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1 Introduction

A strong first-order cosmic phase transition (SFOPT) is a violent process that can trig-

ger the generation of a primordial gravitational wave (GW) background (cf. [1, 2] and

reviews [3–5]). Gravitational waves from astrophysical sources have been detected by

Earth-based detectors LIGO and VIRGO for binary black hole [6–8] and neutron star

mergers [9–11]. Their success and the mission to probe evidence of relic gravitational

waves from the early Universe have sparked interest for space-based gravitational wave ob-

servatories such as LISA [12], BBO [13], Taiji [14], and DECIGO [15]. A detection of such a

relic GW background could scope the underlying theories of particle physics complimentary

to collider physics [16–19].

The electroweak phase transition (EWPT) is a smooth crossover in the minimal

Higgs sector of the Standard Model (SM) [20–24]. Therein, the observed Higgs mass of

125 GeV [25, 26] exceeds the requirements for a SFOPT which precludes both the produc-

tion of a cosmic GW background and electroweak baryogenesis [27]. The latter is a mech-

anism to produce the baryon asymmetry during the electroweak phase transition [28, 29].

New beyond the Standard Model (BSM) physics can alter the character of the electroweak

symmetry breaking towards a SFOPT. To this end, new particles need to be sufficiently

light in the vicinity of the electroweak (EW) scale and strongly enough coupled to the

Higgs. This indicates that such BSM theories offer theoretical targets to guide future

high-energy collider experiments [30].

One promising class of BSM candidates are theories with non-minimal Higgs sectors

with distinctive collider phenomenology signatures; cf. refs. [17, 31–37]. These theories

form a theoretical playground for the EWPT with ample related literature. The SM

Higgs doublet can be accompanied for example by a singlet [38–58], second doublet [59–

68], triplet [69, 70], higher-order representations of SU(2) symmetry [71], combinations of

these [72, 73] or higher dimensional operators [74–82]. Different models with non-minimal

Higgs sector can accommodate SFOPT specifically but not exclusively at the EW scale

around temperatures of 100 GeV. In addition, they could invoke sources for CP violation

— the missing ingredient in the SM [83–89] required for electroweak baryogenesis — and

potential dark matter candidates via new neutral scalars. Compellingly, a non-minimal

Higgs sector can exhibit a rich pattern of phase transitions that progress in multiple con-

secutive steps [69, 90–93]. Phase transitions could have even occurred in a dark sector

which couples to the SM only gravitationally. These transitions could potentially source a

primordial GW background [94–101].

Thermal field theories are plagued by the infrared problem [102]. Their perturbative

description of long distance modes is invalidated at high temperatures due to high oc-

cupancies of bosonic modes. Nevertheless, perturbation theory is still widely used when

reorganising the perturbative expansion by resummation, such as in hard thermal loop

perturbation theory [103] and daisy resummation [104].

A robust solution to the IR problem is achieved by an effective theory formulation

of resummation. This allows to treat high-temperature heavy degrees of freedom pertur-

batively, while non-perturbative, light degrees of freedom are analysed with lattice gauge
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field theory techniques. Concretely, the phase transition thermodynamics is determined

by Monte Carlo lattice simulations [105, 106] of dimensionally reduced high-temperature

effective field theories (3d EFT). Originally established for non-Abelian gauge theories [107–

110], the formalism was generalised in the mid-1990s [111] and simultaneously successful

in hot QCD [112–124] as reviewed in [125].

Considering the vastness of recent studies of the EWPT in BSM theories, the 3d EFT

approach has been used scarcely. Seminal work in the 1990s for the Standard Model [106,

111] were continued in [21, 126–131], and also extended to SUSY models [132–142], the Two-

Higgs Doublet Model (2HDM) [132, 143, 144], the Abelian Higgs Model [145–148], SU(5)

GUT [149] and pure scalar field theory [150]. Recent studies reinvigorated the 3d approach

for the SM accompanied by a real singlet (xSM) [151, 152], a real triplet (ΣSM) [153, 154],

the 2HDM [155–158], the SM with one simple higher dimensional operator [159] and a real

scalar field theory [160].

Dimensional reduction implements the required resummations automatically upon per-

turbatively constructing the 3d EFT. Nonetheless, it is customary to study the EWPT in

terms of the thermal effective potential [161, 162] computed directly with other resum-

mation schemes [104, 163]. While improved two-loop computations exist [104, 164–166]

(cf. also refs. [167, 168]), it is typical for recent EWPT literature to implement a daisy-

resummed thermal effective potential only at one-loop level. However, the infrared problem

persists and these fully perturbative studies of the EWPT are severely limited with their

setbacks often underestimated. Even their qualitative description can — and often will —

fail. In contrast to lattice studies, transitions are often realised as (weak) first order since

a crossover character is incompatible with perturbation theory.

Describing the EWPT thermodynamics all the way by a non-perturbative simulation

poses a formidable task. This roots in analytical challenges related to the construction of

required 3d EFTs and foremost excessive computational cost of simulations. Still, many

perturbative studies of the EWPT could be significantly improved by employing pertur-

bation theory within the dimensionally reduced 3d EFT. While this approach is entirely

perturbative and hence incapable of solving the IR problem, it allows for systematic re-

summation and straightforward computations at two-loop level [169, 170]. Thereby it su-

persedes the one-loop daisy-resummed thermal effective potential; see refs. [154, 158, 159]

for recent direct comparisons. Indeed, this approach to perturbation theory was advocated

already in ref. [137].

The dimensional reduction can be largely automated and the careful matching to

multiple individual BSM theories streamlined. The task has been tackled recently [159, 171]

and in this work at hand. As a consequence one can exploit the universality of the resulting

dimensionally reduced EFTs to efficiently examine the parameter space of different BSM

theories. This article combines these recent developments to extend previous work [151]

for the xSM — a flagship model that is attractive for particle cosmology due to its minimal

nature. Based on the construction of the 3d EFT of the xSM, its applications [172, 173]

chart a course of a state-of-the-art analysis of the EWPT thermodynamics. Thereby,

perturbative scans that utilise a 3d EFT approach can guide non-perturbative simulations

that finally solve the IR problem.
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This article is organised as follows. Section 2 reviews the computation of thermo-

dynamics in generic scalar driven phase transitions, in particular focusing on the use of

dimensionally reduced effective theories. Section 3 is a pedagogic tutorial to the construc-

tion of such a 3d EFT and computes the thermal effective potential at two-loop order,

in the simplest case of a real singlet scalar. In section 4, for the first time, we generalise

the dimensional reduction to the xSM. Finally, section 5 discusses our results and outlook,

while several technical details relevant to our computation are collected in the appendices.

2 Thermal phase transitions

The focus of this paper is to take steps towards a state-of-art determination of the cosmic

phase transition thermodynamics for individual BSM theories with non-minimal Higgs

sector. Direct ab-initio lattice calculations are, however, not feasible for a completely

realistic 4d description of the thermodynamics of electroweak phase transitions [174] due

to problems related to chiral fermions.1 One alternative approach are non-perturbative

simulations of dimensionally reduced effective theories. Following this idea, we survey the

required technology on a generic level in the following section.

2.1 Down the pipeline

Several steps have to be considered to accurately predict gravitational waves from cosmo-

logical phase transitions. To this end, we illustrate a “pipeline” ranging from the collider

phenomenology of BSM particle physics models to a primordial, stochastic gravitational

wave background. Following a comprehensive ref. [176], we display different steps of this

pipeline in figure 1 (ibid. ref. [176]).

From a theoretical standpoint, it is natural to start by defining the Lagrangian of the

corresponding BSM theory. In our case of interest, the BSM field content enters as a non-

minimal Higgs sector which contains one or more scalar fields. In general, the scalar fields

can occur in any representation of the SU(2) symmetry and possess other symmetries

and couplings to new gauge field or fermion content in a dark sector. However, several

alternatives are conceivable (see refs. [176, 177]), such as models for holographic phase

transition [178–180] or Composite Higgs scenarios [181–183]. The pipeline constitutes the

following steps:

Step (A): Relating collider signatures and BSM theory Lagrangian parameters. The Lagrangian

(running) parameters are related to physical observables such as pole masses and

mixing angles in zero-temperature perturbation theory. Then, actual collider sig-

natures include production cross-sections and a relative shift in the Higgs couplings

from their SM predicted values,2 and can constrain the available parameter space for

1However, 4d simulations of purely bosonic theories are feasible to study; see ref. [175] and references

therein.
2For a concrete example, in the case of xSM the proposed experimental signatures include the h2h2-

production cross-section [33, 36, 49] and a modification to the h1ZZ-coupling [42, 48, 184] (h1 and h2 are

‘mostly Higgs-like’ and ‘mostly singlet-like’ scalar eigenstates).
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Figure 1. A pipeline between collider phenomenology of BSM theory and stochastic gravitational
wave background signature. Later we focus on step (B), as even relatively small uncertainties in
this step can propagate all the way down the pipeline and cause significant errors in the end.

phase transitions. The relation of the EWPT and collider physics is further discussed

in ref. [30].

Step (B): Equilibrium thermodynamic properties as a function of BSM theory parameters. The

former include the character of transition (crossover, first-order etc.), the critical tem-

perature (Tc) and latent heat (L/T 4
c ). They are encoded in the free energy of the

system which is associated with the thermal effective potential in perturbation theory.

Due to IR sensitivities at high-T , this step requires non-trivial resummations com-

pared to perturbation theory at zero temperature, and eventually non-perturbative

techniques. Step (B) is the main focus of the remaining sections of this article.

Step (C): If the phase transition is of first order, it proceeds by nucleation and expansion

of bubbles of the broken phase in the presence of a surrounding plasma [185–188].

The bubble nucleation rate can be computed in a semi-classical approximation from

the effective action which includes quantum and thermal corrections. The relevant

quantities [189–193] are the Hubble parameter (H∗) or temperature (T∗) when the

phase transitions completes, its inverse duration (β), strength (α) at T∗ and the

bubble wall velocity (vw). The exact definitions and derivation of these quantities

are detailed in e.g. refs. [159, 176, 194], and in particular [195–200] for the bubble

equations of motion and vw. Also non-perturbative methods for nucleation have been

developed [201, 202] as an alternative to perturbation theory.

