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ABSTRACT

The motion of and interaction between phase singularities that lie at the centers of spiral waves capture many qualitative and, in some cases,
quantitative features of complex dynamics in excitable systems. Being able to accurately reconstruct their position is thus quite important, even
if the data are noisy and sparse, as in electrophysiology studies of cardiac arrhythmias, for instance. A recently proposed global topological
approach [Marcotte and Grigoriev, Chaos 27, 093936 (2017)] promises to meaningfully improve the quality of the reconstruction compared
with traditional, local approaches. Indeed, we found that this approach is capable of handling noise levels exceeding the range of the signal
with minimal loss of accuracy. Moreover, it also works successfully with data sampled on sparse grids with spacing comparable to the mean
separation between the phase singularities for complex patterns featuring multiple interacting spiral waves.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086936

Catheter ablation has recently emerged as a leadingmedical treat-
ment for a range of cardiac arrhythmias, especially atrial fibrilla-
tion. The premise of the treatment is that certain localized regions
of heart tissue can become sources of spiral excitation waves—or
rotors—competing with the heart’s natural pacemaker, i.e., the
sinoatrial node for the atria or the atrioventricular node for the
ventricles. The success of the ablation procedure then critically
depends on the precision with which these sources are located
based on electrograms obtained using intracardiacmultielectrode
catheters. This paper explains how the sources of excitation waves
in a numerical model of atrial fibrillation can be reliably located
with subgrid precision using sparse and noisy measurements of
the transmembrane voltage. A similar approach could be used to
improve the quality of rotor mapping in a clinical setting.

I. INTRODUCTION

Spiral waves in two dimensions (and scroll waves in three
dimensions) represent the key motifs of typical self-sustained
dynamical patterns in excitable systems such as cardiac tissue. In
fact, the work to understand the mechanisms and develop effective
treatments of cardiac arrhythmias such as tachycardia or fibrillation
became themajor driver formuch of the recent interest in the dynam-
ics of spiral and scroll waves. Because of the strong spatial coherence
of such waves, many aspects of their dynamics can in fact be under-
stood using center-manifold reduction of the underlying partial

differential (or difference) equations, yielding a system of ordinary
differential equations with respect to just a few variables.1,2 These
variables are associated with the Euclidean symmetry of the prob-
lem and can be interpreted in terms of the low-dimensional dynamics
(translation and rotation) of the core of the spiral wave, which serves
as its source and anchor. Notable examples include meander and
drift3–6 of spiral waves and their interaction with boundaries.7–9 In
fact, even for complex patterns of excitation which involve multiple
spiral waves, many features of the dynamics can be understood and
described reasonably well in terms of the wave core interaction.9,10

Given their influence on large regions of space, spiral wave cores
represent attractive targets for controlling the dynamics of excitable
media. This is well known to clinical practitioners looking for treat-
ments of cardiac arrhythmias such as atrial fibrillation. In fact, radio
frequency ablation, which aims to silence or isolate regions of cardiac
tissue believed to be sources of spiral excitation waves (often referred
to as rotors), has become the leading surgical treatment for persis-
tent atrial fibrillation.11,12 The success rate of ablation surgeries is,
however, not very high, suggesting that the insufficient accuracy with
which the spiral wave cores are located may be problematic. Indeed,
typical intracardiac basket catheters used to locate them only have 64
unipolar electrodes distributed over 8 circular spines of the catheter.13

The signal they generate is both rather sparse and rather noisy, mak-
ing it challenging to identify the location of the spiral wave cores,
especially if those cores are drifting or meandering.

This paper describes a novel method that can reliably identify
and track with high precision a large number of spiral wave cores
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based on sparse and noisymeasurements of the transmembrane volt-
age. The paper is organized as follows. An overview of the existing
methods for identifying the cores (or, more precisely, certain points
inside the cores) is provided in Sec. II. Our approach is described in
Sec. III, and it is validated and compared with competing approaches
in Sec. IV. The limitations and potential extensions of our approach
are discussed in Sec. V. Finally, our conclusions are presented in
Sec. VI.

