference
between the robot’s current orientation and that of the
reference image. It is designated θδ. Note that a multi-
modal tracker for this quantity is not necessary since
control decisions must be made based on the current
best estimate. Route following will diverge if the most
probable mode does not track the true orientation.

A Kalman filter is used to track θδ. Prediction and
correction updates are presented next. Prediction up-
date uses readings from odometry as follows:

θδ(d + ∆d) = θδ(d) + ∆θmsur(d + ∆d) − ∆θref (d + ∆d)
(3)

where d is the distance from the start of the route, ∆d is
the distance traveled since the last update, ∆θmsur(d +
∆d) and ∆θref (d + ∆d) are the changes in orientation
measured by odometry in the distance interval [d, d+∆d]
during the autonomous and teaching runs respectively.
Change in robot orientation in a differentially steered
robot can be modeled as:

∆θ =
dR − dL

W
(4)

where dL and dR are the distances traveled by the left
and right wheels, W is the effective wheel separation and
the variance is:

V ar(∆θ) =
V ar(dR) + V ar(dL)

W 2
(5)

The variance of a distance measurement is directly pro-
portional to the distance measured:

V ar(dR) = α · |dR| (6)

V ar(dL) = α · |dL| (7)

where α controls the size of the odometry error.
Observation update uses ICC results from only two

reference images. One is immediately in front and the
other behind the current robot location. One local max-
ima from each reference that are nearest to the current
predicted θδ are selected. A linear interpolation of the
two maxima positions controlled by the location of the
robot in between the references provide the observation
of θδ. The observation needs to pass a validation gate
set at 95% confidence before being accepted for state
update.

4.6 Robot Control

The control algorithm aims to zero the robot’s estimated
relative orientation using a proportional controller:

ω = −κ · θδ (8)

where ω is the robot’s rate of rotation and κ is the exper-
imentally determined system gain that depends on the
system’s processing speed and the robot dynamics.

5 Experimental Results

As a consequence of the proposed approach being be-
haviour based, any improvement to the algorithm needs
to be tested online. The development process consists of
conducting experiments which expose failure scenarios,
improving the algorithm, experimental validation, and
more experiments that expose further problems. Only
the latest version of the algorithm has been described in
Section 4. The effect of any improvement to the algo-
rithm can only truly be verified with online experiments,
under as many different lighting conditions as possible.
It is clearly infeasible to repeat all the experiments af-
ter any improvement was made. So the procedure was to
first apply the improved algorithm to the recorded exper-
iments that exhibited a specific failure scenario to verify
that a better behaviour is achieved. The improved algo-
rithm is then applied to recordings of other successful ex-
periments to ensure that the behaviour does not deviate
drastically from the old algorithm. This offline verifica-
tion process significantly increases the confidence in the
improvement not introducing other failure modes. Al-
though some experiments presented in this section used
earlier versions of the algorithm, they nevertheless vali-
date various aspects of the final algorithm. Differences
in the algorithms will be explicitly stated for each set of
experiments. The cumulative length of the experiments
conducted is over 20km.

5.1 Robustness of Relative Orientation
Measurement

This set of experiments demonstrates the robustness of
the image cross-correlation method for relative orienta-
tion measurement against occlusion and lighting varia-
tions in outdoor environments. In order to isolate the
causes of failures, prediction update based on odometry
information in orientation tracking was ignored, making
the system more sensitive to errors in relative orientation
measurement between images.

Figure 4 shows the teaching route in our university
campus. The green circle and red square are the start
and end points. The route is 416 meters in length. A
total of eight successful runs were made under differ-
ing lighting conditions. Cumulative odometry for these
experiments is shown together in Figure 5. Odometry







(a) (b)

Figure 10: Reference images are in the top row, the rest
are from autonomous runs carried out on sunny days at
9:14, 10:20, 11:17, 12:13, 13:13, 15:03, 16:47 and 17:34.