Step (D): Numerical, large scale lattice simulations of relativistic hydrodynamics; cf. refs. [203–

208]. The parameters that describe the phase transition dynamics, (T∗, α, β/H∗, vw),

are input to simulations of colliding bubbles, cosmic fluid and sound waves after the
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phase transition completes. These determine the GW power spectrum. In practice,

the approximate, analytical power spectrum has been solved from such simulations

in terms of a generic set of input parameters. For an application of this, ref. [176]

has devised the online tool PTPlot.

Step (E): A detectable GW background signature depends on the architecture of the detector

in addition to the predicted stochastic GW power spectrum. The determination of

the signal-to-noise ratio for a predicted signal at LISA is specified in ref. [176].

Step (F): A necessary condition for the EW baryogenesis [27] are first order phase transitions

occurring via bubble nucleation. For reviews cf. [28, 29, 209]. The generation of a

baryon asymmetry could be realised when new BSM sources of C and CP violation are

invoked and baryon number violating sphaleron transitions are sufficiently suppressed

in the broken phase. The latter can be associated with sufficiently strong transitions.

Next, we detail step (B) starting by a brief summary of the technique of high-

temperature dimensional reduction.

2.2 Dimensional reduction for a high-temperature 3d effective theory

High-temperature dimensional reduction encodes the IR physics of the high-temperature

plasma in an effective three-dimensional theory to describe long wavelength phenomena.

In the context of electroweak theories, classic references are [111–113] but we also

refer [210–212].

The equilibrium thermodynamics of a thermal field theory is described by an evolution

in imaginary time (τ). Therein, bosonic (fermionic) fields satisfy (anti-)periodic bound-

ary conditions with period τ = 1/T and can be decomposed into bosonic and fermionic

Matsubara [213] modes

φ(τ,k) = T
∞∑

n=−∞

φn(k)eiωnτ , ωn =







ωB
n = 2nπT (bosons)

ωF
n = (2n+ 1)πT (fermions)

, n ∈ Z , (2.1)

where k is a three-dimensional (3d) momentum. In other words the resulting theory is

a 3d one with an infinite tower of modes each carrying a mass ω2
n corresponding to the

Matsubara frequency of mode n.

This system can be studied in an effective theory formulation. In that EFT the central

degree of freedom is the static bosonic 3d zero mode (ωB
n=0) of the original four-dimensional

(4d) field. The remaining non-zero modes of scale ∼ πT can been integrated out. This is

the dimensional reduction step which is based on the high-temperature scale hierarchy

πT ≫ gT ≫ g2T/π . (2.2)

In the scale hierarchy we introduced a power counting parameter g defining the hard (πT ),

soft (gT ), and ultrasoft (g2T/π) scales. While the scaling of the hard scale is a direct

consequence of the Matsubara decomposition, the soft and ultrasoft scale are pertinent

to collective plasma effects. Based on this hierarchy one can invoke a high-temperature
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expansion mψ/T ≪ 1 for generic scalar fields ψ, whereas gauge bosons and fermions are

massless in the unbroken phase.

In hindsight of the ensuing studies of a real scalar field, we establish the formal scaling

λ ∼ g2 for the scalar quartic coupling λ which is based on their appearance at one-loop. In

gauge field theories this power counting parameter is often set to be the gauge coupling.

For a scalar field we assume the original mass squared parameter (µ2) to behave as µ2 ∼
λT 2 ∼ (gT )2 which implies that the mass of the 3d soft mode (µ2

3) is thermally corrected

by µ2
3 ≃ µ2 + (gT )2 at leading order.

Phase transition physics can often be studied at the ultrasoft scale by a simplified 3d

EFT, where the soft scale has been integrated out. In fact, the transition point resides near

a vanishing µ2
3 where thermal loop corrections cancel the tree-level part. At this point the

3d mass scale is formally of the next natural order which is the ultrasoft one µ2
3 ∼ (g2T )2

where soft modes are screened. The corresponding soft degrees of freedom are the temporal

(adjoint) scalar fields which are remnants of the zero components of gauge fields and induced

by the broken Lorentz symmetry from the heat bath. They remain soft in the vicinity of

the transition point. For this second step of dimensional reduction, see ref. [111].

The EFT is constructed by determining the operator coefficients of the effective La-

grangian. In practice, these parameters follow from matching correlation functions of both

the fundamental 4d theory and effective 3d theory. The generic rules of this procedure

were established in refs. [111–113] and applied recently [159, 160].

This construction of the 3d EFT by dimensional reduction is completely infrared-safe.

In the matching of correlators, the IR and 3d contributions cancel each other and only

the hard scale (non-zero Matsubara modes) contributes. The corresponding sum-integrals

over non-zero modes are IR-regulated by non-vanishing Matsubara frequencies at high

temperature. Hence, the dimensional reduction defers the IR problem of high-temperature

bosonic perturbation theory to the 3d EFT.

At next-to-leading order (NLO) dimensional reduction, couplings are matched at one-

loop and masses at two-loop level. This ensures a O(g4) accuracy in the established power

counting. To fully match this accuracy, the running parameters have to be related to

physical observables at one-loop order in zero temperature perturbation theory. In 3d

perturbation theory the effective potential is computed at two-loop order. Notably, the

frequently used 4d daisy-resummed thermal effective potential at one-loop includes some

— but crucially not all — O(g4) contributions [104].

Instead of detailing the generic procedure in later sections, we choose an alternative

approach. In an explicit hands-on demonstration, we dimensionally reduce a scalar field

theory in section 3, and generalise it to the xSM in section 4 and appendix A.

2.3 Approaches to thermodynamics of thermal phase transitions

Let us assess the main approaches to access the thermodynamics of the thermal phase

transitions in electroweak theories. See also similar summaries in section 2 of ref. [137],

section 2.2 of ref. [142] and section 1 of ref. [160]. The following approaches are illustrated

in figure 2:
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c , . . .
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(g)

(h)
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Figure 2. Three different approaches towards the thermodynamics of the electroweak phase
transition. We focus on the purely perturbative 3d approach with steps (d) and (e) for a real scalar
theory and the Standard model supplemented by a real scalar singlet.

• “4d approach” (a) → (b) → (c):

Perturbative effective potential with daisy resummation.

• “Perturbative 3d approach” (a) → (d) → (e) → (f):

Perturbative effective potential in 3d EFT.

• “Non-perturbative 3d approach” (a) → (d) → (g) → (h) → (i):

Non-perturbative lattice simulation of 3d EFT. Robust approach combining pertur-

bative dimensional reduction and non-perturbative (Monte Carlo) methods.

The individual steps encompass:

(a) Relating physical parameters (such as pole masses) and Lagrangian (running) pa-

rameters at zero temperature. Often the “4d approach” uses only tree-level relations

(e.g. refs. [65, 214]), but in order to match the accuracy of dimensional reduction at

NLO O(g4), one-loop vacuum renormalisation is required [111, 158, 167].

(b) Perturbative computation of the thermal effective potential [161]. Frequently per-

formed at one-loop, with leading order daisy resummation [104, 163]. Two-loop com-

putations are discussed for e.g. in refs. [164, 165, 167, 168]. This computation suffers

from the IR problem the most, and additionally can contain a dramatic artificial RG

scale dependence if two-loop thermal masses are unaccounted [173].

(c) Computation of thermodynamics. At the critical temperature the minima of the

effective potential are degenerate and thermodynamic quantities are obtained by

differentiation with respect to temperature, viz. latent heat. Model-independent tools

to locate degenerate minima have been implemented numerically in software including

– 8 –
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CosmoTransitions [215], BSMPT [214], and PhaseTracer [216]. It is worth noting

that location of minima of the effective potential are not gauge invariant. Thus,

this computation frequently introduces unphysical estimates for thermodynamics as

discussed in refs. [159, 168, 217] and also ref. [218] (in 3d EFT context).

(d) Dimensional reduction to a 3d EFT. See refs. [111–113] and also recent refs. [159, 160].

It is perturbative and IR-safe, since only the hard scale is integrated out, and system-

atically implements all required resummations. Furthermore, dimensional reduction

at NLO is analytically independent of the 4d renormalisation scale up to that order,

see refs. [111, 173]. This decreases the theoretical uncertainty in perturbation theory.

A concrete computation is displayed in sections 3, 4 and appendix A.

(e) Computation of 3d effective potential, see refs. [169, 170, 218]. The computation in

the 3d EFT simplifies significantly compared to 4d because sum-integrals are replaced

by vacuum integrals in d = 3 − 2ǫ spatial dimensions. Hence, it straightforwardly

extends to two-loop order, cf. section 3.4. For recent applications, see refs. [154,

159]. Even the three-loop effective potential has been computed for a pure scalar

theory [219] and applied recently [160].

(f) Computation of thermodynamics from 3d effective potential. Again a pathological

gauge-dependent analysis can be based on degenerate minima at the transition point.

However, also a gauge invariant treatment is possible, in terms of gauge invariant con-

densates [105, 159] or the pressure in ~-expansion. However, IR divergences arise at

two-loop order for a radiatively generated transition [106], compromising the analy-

sis [218]. On the other hand, these IR singularities are avoided in presence of a barrier

at tree-level, and a manifestly gauge invariant treatment for the thermodynamics can

be obtained in perturbation theory; see ref. [159].

(g) Lattice-continuum relations; see refs. [105, 106, 160, 220, 221]. The Lagrangian pa-

rameters of the lattice discretisation need to be related to those of the continuum

theory. Thus, the results of Monte Carlo simulations can be associated with the 3d

continuum theory and via dimensional reduction to temperature and physical pa-

rameters. This can be done by computing and equating effective potentials in both

discretisations, to two-loop order. In super-renormalisable theories without higher

dimensional operators, all divergences arise at finite loop order and hence relations

between continuum and lattice are exact. However, this aggravates in the presence

of higher dimensional operators as the 3d theory retains renormalisability but loses

super-renormalisability. It remains a future challenge to overcome this technical is-

sue. Note that in lattice gauge theories there is no need to fix the gauge, and the

treatment is automatically gauge invariant by construction [222].