II. BACKGROUND

Spiral wave cores (defined in terms of the response functions
that determine the sensitivity to perturbations, heterogeneity, etc.)
tend to be exponentially localized, as illustrated by analyses of the
Ginzburg-Landau,14 Barkley,15 FitzHugh-Nagumo,16 Oregonator,17

Beeler-Reuter-Pumir,18 and Karma9 models. In practice, it is more
convenient to define a single point that characterizes the position of
the core. Numerical studies tend to use the position of the spiral tip,
which can be defined in many different ways.10,19–29 The most pop-
ular definitions are based on either the intersection of level sets of
different variables22 or the vanishing of the normal velocity24 or the
curvature of the wavefront.28

Neither of these definitions are convenient (or reliable) for ana-
lyzing experimental data, however. An alternative approach relies on
the phase-amplitude representation of spiral waves, with the phase
singularity (PS) defining the instantaneous center of rotation of the
wave. A method for identifying PSs based on the local phase field
has become standard in analyzing experimental data,30,31 although it
is also possible to determine the location of PSs using the amplitude
field.10

Recently, several alternative approaches have been proposed
to locate spiral wave cores based on various metrics such as Shan-
non entropy, multiscale frequency, kurtosis, multiscale entropy,32

and Jacobian-determinant.33 It should be noted that these met-
rics define neither the spiral tip nor the phase singularity, but
they can be applied to sparse data, although their precision and
accuracy decrease very quickly as sparsity increases. The study of
Li et al.33 showed that the Jacobian-determinant method locates both
stationary and meandering spirals with precision higher than other
common approaches.24,31,34,35 Furthermore, they determined that the
Jacobian-determinant method is the only one that can produce reli-
able results in the presence of as much as 0.9% noise.

In fact, essentially all existing methods for locating spiral wave
cores are local and cannot withstand higher noise levels characteris-
tic of practical applications without significant loss of accuracy and
precision. The only exception is the global topological method for
identifying PSs proposed by Marcotte and Grigoriev.36 The original
version of the topological approach defined PSs as intersections of
level sets associated with two different variables (one fast and one
slow). A modified version of this topological approach based on
phase reconstruction that required measurement of just one vari-
able was developed and tested using spatially resolved numerical and
experimental data.37 Here, we describe a robust implementation of
the topological approach that does not require phase reconstruction
and investigate its performance for sparse and noisy data generated
by a model of atrial fibrillation. In addition to its relative simplic-
ity, the implementation described here also affords a more direct

dynamical interpretation and allows an automatic classification of
topological changes leading to creation or destruction of pairs of
counter-rotating rotors.36

III. METHODS

A. Model

To illustrate the algorithm and determine the conditions under
which it functions reliably, we will use two-dimensional surrogate
data generated by the smoothed version10,36 of the Karma model,38,39

∂tw = D∇2w + f(w), (1)

wherew = [u, v], u is the (fast) voltage variable, v is the (slow) gating
variable,

f1 = (u∗ − vM){1 − tanh(u − 3)}u2/2 − u,

f2 = ǫ {β2s(u − 1) + 2s(v − 1)(v − 1) − v}
(2)

and 2s(u) = [1 + tanh(su)]/2. Here, ǫ describes the ratio of the fast
and slow time scales, s is the smoothing parameter, and the diago-
nal matrix D of diffusion coefficients describes the spatial coupling
between neighboring cardiac cells (cardiomyocytes). The parameters
of the model are M = 4, ǫ = 0.01, s = 10, β = 1.389, u∗ = 1.5415,
D11 = 4.0062, andD22 = 0.200 31, with the length scale correspond-
ing to the size of a cardiomyocyte. Along with the Mitchell-Schaeffer
model,40 this is one of the simplest models of excitable media that
develops sustained spiral wave chaos from an isolated spiral wave
through the amplification of the alternans instability.

B. Analysis

Themethod described here uses the voltage variable u (normal-
ized to the range [0,1] for convenience) to reconstruct the position
of PSs. In some instances, e.g., electrophysiology studies using basket
catheters, the voltage data are only available on a coarse spatial grid.
To enable rotor mapping withmeaningful accuracy in such cases, the
data at each frame of the recording aremapped onto a sufficiently fine
mesh using bicubic interpolation.