5.3 Ground Truth

The ground truth experiments provide quantitative mea-
sures on the accuracy of the algorithm. Ground truth
measurements are difficult to obtain in this case because
the experiments should be conducted in realistic envi-
ronments. Real-time kinematic GPS [Royer et al., 2005]

provides enough resolution but is inapplicable due to
buildings occluding GPS signals. Accurate laser range
finders used in land surveying were also considered. But
line-of-sight is difficult to maintain. The chosen method
is to mark the robot position at waypoints along the
route then manually measure the deviation at these way
points during autonomous runs.

The route followed is the same as in the previous set
of experiments. A new teaching run was made to allow
for ground truth measurements during which the robot
was made to stop at regular intervals along the route.
Robot positions at these waypoints were marked on the
ground. During the autonomous phase, robot stopped at
these waypoints such that positional errors with respect
to ground truth could be measured. A total of 22 way-
points were used. No waypoints were allocated in the
middle of turns because stopping the robot during the
autonomous phase changes the robot dynamics, hence
interfering with the robot control algorithm and could
potentially decrease the accuracy of route following. A
total of 9 experiments were conducted. Table 2 sum-
marises the results. The direction of the x-axis is per-
pendicular to the route. Because the localisation states
are discretised at 7cm between states, this limits the ac-

Exp. |x| (cm) |y| (cm)
No. Condition Max. Avg. σ Max. Avg. σ

1 16:20 OC 10.0 4.6 4.8 24.0 8.4 10.4
2 16:46 OC 11.0 5.1 5.5 24.0 9.3 11.2
3 11:20 OC 7.0 4.5 4.0 22.0 7.3 9.0
4 12:46 S 6.0 3.4 3.0 20.5 8.5 10.1
5 14:28 S 14.0 5.8 5.0 26.0 8.2 9.9
6 15:22 S 13.0 4.9 4.8 25.5 7.9 9.4
7 15:37 S 11.0 4.6 3.7 23.5 8.4 10.1
8 9:38 S 21.5 8.4 7.4 25.5 9.3 10.9
9 10:27 S 20.0 8.1 6.7 16.0 9.1 10.1

OC - Overcast, S - Sunny, σ - Standard Deviation

Table 2: Error during autonomous route following com-
pared with training route. The |x| column is the magni-
tude of the lateral offset from the route at the waypoints
and |y| is localisation error along the route.

curacy along the y-axis. Lateral deviation (x-axis) is
more representative of the algorithm’s accuracy. Refer-
ence sequence was captured at 12:37pm on a sunny day.
The fact that Table 2 shows no clear correlation between
the amount of deviation and the weather conditions or
time of day demonstrates robustness against changing
lighting conditions.

5.4 A Longer Experiment

The route is visualised in Figure 11. At 732 meters
in length this is the longest route. The robot trav-
els through a variety of environments including big
open spaces (Figure 11f), footpaths predominantly sur-
rounded by vegetation (Figure 11c), and non-uniformly
distributed features (Figure 11d where a building facade
is close by on one side and open space on the other). A
total of 7 experiments were conducted, of which 5 were
completely successful. The rest two experiments com-
pleted 730 meters but failed at 2 meters before the end
of the route just before entering the robotics laboratory.
One of these failures was caused by the slow response of
the camera automatic gain control leading to the interior
of the laboratory appearing completely saturated. The
other failure is suspected to be caused by clutter in the
laboratory. Again the experiments were conducted un-
der various lighting conditions. Tolerance to occlusion
is demonstrated in Figure 12 where a market was setup
in the square in front of the campus centre during an
autonomous run.

5.5 Timing and Storage Requirement

Below is a summary of system parameters and timing
results:

• Reference image size: 70 x 180 pixels ( = 70◦

elevation FOV, 180◦ azimuth FOV)

• Measurement image size: 70 x 256 pixels (i.e.
±38◦ azimuth search range)

• No. of ref. images to compare against for

along route localisation: 11
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