(h) Monte Carlo lattice simulations of spatial 3d EFT on finite volume and lattice spac-

ing.3 Arbitrary field configurations are evolved — usually by a colourful cocktail of

3See refs. [21, 24, 105, 106, 114, 115, 124, 126, 138, 139, 142, 144, 146, 154, 158, 160].
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update algorithms — to form a Markov chain converging to a Boltzmann probability

distribution. Thereof, physical quantities can be measured such as scalar and gauge

condensates, and correlation lengths. Many autocorrelation times are measured to en-

sure that statistical errors remain small. At the transition point, the system is equally

likely to occur in any of the phases. Multi-canonical methods in first order transitions

ensure that the system can efficiently sample all phases while not getting stuck in one.

(i) Extrapolate simulations of finite volume and fixed lattice spacing to the continuum.

This corresponds to infinite volume and vanishing lattice spacing, thermodynamic

and continuum limits, respectively. In practice, several lattice spacings are needed,

each with several different volumes. This rapidly becomes computationally expensive

and even a single parameter space point requires a large number of individual simu-

lations. Furthermore, oftentimes manual effort is required to fit a proper continuum

extrapolation to the data instead of an elephant.

This article focuses specifically on steps (d) and (e) which are detailed for a real scalar

theory in section 3 and a real singlet scalar coupled to the SM in section 4 and appendix A.

The full non-perturbative path of the real scalar theory is presented in ref. [160], where the

corresponding results are compared with three-loop 3d perturbation theory.

Finally, let us summarise the different approaches and describe some of their merits.

2.3.1 4d approach

The 4d approach is the accustomed “bread and butter” approach with the advantage of its

conceptual simplicity. At one-loop order, a closed form expression for the effective potential

is available in terms of mass squared eigenvalues and one-loop thermal mass corrections,

which straightforwardly automates to different models. In addition, numerical tools for

thermodynamics (e.g. minimisation of potential) have been developed [214–216, 223] and

can scan large regions parameter space of BSM models.

However, the 4d approach suffers from the IR problem of perturbation theory [102]

and is often plagued with large inaccuracies and theoretical uncertainties [21, 105, 106, 158,

159]. In particular, weak transitions are poorly described by perturbation theory and are

sometimes even qualitatively mistaken. Especially, crossover transitions are not predicted

at all and it is not expected to determine the critical temperature accurately since it is

highly IR-sensitive. Conversely, large couplings are often required for strong transition and

can compromise the perturbative expansion, even at zero temperature [158]. Consistent (~-

)expansions leading to gauge invariant results are oftentimes unavailable, since they require

the knowledge of higher order contributions. Furthermore, a truncation of the computation

already at one-loop order omits important thermal mass contributions at two-loop order. In

turn, this causes a large leftover renormalisation group (RG) scale dependence, see ref. [173].

2.3.2 Perturbative 3d approach

Also this method still suffers from the IR problem of perturbation theory. We emphasise

that for the perturbative effective potential itself, there is no real quantitative difference

between 4d and 3d approaches, provided that in both cases the computation is performed

– 10 –
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to the same order in both coupling expansion and high-T expansion. However, dimensional

reduction systematically accesses higher order resummations and it is customary to include

a consistent O(g4) accuracy by a two-loop level computation, which yields a reduced RG

scale dependence. A gauge dependence of the analysis can still be a theoretical blemish, but

a gauge invariant treatment is possible by employing a ~-expansion and computing gauge

invariant condensates [105, 159]. Although radiatively induced transitions suffer from IR

divergences at O(~2) [218].

As a downside, the perturbative 3d approach is harder to automate and streamline

compared to 4d approach due to additional steps. Although the computation of the 3d

effective potential of a 3d EFT can be related to known topologies arising at two-loop order,

the automation of dimensional reduction and the construction of the 3d EFT are still not

common standard. For developments, see [159, 171, 224, 225]. In the future, automated

dimensional reduction for multiple BSM theories could permit a perturbative 3d approach

to be implemented to software that currently relies on the 4d approach.

2.3.3 Non-perturbative 3d approach

This method solves the IR problem, by treating perturbative (hard and soft) modes per-

turbatively while non-perturbative ultrasoft modes are analysed by lattice simulations.

Furthermore, lattice simulations provide manifestly gauge invariant results. While this

approach is very technical and computationally slow and demanding, it is still straight-

forward compared to direct 4d simulations (see ref. [175] and references therein). Recent

attempts [154, 158, 160] simulate phase transitions in a limited number of BSM setups

and benchmark points. The hope is to expose general trends regarding accuracy and reli-

ability of simpler tools in perturbation theory. However, model-independent or conclusive

results are unavailable so far and similar investigations are actively continued in the fu-

ture. Finally, we highlight that the 3d EFT approach is also an applicable and attractive

framework for non-equilibrium physics of phase transition, such as bubble nucleation and

sphaleron rate; see refs. [201, 202, 226].

3 Dimensional reduction with a real scalar: a tutorial

The following tutorial constructs the dimensionally reduced 3d EFT of a single real scalar

field.4 The machinery presented builds upon classic literature [111–113, 169] and generalises

straightforwardly to more complicated BSM theories with non-minimal Higgs sector. To

guide upcoming generalisations of complicated models, we detail step-by-step derivations

that can be used for future crosschecks. Furthermore, based on advances of automation in

thermal field theories [159, 171, 224, 225], we implemented in-house software in FORM [227]

and applied qgraph [228] for diagram generation. Integration-by-parts reductions (IBP)

4An independent computation [160] treats masses and tadpole as interactions in strict perturbation

theory and in the unbroken phase. The dictionary {µ1 ↔ σ, µ2
σ ↔ m2, µ3 ↔ g

2
, λσ ↔ λ

6
} gives a direct

comparison, wherein g denotes the cubic coupling of the real scalar not to be confused with a formal power

counting parameter or the SU(2) gauge coupling.
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follow a standard Laporta algorithm [229] adapted for thermal integrals [224]. This algo-

rithmic perturbative treatment fully automates the computation of correlation functions

within the unbroken phase and their matching. This software can tame the ever increasing

complexity of computations in future models with multiple interacting new BSM fields.

The real singlet scalar model demonstrates all details of dimensional reduction. With-

out coupling it to the SM with the Higgs doublet, gauge fields, and fermions, this model

poses an ideal starting point. The following computations employ explicit resummation to

cancel delicate soft/hard mixing contributions at two-loop order. Practically, these IR con-

tributions are trivially dropped [160] in strict perturbation theory. As an instructive cross-

check, we perform the computation both in the broken phase using the effective potential,

the generator of correlators, as well as the unbroken phase computing correlators directly.

Section 4 focusses on full xSM — where a real singlet scalar is coupled to the SM

Higgs — and presents the definition of the EFT including results. Details of this full

computation are relegated to appendix A and results of appearing (sum-)integrals are

collected in appendix B. For the derivation of such integrals, we refer refs. [224, 230,

231]. Our notation follows ref. [151] in which dimensional reduction for the xSM was

initially discussed. This reference deferred the case of a light (“soft”) singlet which remains

dynamical in the 3d EFT to our computation.

3.1 Model and parameter matching

Consider the theory of a single real scalar field σ, given by bare 4d Lagrangian (with

Euclidean metric) in the imaginary time formalism

L =
1

2
(∂µσ(b))

2 +
1

2
µ2
σ(b)σ

2
(b) + µ1(b)σ(b) +

1

3
µ3(b)σ

3
(b) +

1

4
λσ(b)σ

4
(b) . (3.1)

Definitions of bare quantities in terms of their renormalised versions and counterterms in

renormalised perturbation theory are found in section 2.1 of ref. [151]. Note that we choose

a general renormalisable theory with linear and cubic terms without Z2-symmetry σ → −σ.

Conveniently, in the simple case of a real scalar (without gauge fields) the 3d EFT and 4d

parent theory bear the same form. With the exception that after dimensional reduction

the couplings and field live in a spatial 3d theory. We organise our perturbative expansion

by establishing the following formal power counting

µ1 ∼ gT 3 , µ2
σ ∼ g2T 2 , µ3 ∼ gT , λσ ∼ g2 , (3.2)

where g is a formal power counting parameter that corresponds to the weak coupling at zero

temperature. Once this theory couples to the SM in section 4, the formal power counting

parameter g is identified as the SU(2) gauge coupling. Within the power counting (3.2), we

aim for a dimensional reduction at NLO with O(g4) accuracy. At loop-level, this requires

one-loop accuracy for cubic and quartic couplings, and two-loop order for tadpole and mass

parameter.

We emphasise that the above formal choice for the scaling of the cubic coupling leads

to a peculiarity illustrated along the tree-level quartic interactions induced by the cubic
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(σ2)3d =
1

T
(σ2)4d

(

1 + Π̂′
σ2

)

=
1

T
(σ2)4d

(

1 +
d

dK2 1

)

,

σ
∣
∣
∣
3d

=
{(

+ 1

)(

1 +
d

dK2 1

)

+ 2

}

4d

,

σσ

σ σ

∣
∣
∣
3d

= T

{

+ 1 +
(

d

dK2 1

)}

4d

Figure 3. Illustration of a O(g4) NLO matching of correlators between 3d and 4d theories
with Z2-symmetry. A full non-Z2-symmetric case is analogous. Blobs present the sum of hard
contributions to one- and two-loop diagrams in perturbation theory, and the differentiation (prime)
acts upon the external soft momentum K = (0,k). The diagrams were drawn with Axodraw [233].

coupling. Its contribution

≃ µ2
3

µ2
σ

∼ O(1) ≫ λσ (3.3)

parametrically dominates over the corresponding quartic coupling, and could even compro-

mise perturbativity at zero temperature. In practice for dimensional reduction, this causes

no complications as the above interaction is 1-particle reducible. Hence, it is absent in

Green’s functions that are matched during dimensional reduction for the ultrasoft (light)

field in 3d EFT. By enforcing a different scaling, namely µ3 ∼ g2T , the contribution (3.3)

formally scales as the corresponding quartic coupling. However, this suppresses almost all

contributions of µ3 in the matching relations at O(g4).