Following the original study that introduced the topologi-
cal approach,36 we will define PSs as intersections of two smooth
curves ℓ1 and ℓ2. For data corresponding to transmembrane voltage
(obtained from a model or optical mapping using a voltage-sensitive
dye), these curves can be conveniently defined as the zero level sets
of u̇ and ü, which form the boundaries ∂R and ∂E, respectively, of the
refractory region

R = {(x, y) : u̇ < 0} (3)

and the excited region

E = {(x, y) : ü < 0}. (4)

Given that our data are discrete and noisy, properly defining the level
sets and PSs requires some care. ∂R and ∂E correspond to peaks and
troughs of u and u̇, respectively, where the temporal derivative can
be computed using finite differencing of the discrete signal. In the
presence of noise (i.e., when dealing with experimental recordings),
the data may be smoothed using a Gaussian kernel with spatial and
temporal widths σs and σt , respectively, before the time derivative is
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FIG. 1. Comparison of sets ℓk (a) and ℓ̄k (b) for noiseless data, with k = 1 in
black and k = 2 in gray. The domain is 256 × 256 grid points. Panel (a) contains
a number of artifacts, which have to do with a characteristic feature of most cardiac
models, namely, very flat repolarization plateaus.

computed. Even after smoothing,u and especially u̇ can remain noisy.
So each peak or trough is required to have a minimum prominence
(a fractionMPP1 orMPP2 of the range of u or u̇, respectively, selected
based on the overall level of noise, as described in the Appendix) and
separation (generally, a fixed fraction δ of the dominant period of
oscillation) from the nearest peak/trough.

Spatial discreteness of the data—we assume u is measured on a
uniform grid (xi, yj, tn) in space and time—limits the accuracy with
which the level sets ∂R and ∂E can be defined based on local data to
the resolution of the underlying spatial grid. For instance, if we sim-
ply identify the grid points that correspond to the peaks or troughs
in each frame, we end up with a sparse set of isolated points. In order
to define a continuous set that can be considered a discrete approx-
imation of ∂R and ∂E, we will use the following procedure. Let t1ijm
denote the position of subsequent peaks (troughs) of u(xi, yj, t) form
even (odd) and define t2ijm analogously for u̇(xi, yj, t). Further, let us
define a noise-insensitive analog of the sign of the time derivative

skijn =

{
1, tkijm−1 < tn ≤ tkijm,

−1, tkijm < tn ≤ tkijm+1,
(5)

for some even numberm and k = 1 or 2. Then, the sets

ℓk(tn) = {(xi, yj) : ∃i
′, j′ : skijns

k
i′ j′n < 0,

|i − i′| + |j − j′| = 1} (6)

are discrete generalizations of the level sets ∂R and ∂Ewith aminimal
width of 2 grid points and no gaps, as illustrated in Fig. 1(a).

In order to define the position of the level sets with subgrid
precision using global, rather than local (and hence noisy), informa-
tion we use the following approach. For each of ℓ1 and ℓ2, unsigned
distance functions d1 and d2, respectively, are constructed using the
MATLAB function bwdist.41 These are in turn converted into signed
distance functions

dks (xi, yj, tn) = −skijnd
k(xi, yj, tn), (7)

which incorporate global information across the entire domain.Next,
in order to ultimately smooth and sharpen the level sets, a spatial

FIG. 2. The signed distance d1s (black) and its smoothed version d̄
1
s (gray) at a

fixed time over a j = constant slice of the domain.

convolution of the signed distance functions with a Gaussian ker-
nel with spatial width σd is computed, yielding a pair of smoothed

distance fields d̄ks . A comparison of the smoothed and unsmoothed
versions of the signed distance function is presented in Fig. 2. Note
the plateaus in the unsmoothed distance function, representing the
finite thickness of the discrete set of grid points from which it is
computed.

Now, we can finally define curves ℓ̄k as the zero level sets of the

smoothed distance fields d̄ks using the MATLAB function contour.
These curves are piecewise continuous and smooth, although in prac-
tice they are parametrized by a sequence of connected points in R

2.
Note that ℓk define the true positions of ∂R and ∂E with a precision
of one grid point or better. As Fig. 1 illustrates, for noiseless data, ℓ̄k

provide accurate representations of ℓk and hence ∂R and ∂E, despite
the relatively aggressive smoothing.

In practice, we will determine PSs as the intersections of ℓ̄1 and
ℓ̄2, which are computed with subgrid precision using the MATLAB
function intersections.42 The chirality (or topological charge) q of

each PS can be computed using the gradients of d̄1s and d̄2s , which
are nearly constant in the vicinity of a PS, as follows:

q = sign( ẑ · ∇d̄1s × ∇d̄2s ). (8)

These gradients are approximated at the four grid points nearest to
the PS using finite differencing and then interpolated to the exact
location of the PS. This interpolation can be essential to correctly
determine the chiralities of a pair of phase singularities separated by
only a few grid points (in practice, as few as one).

Chirality plays an important role in the topological analysis of
the excitation patterns produced during arrhythmias.36 It is also use-
ful for reconstructing PS trajectories, which are computed using a
MATLAB implementation43 of a particle tracking method,44with the
positions and chiralities of all PSs found at each time step as input
parameters. Both experimental and numerical data feature many
short trajectories that correspond to virtual spiral waves that exist for
a fraction of a rotation period. Such structures do not appear to play
a dynamically important role, so in our analysis we ignore PSs with
lifetimes shorter than the dominant period of oscillation. For com-
parison, during electrophysiological studies in a clinical setting, only
spiral waves that persist for at least two rotations are considered.45
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IV. RESULTS

To test the algorithm, we generated 4000 frames of surrogate
data (after discarding 600 frames representing the initial transient)
separated by one time unit by numerically integrating the model
described above on a square domain of size 256 × 256 with no-
flux boundary conditions. This can be considered a fine mesh as it
fully resolves all of the spatial features of the solution. In our units,
the typical rotation period of a spiral wave is T = 53, the mean
separation between PSs is L = 46, and the mean number of PSs
is 12.7.

A. Benchmark

In order to establish a benchmark for quantifying how our
approach copes with noise and data sparsity, we analyzed the data
using a parameter set representing minimal smoothing (see the
Appendix). Figure 3 presents six equally spaced snapshots of the
benchmark (voltage) data over roughly a rotation period. Super-
imposed are the curves ℓ̄1 (the boundary of the refractory region,
in white) and ℓ̄2 (the boundary of the excited region, in black).
The intersections define PSs (black/white circles for positive/negative
chirality).

Many spiral waves are seen to rotate stably around fixed or
weakly meandering PSs. The trajectories of the long-lived PSs are
shown over the same interval in Fig. 4, with the thicker curves cor-
responding to PSs created during this time. Three different PS pair
creation events are visible during this period: one between snap-
shots (b) and (c) near the left edge of the domain and two between
snapshots (e) and (f) near the left and right edges.

Notably, the lone thick blue trajectory in Fig. 4 appears to be
missing its opposite chirality counterpart. In fact, that counterpart is
not shown since it corresponds to a short-lived “virtual” PS which
annihilates with a nearby long-lived PS soon after the last frame
in Fig. 3. Note that the trajectories of created PS pairs do not start at
the exact same point because of the finite temporal resolution of the
data. When the PSs are created and destroyed, they move especially
quickly, separating by several grid spacings in one time unit. Much
higher temporal resolution is needed to resolve the fast motion of
PSs during pair creation/annihilation events.

The ability of our algorithm to automatically track PSs (both
short- and long-lived) allows one to generate statistics that could be
extremely useful (e.g., for model validation) but would be hard to
obtain otherwise. To illustrate this, Fig. 5 shows various PS statistics
(only taking spiral waves that complete at least one revolution into
account) over the course of the entire simulation. In particular, we
find that the number of PSs ranges rather widely [between 5 and 20,
as shown in panel (a)]. This illustrates that our approach can eas-
ily and reliably identify at least 20 PSs simultaneously. The distances
between PSs also vary rather significantly, with a pronounced peak
at 46 units [panel (b)]. As we will show below, it is this characteris-
tic length scale, not the wavelength of the pattern (on the order of 90
units here), that determines the sparsity at which our method starts
to break down.