Hence, our strategy is the following: for generality we indeed install a scaling of µ3 ∼
gT and include all contributions of cubic couplings in our matching relations. These

contributions can always be trivially dropped if an extra suppression is assumed. This

choice allows us to more widely illustrate different aspects of the dimensional reduction

procedure, such as effects from field normalisation. Indeed, a non-Z2-symmetric theory

can demonstrate the high-temperature screening of the fields by the hard scale via ring

topology diagrams such as in eq. (3.7). These are absent in a Z2-symmetric case. The

motivation to include these contributions is the presence of similar diagrams in theories

with gauge fields and fermions, even if the scalar sector is Z2-symmetric.

Figure 3 illustrates the NLO matching of the parameters. For references with explicit

matching examples, see refs. [111–113, 151, 159, 160]. Loop corrections from the 3d side

and soft contributions match exactly. Hence both drop out trivially in the matching,

leaving only hard contributions. At two-loop order mixed soft/hard terms are cancelled by

counterterm-like resummation interactions at one-loop [111, 157]. We demonstrate this in

section 3.2.3.
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For example, the matching of correlation functions for the quartic self-interaction in

both theories yields

T
(

− 6λσ,3 − 〈σ4〉3d

1loop

)

︸ ︷︷ ︸

3d

= − 6λσ − 〈σ4〉soft

1loop − 〈σ4〉hard

1loop

︸ ︷︷ ︸

4d

. (3.4)

Note that here the correlators equal minus the sum of the tree-level vertex and Feynman

diagrams at higher orders. For a consistent matching, the resummation of parameters (see

details in eq. (3.16)) for zero modes allows to identify 3d loop corrections with soft terms in

the 4d computation, and these two (IR) terms cancel. Furthermore, resummation ensures

a cancellation of all mixed soft/hard mode contributions in one- and two-point correlation

functions at two-loop order. For details, see eqs. (3.27) and (3.42)–(3.46). The effective

vertices in both theories read

Tλσ,3 σ
4
3d =

(

λσ +
1

6
〈σ4〉hard

1loop

)

σ4
4d , (3.5)

and relating 3d and 4d fields by the first line of figure 3 leads to a O(g4) result

Tλσ,3 = T

(

λσ +
1

6
〈σ4〉hard

1loop − 2λσΠ′
2

)

. (3.6)

Matching relations of other effective parameters are obtained analogously.

The 4d and 3d fields at one-loop level are related by a computation of the ring topology

diagram at non-zero external static momentum K = (0,k) with soft |k| = k ∼ gT . Denot-

ing sum-integrals according to appendix B, a series expansion to quadratic order yields

Π′
2 ≡ d

dk2
Π2(k) =

d

dk2

=
d

dk2

(

− 2µ2
3

∑
∫ ′

P

1

P 2(P +K)2

)

=
d

dk2

(

− 2µ2
3

∑
∫ ′

P

1

P 2

(
1

P 2
− 2

k · p

P 4
+ 4

(k · p)2

P 6
− k2 1

P 4
+ O(k3)

))

= 2µ2
3

∑
∫ ′

P

(
d− 4

d

1

P 6
+

4

d

P 2
0

P 8

)

=
2

3
µ2

3

∑
∫ ′

P

1

P 6
= 2µ2

3

1

(4π)4

2

3

ζ3

T 2
, (3.7)

where we interchangeably denote Πn = 〈σn〉 as correlation functions and utilise the intact

d-dimensional rotational symmetry (k · p)2 → 1
d
k2p2, trivial manipulation p2 = P 2 − P 2

0

and integration-by-parts relations Σ
∫

P

(P 2
0 )β+1

[P 2]α+1 =
(
1 − d

2α

)
Σ
∫

P

(P 2
0 )β

[P 2]α
.

The effective potential generates all correlation functions at zero external momenta. In

cases where an explicit momentum dependence exceeds the accuracy of the computation,

accessing correlators simplifies greatly by starting from the effective potential. Shifting the

scalar field σ → σ + s with a real background field s, the effective potential reads

Veff =
∞∑

n=1

〈σn〉
n!

sn ≡ V1s+
1

2
V2s

2 +
1

3
V3s

3 +
1

4
V4s

4 + . . . , (3.8)
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where the ellipsis truncates potential higher dimensional correlators that lead to O(g5)

marginal operators in the EFT.

The complete matching relations that define the dimensionally reduced 3d EFT, encode

the thermodynamics of the original 4d theory of eq. (3.1) at O(g4). They read

µ1,3 = T− 1
2

(

V 2loop

1 − 1

2
V 1loop

1 Π′
2

)

, (3.9)

µ2
σ,3 = V 2loop

2 − V 1loop

2 Π′
2 , (3.10)

µ3,3 = T
1
2

(

V 1loop

3 − 3

2
µ3Π′

2

)

, (3.11)

λσ,3 = T
(

V 1loop

4 − 2λσΠ′
2

)

, (3.12)

where we indicated the required loop order for a O(g4) accuracy. The coefficients V merely

contain hard contributions and correspond to correlators via eq. (3.8).

3.2 Computation of correlators

The computation of n-point correlation functions is expounded in two different ways. In

the following, we discuss their merits. In the broken phase, the computation uses the

mass eigenstate basis and we employ the effective potential which is the generator of the

correlation functions. Therein, the scalar field is shifted by a classical background field.

In the unbroken phase, in the gauge eigenstate basis, we compute all correlators directly

diagram-by-diagram.

These two approaches give rise to an equivalent result. Technically, for a real scalar

theory the broken and unbroken phase computations vary marginally. However, subtleties

of these two approaches become more prominent for gauge field theories with (multiple)

scalars in different representations of the underlying gauge symmetry group.

3.2.1 Broken phase: correlators from the two-loop effective potential

Within the broken phase computation, the Feynman rules for vertices read

Vσ3 = −3!
(
µ3

3
+ sλσ

)

, (3.13)

Vσ4 = −4!
(
λσ
4

)

. (3.14)

Denoting the four-momentum by P = (P0,p), where P0 = 2πnT for each bosonic Matsub-

ara mode, the free scalar propagator is

〈σ(P )σ(Q)〉 =
δ̄(P +Q)

P 2 +m2
, (3.15)

and employs the notation δ̄(K) ≡ T−1δK0,0(2π)dδ(d)(k) where δP0
≡ δP0,0 denotes the

Kronecker delta for vanishing zero mode. The broken phase mass parameter m2 = µ2
σ +
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2sµ3 + 3λσs
2 appearing in the propagator corresponds to the squared mass eigenvalue of

field s. The resummation of the zero mode σ0 writes5

L =

(

Lfree +
1

2
Π1loop

2 σ2
0 +

1

3
Π1loop

3 σ3
0 +

1

4
Π1loop

4 σ4
0

)

+

(

Lint − 1

2
Π1loop

2 σ2
0 − 1

3
Π1loop

3 σ3
0 − 1

4
Π1loop

4 σ4
0

)

, (3.16)

where Πn contain hard mode corrections. Terms with plus signs resum the zero mode

mass and terms with minus sign act as interactions. In particular, we have a quadratic

resummation interaction

Vσ2
0

= Πs ≡ Π2 + 2sΠ3 + 3s2Π4 , (3.17)

for the zero modes. We also have a UV counterterm interaction for all modes

Vσ2 = −(δm2 + P 2δZσ) , (3.18)

where δm2 = δµ2
σ + 2sδµ3 + 3δλσs

2 and δZσ = 0 at one-loop level. After resummation the

propagator reads

〈σ(P )σ(Q)〉 =
δ̄(P +Q)

P 2 +m2 + δP0
Πs

. (3.19)

Perturbation theory is organised order-by-order. Thus, thermal corrections Πn at one-loop

are needed explicitly for resummation at two-loop level. Therefore, we already quote the

result

Π2 = T 2λσ
4

− 2µ2
3

Lb
(4π)2

, (3.20)

Π3 = −9µ3λσ
Lb

(4π)2
, (3.21)

Π4 = −9λ2
σ

Lb
(4π)2

. (3.22)

The effective potential including two-loop level reads

V 4d

eff = Vtree + VCT + V1loop + V2loop , (3.23)

and even though counterterm and resummation diagrams are one-loop topologies they

contribute at equal order as two-loop topologies. Figure 4 illustrates the corresponding

two-loop level diagrams. The separate terms in the potential yield

5This (order-by-order) resummation identifies IR contributions by relating soft 4d loop contributions with

3d ones. The soft/hard mixing terms cancel explicitly at two-loop order. For gauge fields this procedure

becomes technically complicated (cf. ref. [157]) and ref. [111] indicates that such an explicit resummation

is somewhat cosmetical. While IR contributions in the matching must be identified, their specific expres-

sions are obsolete. Therefore, soft/hard mixing terms never appear in the matching of strict perturbation

theory [160], following refs. [112, 113].
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Figure 4. Two-loop level diagrams for the effective potential in 4d perturbation theory. The last
two diagrams comprise renormalisation and resummation counterterms with quadratic interactions,
respectively.

Vtree =
1

2
µσs

2 + µ1s+
1

3
µ3s

3 +
1

4
λσs

4 , (3.24)

VCT =
1

2
δµ2

σs
2 + δµ1s+

1

3
δµ3s

3 +
1

4
δλσs

4 , (3.25)

V1loop = Jsoft(m3d) + Jhard(m) , (3.26)

V2loop = −
(

1

8
Vσ4(−1)DSS(m,m) +

1

12
V 2
σ3DSSS(m,m,m)

+
1

2
(−1)DS(m) +

1

2
ΠsI

3
1 (m3d)

)

, (3.27)

where m2
3d corresponds to the mass eigenvalue in the 3d theory. Therein, all master inte-

grals are defined in appendix B in the high-T expansion and in dimensional regularisation

utilising the MS-scheme. On the UV side, all T 2-independent 1/ǫ and 1/ǫ2 poles cancel in

dimensional regularisation. On the IR-sensitive side, non-analytic, mixed soft/hard terms

∝
√

m2
3d cancel due to resummation.