We find that while the majority of spiral waves are relatively
short-lived [panel (c)], some can live for up to 45 periods (for ref-
erence, the duration of the entire data set corresponds to 75 periods).
Such instances of functional reentry could easily be mistaken for

FIG. 3. Snapshots of benchmark data [colorbar is shown in Fig. 7(a)] equally
spaced in time over 56 frames (approximately one rotation period), with curves ℓ̄1

(white) and ℓ̄2 (black) and PSs superimposed. Here and below, solid and dashed
white segments correspond to the leading and trailing edges of the refractory
region, respectively; solid and dashed black correspond to the wavefront and
waveback. PSs with chirality +1 and −1 are, respectively, shown as black and
white circles. The x(y) axis is horizontal (vertical). A full movie is provided in the
supplementary material.

structural reentry in a clinical setting. In light of this “longevity,” it is
perhaps not surprising that some PSs drift over distances exceeding
half the size of our rather large system [panel (d)]. While the lifetime
and drift statistics of PSs in the Karma model may not be partic-
ularly relevant for atrial fibrillation, a similar analysis of data from
basket catheters could yield a treasure trove of clinically valuable
information.
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FIG. 4. Trajectories of PSs with lifetimes of at least one period during the same
time interval as shown in Fig. 3. Thicker curves correspond to PSs created during
this period.

B. Sensitivity to noise and sparsification

To represent the effect of imperfections in realistic experimen-
tal recordings, noisy data sets were produced by adding random
Gaussian-distributed white noise with some standard deviation η to
the benchmark data. In addition, sparsified data were generated by
sampling from the benchmark or noisy data on a uniform grid with
lower resolution by a factor of 2n in each spatial dimension for some
integer n > 1. The sparsified data were then interpolated back onto
the original grid for processing.

FIG. 5. PS statistics. (a) Histogram of the total number n of PSs in each frame.
(b) Histogram of the distance d from each PS to the nearest PS of opposite chiral-
ity, computed separately for each PS in each frame. (c) Histogram of the lifetime l
in periods of each PS. (d) Histogram of the separation r between the most distant
pair of points along the trajectory of each PS.

FIG. 6. A typical time trace of the voltage signal before (gray) and after (black)
temporal smoothing for different noise levels (from top to bottom, η = 0.1,
η = 0.3, and η = 1).

For all noise and sparsity levels, the resulting data were pro-
cessed using modified parameter sets mildly optimized to deal with
high levels of noise (cf. the Appendix). Note that, in order to pre-
serve precision at different levels of sparsification, no initial spatial
smoothing is applied (the raw and temporally smoothed signals are
compared in Fig. 6). The robustness of the algorithm is thus ensured
without relying on averaging of high-spatial-resolution data to coun-
teract the effects of noise. As we show below, our results are robust
to both noise and sparsification but show some minor reduction in
precision of PS location, even for the benchmark data.

The effect of noise alone on the performance of the algorithm
is illustrated in Fig. 7, which shows the level sets ℓ̄1, ℓ̄2, and the
PSs computed for the same frame with four levels of Gaussian white
noise (standard deviation η = 0, 0.1, 0.3, 1). As the data quality dete-
riorates, the computed curves, especially ℓ̄1, become increasingly
unreliable; it is impossible to filter out all false peaks in the data with-
out ignoring the smaller but legitimate and dynamically important
fluctuations in voltage. Nevertheless, their intersections (the PSs) are
located with high precision in all cases, even when η is as large as the
entire range of the original data.

Similarly, the effect of sparsity alone is illustrated in Fig. 8, which
shows the same frame with (noiseless) data interpolated from coarse
grids with four different spatial resolutions: (a) 256 × 256, (b) 32 ×

32, (c) 16 × 16, and (d) 8 × 8. For resolutions down to 16 × 16, the
computed level sets are qualitatively very similar to the benchmark
and all long-lived PSs are correctly detected and located with preci-
sion substantially better than the coarse grid spacing. In the 16 × 16
snapshot, there is a pair of virtual PSs in the lower left corner that
are not present in the benchmark analysis. These are short-lived and
so are discarded in our analysis. Even for data on an 8 × 8 spatial
grid, a large fraction of PSs were correctly identified, with one false
positive; the error in the position of the correct PSs is substantially
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(a) (b)

(c) (d)

FIG. 7. The frame shown in Fig. 3(c) with four different levels of added noise
(η = 0, 0.1, 0.3, 1); overlaid are the curves ℓ̄1 and ℓ̄2 and PSs computed from
the noisy data in each case.

smaller than 256/8 = 32 units. However, it is apparent that many of
the dynamical features cannot be properly resolved when the grid
resolution becomes comparable to themean separation between PSs.