Expanding the effective potential in ǫ and the background field s (cf. eq. (3.8)) results in

V1 =
1

(4π)2

T 2

ǫ

1

2
λσµ3 + µ1(Λ) +

[
1

12
T 2µ3(Λ) − Lb

(4π)2
µ3µσ(Λ)

]

1loop

(3.28)

+

[
Lb

(4π)2

3

4
T 2λσµ3 +

1

(4π)4
µ3

3

(

3 + 2Lb + L2
b

)

− 1

(4π)2
2λσµ3

(

c+ ln

(
3T

Λ

))]

2loop

,

V2 =
1

(4π)2

T 2

ǫ

3

2
λ2
σ + µ2

σ(Λ) (3.29)

+

[
1

4
T 2λσ(Λ) − Lb

(4π)2

(

2µ2
3(Λ) + 3λσµσ(Λ)

)

+
ζ3

(4π)4T 2
8µ2

3µ
2
σ(Λ)

]

1loop

+

[

− T 2 Lb
(4π)2

9

4
λ2
σ +

1

(4π)4
λσµ

2
3

(

45 + 3Lb(10 + Lb) + 2ζ3

)

− ζ3

(4π)6T 2
8(3 + 2Lb)µ

4
3 − 1

(4π)2
6λ2

σ

(

c+ ln

(
3T

Λ

))]

2loop

,

V3 = µ3 − Lb
(4π)2

9λσµ3 +
ζ3

(4π)4T 2
8µ3

3 , (3.30)

V4 = λσ − Lb
(4π)2

9λ2
σ +

ζ3

(4π)4T 2
48λσµ

2
3 − ζ5

(4π)6T 4
32µ4

3 , (3.31)
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employing abbreviations for thermal logarithms

c =
1

2

(

ln

(
8π

9

)

+
ζ ′

2

ζ2
− 2γE

)

, (3.32)

Lb ≡ 2 ln

(
Λ

T

)

− 2
(

ln(4π) − γE

)

, Lf ≡ Lb + 4 ln 2 , (3.33)

in which Λ is the 4d renormalisation scale and γE the Euler-Mascheroni constant. The

uncancelled T 2-dependent divergences correspond to the two-loop 3d counterterms in

eqs. (3.59) and (3.60).

One hallmark of the broken phase computation is its diagrammatic simplicity: the com-

binatorics of permuting external legs is intrinsic in the effective potential. As a drawback

one has to evaluate massive sum-integrals at two-loop level to generate the dependence on

the background field. Even though reaching O(g4) the mass parameter µ2
σ itself will not

appear within two-loop pieces of the matching relations. This detail facilitates the unbro-

ken phase computation in the next section. As another drawback, in models with multiple

scalars, multiple background fields appear and it can be tedious to obtain an analytic series

expansion for the effective potential in these background fields. This poses a complication,

since an expansion in background fields, analogous to eq. (3.8), is needed to extract the

correlators.

3.2.2 Unbroken phase: correlators from the diagrammatic approach

An alternative approach computes the correlation functions directly diagram-by-diagram

(cf. footnote 4). The downside of this approach is its large number of diagrams with several

permutations of external legs. Conversely, its extension to more complicated models is

conceptually straightforward and even multiple gauge fields and scalars coupling to them

can be handled algorithmically. This poses an advantage compared to the aforementioned

complications in the broken phase where series expansions in (multiple) background fields

were needed. In turn, at two-loop level one can set all propagators massless for the NLO

dimensional reduction at O(g4) in analogy to strict perturbation theory (cf. ref. [160]).

Within the unbroken phase computation, the Feynman rules for vertices read

Vσ3 = −3!

(
µ3 + δµ3

3

)

, (3.34)

Vσ4 = −4!

(
λσ + δλσ

4

)

, (3.35)

Vσ2 = −(δµ2
σ + P 2δZσ) . (3.36)

Note that the tadpole µ1 never contributes to 1PI diagrams required for the matching. The

scalar propagator reads

〈σ(P )σ(Q)〉 =
δ̄(P +Q)

P 2 + µ2
σ

. (3.37)

As mentioned, aiming for O(g4) accuracy allows to treat propagators inside two-loop dia-

grams as massless. This provides the correct hard mode parts and non-analytic IR sensitive

contributions vanish trivially in dimensional regularisation due to an absent mass scale.
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The 3-point and 4-point correlator consist of the following diagrams including their

results in terms of master integrals (cf. appendix B)

= −2δµ3 , (a.1)

=
1

2
× 3 × 12λσµ3I

4b
2 , (a.2)

= 1 × 3 × (−8)µ2
3I

4b
3 , (a.3)

= −6δλσ , (b.1)

=
1

2
× 3 × 36λ2

σI
4b
2 , (b.2)

= 1 × 6 × (−24)µ2
3λσI

4b
3 , (b.3)

= 1 × 3 × 16µ4
3I

4b
4 , (b.4)

where we indicated symmetry factors and combinatorial factors related to permutations of

external legs. The tadpole (1-point) correlator up to two-loop level yields

= −δµ1 , (c.1)

= −µ3

(

I4b
1 − µ2

σI
4b
2

)

, (c.2)

= 3µ3λσI
4b
1 I

4b
2 , (c.3)

= 2µ3λσS3 , (c.4)

= −2µ3
3S4 , (c.5)

= −δµ3I
4b
1 , (c.6)

= µ3

(

δZσI
4b
1 + δµ2

σI
4b
2

)

. (c.7)

Finally, the diagrammatic expressions of the self-energy (2-point correlator) up to two-loop

level read

=−δµ2
σ , (d.1)

=−3λσ

(

I4b
1 −µ2

σI
4b
2

)

, (d.2)

=2µ2
3

(

I4b
2 −2µ2

σI
4b
3

)

, (d.3)

=9λ2
σI

4b
1 I

4b
2 , (d.4)

=6λ2
σS3 , (d.5)

=−6µ2
3λσI

4b
2 I

4b
2 , (d.6)

=−12µ2
3λσI

4b
1 I

4b
3 , (d.7)

=−24µ2
3λσS4 , (d.8)
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=−6µ2
3λσS4 , (d.9)

=8µ4
3S6 , (d.10)

=8µ4
3S5 , (d.11)

=−3δλσI
4b
1 , (d.12)

=4µ3δµ3I
4b
1 , (d.13)

=3λσ
(

δZσI
4b
1 +δµ2

σI
4b
2

)

, (d.14)

=−4µ2
3

(

δZσI
4b
2 +δµ2

σI
4b
3

)

. (d.15)

After summing individual diagrams for each correlator, we apply integrals of appendix B

and recover the correlators of eqs. (3.28)–(3.31). Recall that the correlator itself is minus

the sum of diagrams and within our convention Vn = 〈σn〉/(n− 1)! given in eq. (3.8).

3.2.3 Cancellation of mixed hard/soft terms

As mentioned earlier, explicit resummation is obsolete since all propagators at two-loop

diagrams are treated massless. To this end, we demonstrate how resummation unfolds as

a cancellation of IR sensitive mixed hard/soft terms while keeping sum-integrals massive.

For simplicity, we discuss the Z2-symmetric case and employ the resummation

L =

(

Lfree +
1

2
Π1loop

2 σ2
0 +

1

4
Π1loop

4 σ4
0

)

+

(

Lint − 1

2
Π1loop

2 σ2
0 − 1

4
Π1loop

4 σ4
0

)

. (3.38)

From the quadratic part we can read off the resummed propagator

〈σ(P )σ(Q)〉 =
δ̄(P +Q)

P 2 + µ2
σ + δP0

Π1loop

2

, (3.39)

and the resummed vertex for the pure zero modes becomes λσ → λσ + Π4. Also resumma-

tion interaction terms are introduced for the zero mode

Vσ2
0

= Πσ , (3.40)

Vσ4
0

= 6Πσ . (3.41)

At two-loop order, the two diagrams that contribute are (d.4) and (d.5). By expanding

the latter, massive sunset integral in (d.4), at high-T

∑
∫

P,Q

1

[P 2 +m2][Q2 +m2][(P +Q)2 +m2]
= T 2

∫

p,q

1

[p2 +m2][q2 +m2][(p+ q)2 +m2]

+ 3T

∫

p

1

[p2 + µ2
σ,3]

∑
∫ ′

Q

1

Q4
+ O(µ2

σ)

→ 6λ2
σ

(

3TI3
1 (µσ,3)I4b

2
︸ ︷︷ ︸

(A)

)

, (3.42)
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(A) (B) (C) (D) (E)

Figure 5. Resummation in the unbroken phase computation with Z2 symmetry. Solid (dashed)
lines denote scalar propagators with hard (soft) momenta. These IR-sensitive non-analytic mixed
soft/hard contributions are compensated by resummation interaction diagrams (diamond). Alter-
natively, massless propagators in two-loop diagrams simplify the computation and retain the same
result for the hard mode contribution relevant to matching.

one observes that masses are expanded in the pure hard terms but are kept in the mixed

soft/hard terms. In fact, the resummed 3d mass equals the one-loop dimensionally reduced

mass parameter. The last line above reintroduced numerical factors and the scalar self-

coupling. Similarly, the bubble integral (d.4) yields

∑
∫

P

1

[P 2 +µ2
σ]

∑
∫

Q

1

[Q2 +µ2
σ]2

=

(

T

∫

p

1

[p2 +µ2
σ,3]

+
∑
∫ ′

P

1

P 2

)(

T

∫

q

1

[q2 +µ2
σ,3]2

+
∑
∫ ′

Q

1

Q4

)

+O(µ2
σ) (3.43)

≃ 9λ2
σ

(

T

∫

p

1

[p2 +µ2
σ,3]

∑
∫ ′

Q

1

Q4
+T

∫

q

1

[q2 +µ2
σ,3]2

∑
∫ ′

P

1

P 2

)

(3.44)

→ 9λσ
(

λσTI
3
1 (µσ,3)I4b

2
︸ ︷︷ ︸

(B)

+λσ,3I
3
2 (µσ,3)I4b

1
︸ ︷︷ ︸

(C)

)

, (3.45)

where the pure 3d vertex is resummed and corresponds to the 3d effective one. The mixed

mode contributions (A), (B) and (C) are illustrated in figure 5, together with counterterm

interaction diagrams that read

1

2
× 6Πσ,4TI

3
1 (µσ,3)

︸ ︷︷ ︸

(D)

− 1

2
× 6λσ,3Πσ,2TI

3
2 (µσ,3)

︸ ︷︷ ︸

(E)

. (3.46)

Consequently, all non-analytic mixed soft/hard contributions vanish in resummation since

(A) + · · · + (E) = 0. In particular, the IR-sensitive contributions (C) and (E) are O(g3)

(instead of O(g4)) and IR-divergent in the limit of vanishing µ2
σ,3 → 0. Since dimensional

reduction is IR-safe these problematic contributions were expected to vanish.

In practice, the unbroken computation can be conducted by dealing a zero-mass to

propagators in two-loop diagrams even though resummation is conceptually indispensable.

As a result, IR-divergent contributions vanish in dimensional regularisation which, in turn,

obscures the need for explicit resummation.

3.3 Matching relations for 3d parameters

The ensuing matching relations define the dimensionally reduced 3d EFT based on the

parameters of the fundamental 4d theory and temperature. These follow the explicit com-
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putations of the previous sections:

µ1,3(Λ3d) =T− 1
2

(

µ1(Λ)+

[
1

12
T 2µ3(Λ)− Lb

(4π)2
µ3µ

2
σ(Λ)

]

1loop

−
[(

ζ3

(4π)4

2

3

µ2
3

T 2

)(

µ1 +
1

12
T 2µ3

)]

f.n.

+

[
Lb

(4π)2

3

4
T 2λσµ3 +

1

(4π)4
µ3

3

(

3+2Lb+L2
b

)]

2loop

)

−
[

1

(4π)2
2λσ,3µ3,3

(

c+ln

(
3T

Λ3d

))]

3d-running

, (3.47)

µ2
σ,3(Λ3d) =µ2

σ(Λ)

+

[
1

4
T 2λσ(Λ)− Lb

(4π)2

(

2µ2
3(Λ)+3λσµ

2
σ(Λ)

)

+
ζ3

(4π)4T 2
8µ2

3µ
2
σ(Λ)

]

1loop

−
[

ζ3

(4π)4T 2

4

3
µ2

3

(

µ2
σ(Λ)+

1

4
T 2λσ− Lb

(4π)2
2µ2

3

)]

f.n.

+

[

−T 2 Lb
(4π)2

9

4
λ2
σ+

1

(4π)4
λσµ

2
3

(

45+3Lb(10+Lb)+2ζ3

)

− ζ3

(4π)6T 2
8(3+2Lb)µ

4
3

]

2loop

−
[

1

(4π)2
6λ2

σ,3

(

c+ln

(
3T

Λ3d

))]

3d-running

, (3.48)

µ3,3 =T
1
2

(

µ3(Λ)− Lb
(4π)2

9λσµ3 +
ζ3

(4π)4T 2
2µ3

3(4− 1
︸︷︷︸

f.n.

)

)

, (3.49)

λσ,3 =T

(

λσ(Λ)− Lb
(4π)2

9λ2
σ+

ζ3

(4π)4T 2
λσµ

2
3

(

48− 8

3
︸︷︷︸

f.n.

)

− ζ5

(4π)6T 4
32µ4

3

)

, (3.50)

indicating contributions originating from field normalisation (f.n.), one-loop, and two-loop

level. Note that the high-T expansion gives rise to NLO terms at one-loop which are µ2
σ-

proportional. Importantly, we explicitly denoted the 4d scale dependence (Λ) in terms of

which the running of LO terms produce contributions at NLO (O(g4)). In addition, we

indicated that the 3d tadpole µ1,3 and mass parameter µ2
σ,3 run with the 3d renormalisation

scale Λ3d. An exact dependence on Λ3d is presented even though it includes higher contribu-

tions than O(g4). This exact dependence can be solved due to the super-renormalisability

of the 3d EFT; see section 3.4.

By applying β-functions of appendix A.1 and ref. [151], we immediately observe that

all 3d parameters are independent of the 4d renormalisation scale Λ at O(g4):

Λ
d

dΛ
µ1,3 = 0 , Λ

d

dΛ
µ2
σ,3 = 0 , Λ

d

dΛ
µ3,3 = 0 , Λ

d

dΛ
λσ,3 = 0 . (3.51)

For example, the temperature-dependent scale dependence of the 3d mass parameter µ2
σ,3

in eq. (3.48) arises via its one-loop running contribution 1
4T

2λσ(Λ) and cancels upon its

two-loop logarithmic term ∝ T 2Lb. As a general feature for other scale-dependent terms,

this renormalisation scale dependence is discussed in ref. [173]. It is worth to point out

that — as depicted in eqs. (3.47)–(3.50) — the tadpole and mass parameter are running
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in terms of the 3d renormalisation scale Λ3d whereas couplings do not. This dependence of

3d RG scale cancels in computations within the EFT, as we illustrate in the next section.

3.4 Two-loop effective potential in 3d EFT

To conclude this section, we illustrate the computation of the two-loop thermal effective

potential, within dimensionally reduced 3d perturbation theory. This corresponds to step

(e) of section 2.3. At two-loop level, the 3d effective potential composes of

V 3d

eff = V 3d

tree + V 3d

CT + V 3d

1loop + V 3d

2loop . (3.52)

The 3d mass is given by the mass eigenvalue: m2
3d = µ2

σ,3 + 2µ3,3s3 + 3λσ,3s
2
3, where s3 is

a background field of the 3d theory. The corresponding vertices read

Vσ3,3d = −3!

(
µ3,3

3
+ s3λσ,3

)

, (3.53)

Vσ4,3d = −4!

(
λσ,3

4

)

. (3.54)

The individual pieces of the potential read

V 3d

tree =
1

2
µ2
σ,3(Λ3d)s2

3 + µ1,3(Λ3d)s2
3 +

1

3
µ3,3s

3
3 +

1

4
λσ,3s

4
3 , (3.55)

V 3d

CT = δV 3d

0 +
1

2
δµ2

σ,3s
2
3 + δµ1,3s3 , (3.56)

V 3d

1loop = Jsoft(m3d) , (3.57)

V 3d

2loop = −
(

1

8
Vσ4,3d(−1)D3d

SS(m3d,m3d) +
1

12
(Vσ3,3d)2D3d

SSS(m3d,m3d,m3d)

)

, (3.58)

with the respective master (loop) integrals collected in appendix B. In the 3d EFT diver-

gences stemming from the field dependence appear only at two-loop level wherefore one-loop

diagrams with counterterms contribute at three-loop level. The only parameters in need of

renormalisation are the mass, tadpole, and field-independent vacuum counterterm. Their

counterterms are

δµ1,3 =
1

(4π)2

1

4ǫ
2λσ,3µ3,3 , (3.59)

δµ2
σ,3 =

1

(4π)2

1

4ǫ
6λ2

σ,3 , (3.60)

δV 3d

0 =
1

(4π)2

1

4ǫ

1

3
µ2

3,3 . (3.61)

The upper two of these counterterms are exact due to super-renormalisability of the

3d EFT; new divergences are absent for tadpole and scalar mass at higher loop orders.

The field-independent vacuum counterterm gets contributions up to four-loop order [160].

Hence, we can solve an exact renormalisation scale (Λ3d) dependence of the 3d parameters

by requiring that the bare parameters are scale-invariant:

Λ3d

d

dΛ3d

µ1,3(b) = Λ3d

d

dΛ3d

(

Λ4ǫ
3d

(

µ1,3(Λ3d) + δµ1,3

))

= 0 , (3.62)

Λ3d

d

dΛ3d

µ2
σ,3(b) = Λ3d

d

dΛ3d

(

Λ4ǫ
3d

(

µ2
σ,3(Λ3d) + δµ2

σ,3

))

= 0 . (3.63)
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Their solution yields

µ1,3(Λ3d) = − 1

(4π)2
2λσ,3µ3,3 ln

(
Λ0

Λ3d

)

+ C1 , (3.64)

µ2
σ,3(Λ3d) = − 1

(4π)2
6λ2

σ,3 ln

(
Λ0

Λ3d

)

+ C2 , (3.65)

where temperature-dependent initial conditions are parametrised by Λ0 ≡ 3Tec and co-

efficients C1,2 are fixed to reproduce the O(g4) hard mode contributions of the matching

relations at Λ3d = Λ4d. The above renormalised parameters µ3,3 in eq. (3.49) and λσ,3 in

eq. (3.50) are RG-invariant. In total, the effective potential at two-loop has a compact result

V 3d

eff =
1

2
µ2
σ,3(Λ3d)s2

3 + µ1,3(Λ3d)s3 +
1

3
µ3,3s

3
3 +

1

4
λσ,3s

4
3 − (m2

3d)
3
2

12π

+
1

(4π)2

(
3

4
λσ,3m

2
3d − 1

6
(3λσ,3s3d + µ3,3)2

[

1 + 2 ln

(
Λ3d

3m3d

)])

. (3.66)

We observe that the tree-level running of the 3d parameters compensates the scale

dependence in the two-loop logarithmic terms. This RG-improved effective potential (and

even the three-loop effective potential) is compared to non-perturbative lattice simulations

in ref. [160]. The latter agrees surprisingly well even with large expansion parameters in

perturbation theory.

This concludes our instructions to the dimensional reduction of the real scalar field

theory.

4 Dimensional reduction of the real-singlet extended Standard Model

This section details the dimensionally reduced 3d EFT for the SM coupled to a real scalar

singlet at NLO. This is the novel result of this article. Applications of this 3d EFT to

study of electroweak phase transition in the xSM are presented in refs. [172, 173].

When extending the Standard Model by a real scalar singlet, the position of that

scalar in the high-temperature hierarchy is a priori undetermined. If the scalar singlet

assumes a hard (or “superheavy”) scale it is integrated out entirely during the dimensional

reduction [151].6 The resulting version of the SM 3d EFT encodes effects of the singlet

merely in its matching relations.