Tables I and II quantify the accuracy and precision of the
algorithm in the presence of both noise and sparsity. In the following
discussion, we will use the benchmark analysis as the reference. For
each level of noise and sparsity, we compare the computed trajectories
with the reference trajectories as follows. At each frame, every PS is
matched with the nearest reference PS of the same chirality, provided
that their separation is no greater than a fixed fraction α of the mean
PS separationL. EachPS trajectory is then pairedwith all reference PS
trajectories with which it was matched for at least a given fraction γ

of the period T, with all other matches discarded. (We allow for a tra-
jectory to bematched tomultiple other trajectories to account for the
possibility that some trajectories might be broken up by short gaps.)
Finally, we compute ρd, the average distance between the detected
and reference PS across all matches, as well as the ratio

ρt =
2
∑

t mt∑
t(rt + nt)

, (9)

(a) (b)

(c) (d)

FIG. 8. The frame shown in Fig. 3(c) after interpolating from four levels of sparsi-
fication: (a) spatial resolution 256 × 256 (same as benchmark), (b) 32 × 32, (c)
16 × 16, and (d) 8 × 8. As in the previous figure, the curves ℓ̄1 and ℓ̄2 and PSs
computed from the sparsified data are overlaid.

where the sum is over all frames and mt , rt , and nt are the number
of matches, reference PSs, and detected PSs, respectively, in frame t;
ρt ranges from 0 to 1 and represents the PS detection accuracy. The
results in the tables summarize the results for all data sets using fairly
strict parameter choices α = 0.35 and γ = 0.8. (For our surrogate
data, this means two trajectories are matched only if their separation
is at most 16 units for at least 43 frames.)

The performance of the algorithm was quite good in a wide
range of conditions. Note that the accuracy and precision is imper-
fect even in the case of full resolution and no noise; this is because of

TABLE I. PS detection accuracy ρt as a function of sparsity and noise level η. The

quality of the analysis was too poor to compute trajectories when both sparsity and

noise were maximal.

256 × 256 64 × 64 32 × 32 16 × 16 8 × 8

η = 0 0.995 0.995 0.994 0.955 0.255
η = 0.1 0.993 0.994 0.992 0.957 0.308
η = 0.3 0.988 0.988 0.985 0.954 0.357
η = 1 0.990 0.974 0.849 0.695 . . .
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TABLE II. PS location precision ρd (in units of the fine mesh) as a function of sparsity

and noise level η.

256 × 256 64 × 64 32 × 32 16 × 16 8 × 8

η = 0 1.1 1.1 1.4 4.8 9.9
η = 0.1 1.2 1.3 1.6 4.6 9.6
η = 0.3 1.7 1.8 2.3 4.9 9.4
η = 1 2.3 3.1 4.5 6.9 . . .

the temporal smoothing used in this analysis, which is not present in
the benchmark. PS detection accuracy is above 98%, with precision
of about 5% of the mean PS separation or better, for 10 out of the 20
data sets, even in one case when η = 1. (When the accuracy is close
to 100%, most of the mismatches are due to PS pair creation or anni-
hilation events being detected a few frames earlier or later than in
the reference analysis, an error that has little to no dynamical impor-
tance.) In most of the 16 × 16 data sets, for which the coarse grid
resolution is approximately equal to αL, the accuracy remains above
95% and the precision is better than 5 spatial units (i.e., about 1mm),
demonstrating that the algorithm can locate PSs with subgrid preci-
sion. The analysis only breaks down for data sampled on 8 × 8 grids,
which is near the theoretical limit of such a method as the grid spac-
ing (32 units) is comparable to themeanPS separation (46 units). The
issue of maximal sparsity has been considered previously46 for a sin-
gle spiral on a domain larger than the wavelength. Unfortunately, the
results of that study cannot be directly compared to our case, where
the average spacing between PSs is smaller than the wavelength.