The following analysis relaxes this assumption and performs the dimensional reduction

with a soft (or “heavy”) singlet. The singlet remains a dynamical field in the 3d EFT and

can eventually become ultrasoft (or “light”). Such a configuration allows for dynamical

transitions with two consecutive steps which are a viable candidate for EWPT with SFOPT

in this model (cf. singlet refs. in section 1). During such a dynamical two-step transition,

first the singlet acquires a non-zero vacuum expectation value (vev) at high temperatures

which is followed by a SFOPT in Higgs-direction once temperature is lowered further.

6However, ref. [151] lacks full O(g4) accuracy since the Higgs 3d mass parameter at two-loop order is

not computed.
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The scalar sector of the 4d Lagrangian reads

L4d

scalar = (Dµφ)†(Dµφ) + µ2
hφ

†φ+ λh(φ†φ)2

+
1

2
(∂µσ)2 +

1

2
µ2
σσ

2 + µ1σ +
1

3
µ3σ

3 +
1

4
λσσ

4

+
1

2
µmσφ

†φ+
1

2
λmσ

2φ†φ , (4.1)

which notationally aligns with ref. [151] (see section 2 ibid.) except the opposite sign

convention for the 4d Higgs mass parameter µ2
h.

We assume the following formal power counting, or scaling in powers of the SU(2)

gauge coupling g:

g′, gs, gY ∼ g , λh, λσ, λm ∼ g2 , µ2
h, µ

2
σ ∼ (gT )2 . (4.2)

Since both mass parameters are soft, this leads to an EFT with two dynamical light scalars

φ3 and σ3. The scaling of dimensionful couplings is more delicate (cf. section 2.1.2 in

ref. [151]), where for the tadpole and cubic couplings we assume

µ1 ∼ gT 3 , µm, µ3 ∼ gT . (4.3)

In analogy to eq. (3.3) this formal choice leads to similar peculiarities. Contributions

≃ µ2
m

µ2
σ

∼ O(1) ≫ λh , (4.4)

≃ µmµ3

µ2
σ

∼ O(1) ≫ λm , (4.5)

parametrically dominate over the corresponding quartic couplings. We reiterate the strat-

egy below eq. (3.3): for generality we install µm, µ3 ∼ gT and include all contributions

of cubic couplings in our matching relations. Note, that contributions proportional to µ2
3

and µ4
3 are further numerically suppressed by extra powers of 1/(4π). In the chosen formal

scaling, the one-loop contributions of the tadpole correlator ∼ µm,3 × T 2 are formally of

the same order as the tree-level tadpole. Therefore, the β-functions of tadpole and mass

parameters (cf. appendix A.1), are partly needed at two-loop level for a O(g4) accuracy.

4.1 Effective 3d theories

The corresponding effective 3d Lagrangian is

L3d

scalar = (Drφ)†(Drφ) + µ2
h,3φ

†φ+ λh,3(φ†φ)2

+
1

2
(∂rσ)2 +

1

2
µ2
σ,3σ

2 + µ1,3σ +
1

3
µ3,3σ

3 +
1

4
λσ,3σ

4

+
1

2
µm,3σφ

†φ+
1

2
λm,3σ

2φ†φ , (4.6)
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with r ∈ {1, . . . , d} and the 3-subscript denoting parameters in the dimensionally reduced

3d EFT.7 In addition, we include the following (non-kinetic) pure scalar marginal operators

L3d

marginal = c0,5σ
5 + c2,3(φ†φ)σ3 + c4,1(φ†φ)2σ

+ c6,0(φ†φ)3 + c0,6σ
6 + c4,2(φ†φ)2σ2 + c2,4(φ†φ)σ4 . (4.7)

The nomenclature of the effective field theory [232, 234, 235] classifies these operators as S6.

We omit classes with higher dimensional kinetic operators such as D2S4 and D4S2 where

D formally presents a derivative operator and classes with gauge fields such as F 3 where F

presents a field strength tensor. This choice is purely practical: the matching of class S6 is

straightforward since corresponding correlators can be computed at zero external momenta

both from the effective potential in the broken phase and even diagrammatically directly in

unbroken phase. On the other hand, the derivative structure of kinetic operators requires

a computation with explicit external momenta dependence. We defer this challenge to a

future comprehensive analysis of the numerical relevance of different higher dimensional

operators. However, in the presence of large portal couplings it is natural to expect the

class S6 to numerically dominate over other classes that are always suppressed by g2.

The breaking of Lorentz symmetry by the heat bath induces temporal scalars. These

are remnants of the temporal gauge field components [212] and obtain Debye screening

masses at the soft scale. In analogy with “electrostatic” QCD [113], the Lagrangian com-

poses of

L3d

temporal =
1

2
(DrA

a
0)2 +

1

2
m2

D A
a
0A

a
0 +

1

2
(∂rB0)2 +

1

2
m′

D

2B2
0 +

1

2
(DrC

α
0 )2 +

1

2
m′′2

D Cα0 C
α
0

+
1

4
κ3 (Aa0A

a
0)2 +

1

4
κ′

3B
4
0 +

1

4
κ′′

3 A
a
0A

a
0B

2
0

+ h3 φ
†φAa0A

a
0 + h′

3 φ
†φB2

0 + h′′
3 B0φ

†Aa0τ
aφ+ δ3 φ

†φCα0 C
α
0

+ x3 σA
a
0A

a
0 + x′

3 σB
2
0 + y3 σ

2Aa0A
a
0 + y′

3 σ
2B2

0 , (4.8)

wherein τa denote the Pauli matrices and the covariant derivatives act on the adjoint scalars

as DrA
a
0 = ∂rA

a
0 + g3ǫ

a
bcA

b
rA

c
0 and DrC

α
0 = ∂rC

α
0 + gs,3f

α
βρC

β
r C

ρ
0 .

Several interaction terms among adjoint scalars were omitted in the temporal La-

grangian since they are of secondary interest in our computation [151]. Among these

omissions are operators with an odd number of temporal fields such as σφ†Aa0τ
aφ. These

only appear in the presence of a finite chemical potential due to the breaking of parity [127].

Exceeding the accuracy of our analysis, we exclude higher dimensional operators involving

temporal scalars since they are numerically suppressed compared to large scalar portal

couplings [111]. Besides, the effect of the temporal sector is numerically subdominant in

strong phase transitions driven by ultrasoft (light) scalar fields. This suppression is often

empirically observed in BSM theories since physically the temporal scalars are screened at

length scales much shorter than those relevant to the phase transition dynamics.

At the ultrasoft scale, the dynamics of the soft (heavy) temporal scalars Aa0, B0 and Cα0
has been integrated out by the second step of dimensional reduction [111]. Remember that

7For simplicity, we keep the notation for 3-dimensional fields identical as in the fundamental 4d theory.
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their masses are at the soft scale and are not dynamical in the vicinity of the transition.

The resulting Lagrangian resembles eqs. (4.6) and (4.7) but all parameters are denoted

with a bar.

4.2 Integrating out the hard scale

The first step of the dimensional reduction occurs from hard to soft scale by integrating

out all hard, non-zero Matsubara modes. Here, the dimensional reduction is performed

at NLO (O(g4)), which means at one-loop in the couplings, two-loop in the tadpole and

masses, and one-loop in the field renormalisations. This section merely quotes final results

and matching relations, casting details of the computation of correlators to appendix A.

We employ a general covariant gauge with gauge parameters ξ1 for U(1)Y, and ξ2 for SU(2)

opposed to Landau gauge in ref. [151].

Normalisation of fields. The relations between 4d and 3d scalar fields are (for generic

field ψ)

(ψ2)3d =
(ψ2)4d

T

[

1 + Π̂′
ψ2

]

, (4.9)

where primed correlators are differentiated with respect to the external momentum squared.

The hat denotes the correlator in renormalised perturbation theory with implicit countert-

erms δZψ in appendix A.1. The corresponding renormalised 2-point correlation functions

yield

Π̂′
Aa

0A
b
0

=
g2

(4π)2

(

3 +
(Nc + 1)

3
nf(Lf − 1) +

(

ξ2 − 25

6

)

Lb − 2ξ2

)

, (4.10)

Π̂′
Aa

rA
b
s

=
g2

(4π)2

(

− 2

3
+

(Nc + 1)

3
nfLf +

(

ξ2 − 25

6

)

Lb

)

, (4.11)

Π̂′
B0B0

=
g′2

(4π)2

1

6

(

Y 2
φ (Lb + 2) + Y2f nf(Lf − 1)

)

, (4.12)

Π̂′
BrBs

=
g′2

(4π)2

1

6

(

Y 2
φLb + Y2f nfLf

)

, (4.13)

Π̂′
φ†φ =

1

(4π)2

(

− Lb
4

(

3(3 − ξ2)g2 + (3 − ξ1)g′2
)

+NcLfg
2
Y

)

+
ζ3

(4π)4

1

6

µ2
m

T 2
, (4.14)

Π̂′
σσ =

ζ3

(4π)4T 2

1

3

(

4µ2
3 + µ2

m

)

, (4.15)

where nf = 3 is the number of quark and lepton families and Nc = 3 the number of colours.