C. Comparison with alternative approaches

To validate our algorithm, we also implemented and tested its
most robust alternative, the Jacobian-determinant method.33 The
method essentially identifies PSs with the extrema of the two-
dimensional field

D(t) =

∣∣∣∣∣
∂u
∂x

|t
∂u
∂y

|t
∂u
∂x

|t+τ
∂u
∂y

|t+τ

∣∣∣∣∣ = ẑ · (∇u|t × ∇u|t+τ ), (10)

where τ is an empirically chosen time delay. Thismethodwas used to
compute PS trajectories for the full resolution (256 × 256) data sets
with varying levels of noise, and the results were compared to our
benchmark analysis. The time delay parameter was chosen to be τ =

0.1125T = 6 frames, which is approximately the value found to work
best in the original paper. Like ourmethod, the Jacobian-determinant
method is better suited than traditional techniques to the presence
of nonstationary PSs, noise, and/or sparsity. However, we observed
some difficulties not present in our approach.

First, the extrema of the fieldDmust be defined with care as the
less pronounced peaks do not correspond to PSs. As a result, some
minimum peak prominence must be selected on a case-by-case basis
for each recording, and it is unclear how to determine the optimal
choice without a reference. Such an approach may not be feasible for
experimental recordings, especially in the presence of spatial hetero-
geneity, whichmight cause the optimal threshold to vary in space. For
our data, we obtained the highest accuracy when labeling as PSs all
extrema with a prominence exceeding the maximum value of |D|/3.

TABLE III. PS detection accuracy ρt and precision ρd for the Jacobian-determinant

method as a function of noise level η. Analysis quality was too poor to compute

trajectories for η = 1.

η = 0 η = 0.1 η = 0.3 η = 1

ρt 0.969 0.956 0.895 . . .
ρd 1.7 1.7 1.7 . . .

Second, even in the absence of noise, some peaks corresponding to
a single nonstationary PS were found to separate into multiple local
extrema of similar magnitude, making it difficult to determine the
exact number of PSs and their locations. Finally, spatial smoothing of
D was necessary to eliminate spurious PSs for η as small as 0.1 (the
lowest noise level we tested). This step substantially reduces precision
of PS location when the data are both noisy and sparse.

We smoothedD using a Gaussian kernel with a width of 2 grid
spacings, which is in close correspondence with the authors’ sug-
gested approach. In fact, this substantially improved accuracy even
in the absence of noise, likely because of the second difficulty men-
tioned previously. The results of the comparison of the smoothed
Jacobian determinant method with the benchmark are summarized
in Table III. The Jacobian-determinant method performed very well
for η ≤ 0.1, achieving over 95%accuracy, but accuracy fell below 90%
at η = 0.3, and for η = 1 no meaningful results could be produced
as some frames contained over 100 spurious PSs. This compari-
son demonstrates that the Jacobian-determinant method can handle
moderate levels of noise but falls apart at the higher noise levels that
can be easily handled by our algorithm. Our approach also handles
sparse data better, locating PSs with subgrid resolution.

V. DISCUSSION

We illustrated a robust approach to rotor mapping using mea-
surements of the transmembrane voltage u obtained using a highly
simplified model of atrial fibrillation. Furthermore, we used a rather
unconventional approach where the positions of the rotors are
defined using the intersections of the zero level sets of u̇ and ü.
One, therefore, might question the applicability of our results to
electrophysiology studies using basket catheters, in which unipolar
electrodes produce signals with a shape that is very different from
the shape of the underlying transmembrane voltage.

Let us start by addressing the temporal profile of the voltage
signal. Our particular choice of level sets was motivated by their rela-
tion to the excited and refractory phases of cardiomyocyte dynamics.
Specifically, ∂E describes the wavefront and waveback, while ∂R
describes the leading and trailing edges of the refractory region.
This relationship makes it easy to use the topological and geomet-
rical information encoded by the level sets to describe the dynamical
mechanisms responsible for initiation,maintenance, and termination
of cardiac arrhythmias. It also enables automatic classification of the
topologically distinct events leading to an increase/decrease in the
number of PSs and the associated increase/decrease in the complexity
of the excitation pattern.36

However, our particular choice of the two level sets is neither
unique nor necessarily the best. For instance, in the presence of

Chaos 29, 053101 (2019); doi: 10.1063/1.5086936 29, 053101-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

several inflection points in the repolarization phase of the action
potential, which is typical for atrial tissue, these level setsmight define
additional spurious “wavefronts” and “wavebacks.” As an alternative,
one could use the zero level sets of u̇ and v̇, where v is the gating
variable,36 or the level sets φ mod π = 0 and φ mod π = π/2 of
the phase field φ reconstructed using certain features of the volt-
age trace.37 For stationary (i.e., nondrifting, nonmeandering) spiral
waves, the definitions of PSs based on these different choices are
equivalent. The difference only becomes noticeable for the quickly
moving rotors that are not targets of ablation therapy. A more com-
mon choice22 is to define one of the level sets using the transmem-
brane voltage itself, u = uth. This choice defines the location of a
spiral tip rather than a PS and leads to a decrease in the accuracy
of localization, unlike the PS, which is stationary, the spiral tip circles
the PS for a stationary spiral wave.

Unipolar electrograms generated by basket catheters tend to
have multiple maxima and minima per cycle47 and do not provide
a direct interpretation in terms of the depolarization/repolarization
phase. They, however, have a characteristic feature (pronouncedmin-
ima of the derivative V̇ of the voltage V) that can be used to define
the phaseφ as a piecewise linear continuous function.37Alternatively,
the phase can be obtained using a temporal Hilbert transform. In
either case, as long as the phase field φ(xi, yj, tn) on a discrete regular
grid can be reliably determined, our method can be applied rather
directly37 to identify and track PSs using different level sets of φ.

Another limitation of our study is that Gaussian noise is not
representative of noise encountered in clinical voltage mapping stud-
ies. One of the major sources of signal distortions is motion artifacts
caused by the movement of the myocardial wall and/or poor con-
tact of the electrode with the myocardial surface. Another major
source of distortion is the far field effects, i.e., contamination of atrial
electrograms by the much stronger electrical signal generated by the
ventricles. Far field distortions can be mostly eliminated using, e.g., a
single beat cancelation method.48

Finally, let us point out that we chose to use simple finite dif-
ferences to compute temporal derivatives of the voltage due to the
simplicity of this method. However, other methods could be used
to further improve robustness of the algorithm for noisy data. The
total variation regularized derivative49 is one extremely robust option,
although it is numerically costly. Another alternative with less com-
putational overhead is least-squares polynomial interpolation.50 We
have not pursued thesemore complicatedmethods, since even simple
finite differencing produces rather impressive results.

VI. CONCLUSIONS

We have introduced a novel approach for identifying the loca-
tions of multiple phase singularities associated with complicated
patterns of excitation waves based onmeasurements of a single scalar
field. Because of its global nature, the new method was found to
be substantially more robust than any previous, essentially local,
methods aimed at identifying “organizing centers” of spiral wave
activity. In particular, we have demonstrated that our approach can
simultaneously identify and locate tens of phase singularities, includ-
ing the ones that are highly nonstationary. Moreover, their locations
can be tracked in time with subgrid precision for data that are both
very noisy (with noise level exceeding the signal level) and very sparse

(on grids with spacing comparable to the mean separation between
phase singularities). This enables collection of awide range of statisti-
cal information that can be used inmodel validation, for instance and
has a potential to impact applications such as clinical electrophys-
iology studies using intracardiac multielectrode basket catheters. It
is worth emphasizing, however, that this method is not restricted to
cardiac tissue and can be applied to any two-dimensional excitable
system. Extensions to three dimensions are possible as well but are
outside of the scope of this paper.

SUPPLEMENTARY MATERIAL

A movie showing the dynamics of PSs and the level sets cor-
responding to the wavefronts, wavebacks, and the leading/trailing
edges of the refractory region in the benchmark analysis is provided
as the supplementary material.
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APPENDIX: PARAMETER SETS

For the reference analysis, the parameters used were MPP1 =

0.01,MPP2 = 0.05, δ = 0.2, σs = σt = 0 (no initial smoothing), and
σd = 4. For the noisy/sparse data, σt was changed to 5, and the
minimum peak prominences depended on the noise as indicated
in Table IV.

TABLE IV. Minimum peak prominences used for different levels of noise η.

η = 0 η = 0.1 η = 0.3 η = 1

MPP1 0.01 0.05 0.25 0.25
MPP2 0.05 0.1 0.25 0.25
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