The U(1)Y hypercharges are

Yℓ = −1 , Ye = −2 , Yq =
1

3
, Yu =

4

3
, Yd = −2

3
, Yφ = 1 , (4.16)

for which we abbreviate recurring sums as
∑

f

Y 4
f ≡ Y4f =

[

(Y 4
e + 2Y 4

ℓ ) +Nc(Y
4
u + Y 4

d + 2Y 4
q )

]

=
2

81
(729 + 137Nc) =

760

27
, (4.17)

∑

f

Y 2
f ≡ Y2f =

[

(Y 2
e + 2Y 2

ℓ ) +Nc(Y
2
u + Y 2

d + 2Y 2
q )

]

=
2

9
(27 + 11Nc) =

40

3
. (4.18)
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The matching between the 4d and effective 3d theory relates their couplings at one-loop

order

λh,3 = T

(

λh +
1

2
Γ̂(φ†φ)2 − 2λhΠ̂′

φ†φ

)

, (4.19)

µ3,3 = T
1
2

(

µ3 +
1

2
Γ̂σ3 − 3

2
µ3Π̂′

σσ

)

, (4.20)

λσ,3 = T

(

λσ +
1

6
Γ̂σ4 − 2λσΠ̂′

φ†φ

)

(4.21)

µm,3 = T
1
2

(

µm + 2Γ̂φ†φσ − µm

(

Π̂′
φ†φ +

1

2
Π̂′
σσ

) )

, (4.22)

λm,3 = T
(

λm + Γ̂φ†φσ2 − λm(Π̂′
φ†φ + Π̂′

σσ)
)

, (4.23)

x3 =
1

2
T Γ̂Aa

0A
b
0σ
, (4.24)

x′
3 =

1

2
T Γ̂B0B0σ , (4.25)

y3 =
1

4
T Γ̂Aa

0A
b
0σ

2 , (4.26)

y′
3 =

1

4
T Γ̂B0B0σ2 , (4.27)

where Γ̂ represents a n-point correlation function with subscript corresponding to external

fields. The mass parameters and tadpole at two-loop match according to

µ2
h,3 = µ2

h + Π̂1loop

φ†φ
− (µ2

h + Π̂1loop

φ†φ
)Π̂′

φ†φ + Π̂2loop

φ†φ
, (4.28)

µ2
σ,3 = µ2

σ + Π̂1loop

σσ − (µ2
σ + Π̂1loop

σσ )Π̂′
σσ + Π̂2loop

σσ , (4.29)

µ1,3 = T
1
2

(

µ1 + Γ̂1loop

σ − 1

2
(µ1 + Γ̂1loop

σ )Π̂′
σσ + Γ̂2loop

σ

)

. (4.30)

The matching of marginal operators (4.7) is analogous and we do not explicate their for-

mulas.8 We showcase the computation of the required correlators in appendix A.4. As an

example, for the quartic Higgs coupling, we obtain

λh,3 = T

[

λh(Λ)
︸ ︷︷ ︸

O(g4) running

+
1

(4π)2

(
2 − 3Lb

16

(

3g4 + 2g2g′2 + g′4
)

+Ncg
2
YLf

(

g2
Y − 2λh

︸︷︷︸

f.n.

)

+ Lb

(
3

2
(3g2 + g′2)λh

︸ ︷︷ ︸

f.n.

−12λ2
h − 1

4
λm

)

− 1

2
( 1
︸︷︷︸

f.n.

−1)Lbλh(3g3ξ2 + g′2ξ1)

)

+
ζ3

(4π)4T 2

((

3 − 1

3
︸︷︷︸

f.n.

)

λh +
1

2
λm

)

µ2
m − ζ5

(4π)6T 4

µ4
m

4

]

, (4.31)

where we indicated the origin of individual contributions, displaying cancellations between

correlators and field normalisation (f.n.) for the RG-scale and gauge dependence. To witness

8In fact, matching relations of marginal operators are simpler since for them field normalisations are of

even higher order and thus absent.
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a cancellation of the RG-scale Λ at O(g4) order, we include the one-loop β-function (A.8)

for the tree-level piece, which cancels the logarithmic scale dependence in Lb,f . In these

cancellations, the contribution from field normalisation is essential. Note that the coeffi-

cient of ln(Λ/T ) (in Lb,f ) matches the β-function for the tree-level parameter.

The matching of other parameters yields analogously

µ3,3 =T
1
2

[

µ3(Λ)− 3

(4π)2
Lb

(

3λσµ3+
1

2
λmµm

)

+
ζ3

(4π)4T 2

(

6µ3
3− 1

2
µ3µ

2
m+

1

2
µ3
m

)]

, (4.32)

λσ,3 =T

[

λσ(Λ)− 1

(4π)2
Lb

(

λ2
m+9λ2

σ

)

+
ζ3

(4π)4T 2

(
136

3
λσµ

2
3+2λmµ

2
m− 2

3
λσµ

2
m

)

− ζ5

(4π)6T 4

(

32µ4
3+

1

2
µ4
m

)]

, (4.33)

µm,3 =T
1
2

[

µm(Λ)+
1

(4π)2

(

Lb

((
3

4
(3g2+g′2)−6λh−2λm

)

µm−2λmµ3

)

−NcLfg
2
Y µm

)

+
ζ3

(4π)4T 2
µm

(

− 2

3
µ2

3+2µ3µm+
1

6
µ2
m

)]

. (4.34)

We observe an important — and bluntly surprising — exception for the Z2-symmetric

Higgs-singlet portal coupling

λm,3 = T

[

λm(Λ) +
λm

(4π)2

(

Lb

(
3

4
(3g2 + g′2) − 6λh − 2λm − 3λσ

)

−NcLfg
2
Y

)

+
ζ3

(4π)4T 2

(

λm

(
20

3
µ2

3 + 8µ3µm

)

+ (6λh + 2λm + 3λσ)µ2
m

)

− ζ5

(4π)6T 4
µ2
m

(

8µ2
3 + 2µ3µm +

1

2
µ2
m

)

− ζ3

(4π)4T 2
µ2
m

1

4

(

3g2ξ2 + g′2ξ1

)

︸ ︷︷ ︸

ξ−dependent

]

. (4.35)

The remaining gauge dependence in λm,3 originates from the correlator Γ̂φ†φσ2 (cf. ap-

pendix A.3) and is uncancelled by the field renormalisation contribution which is propor-

tional to the portal coupling λm instead. Since the matched parameters are merely 3d

effective Lagrangian parameters, they are not directly associated with physical observables

of the 3d theory and may well depend on the gauge fixing of the 4d theory. A similar

discussion in ref. [225] addresses the role of higher dimensional operators in hot QCD.

We defer the topic of gauge dependence in matching of hot electroweak theories to future

research. Meanwhile, an immediate solution (used in ref. [172]) is provided by a stricter

power counting µm ∼ g2T for the cubic portal coupling. Hence, by sticking to O(g4), all

gauge-dependent contributions are cast to higher orders.
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The singlet interacts with temporal scalars through the couplings

x3 = T
1

(4π)2
g2µm , (4.36)

x′
3 = T

1

(4π)2
g′2µm , (4.37)

y3 = T

(
1

(4π)2

1

2
g2λm − ζ3

(4π)4T 2

1

2
g2µ2

m

)

, (4.38)

y′
3 = T

(
1

(4π)2

1

2
g′2λm − ζ3

(4π)4T 2

1

2
g′2µ2

m

)

. (4.39)

The results for the two-loop mass parameters and tadpole coupling read

µ2
h,3 =

(
µ2
h,3

)

SM
+
T 2

24
λm(Λ)

− Lb
(4π)2

(
1

4
µ2
m(Λ)+

1

2
λmµ

2
σ(Λ)

)

+
ζ3

(4π)4

µ2
m

T 2

1

2

(

µ2
h(Λ)+µ2

σ(Λ)
)

− ζ3

6(4π)4

µ2
m

T 2

(

µ2
h(Λ)+

T 2

12

(
3

4
(3g2 +g′2)+Ncg

2
Y +6λh+

1

2
λm

)

− 1

(4π)2

1

4
Lbµ

2
m(Λ)

)

+
1

(4π)2

(
3

4
(3g2 +g′2)Lb−Ncg

2
YLf

)(
T 2

24
λm− 1

(4π)2

1

4
Lbµ

2
m(Λ)

)

+
1

(4π)4

[
(3+2Lb+L2

b)

2

(

λm(µ2
3 +µ3µm)+

9

2
µ2
mλh

)

−L2
bµ

2
m

(
3

32
(3g2 +g′2)− 5

8
λm

)

+Ncµ
2
mg

2
Y

Lf
4

(

Lb− 1

2
Lf

)]

− T 2

(4π)2
Lbλm

(
1

4
λh+

5

24
λm+

1

8
λσ

)

− 1

(4π)2

1

2
λ2
m,3

(

c+ln

(
3T

Λ3d

))

− 1

(4π)4

(3+2Lb)

8
µ2
m

(
1

4
(3g2 +g′2)−Ncg

2
Y −3λm

)

+
ζ3

(4π)4
µ2
m

(
1

32
(3g2 +g′2)+

1

4
λh+

5

48
λm+

1

8
λσ+

Nc

24
g2

Y

)

− ζ3

(4π)6T 2

(3+2Lb)

16
µ2
m(8µ2

3 +3µ2
m) , (4.40)

µ2
σ,3 =µ2

σ(Λ)+T 2
(

1

6
λm(Λ)+

1

4
λσ(Λ)

)

+
1

(4π)4

ζ3

T 2

(

2µ2
mµ

2
h(Λ)+8µ2

3µ
2
σ(Λ)

)

− Lb
(4π)2

(

2µ2
3(Λ)+

1

2
µ2
m(Λ)+2λmµ

2
h(Λ)+3λσµ

2
σ(Λ)

)

− ζ3

(4π)4T 2

2

3

(

2µ2
3 +

1

2
µ2
m

)(

µ2
σ(Λ)+T 2

(
1

6
λm+

1

4
λσ

)

− Lb
(4π)2

(

2µ2
3 +

1

2
µ2
m

))

+
1

(4π)4

[
(3+2Lb)

2

(

30λσµ
2
3 +4λmµ3µm−µ2

m

(

(3g2 +g′2)−Ncg
2
Y

))

+
(3+2Lb+L2

b)

4
µ2
m(5λm+3λσ)+Ncg

2
Y µ

2
mLf

(

Lb− 1

2
Lf

)

+L2
b

(

21λσµ
2
3 +4λmµ3µm+3λhµ

2
m− 3

8
(3g2 +g′2)µ2

m

)]
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+
1

(4π)2

(

(3g2
3 +g′2

3 )λm,3 −2λ2
m,3 −6λ2

σ,3

)(

c+ln

(
3T

Λ3d

))

+
T 2

(4π)2

[
(2+3Lb)

24
(3g2 +g′2)λm−Lb

((

λh+
7

12
λm+

1

2
λσ

)

λm+
9

4
λ2
σ

)

−Nc

12
(3Lb−Lf )g2

Y λm

]

+
ζ3

(4π)4

((
1

8
(3g2 +g′2)+

Nc

6
g2

Y +λh+
1

12
λm

)

µ2
m+

(
4

3
λm+2λσ

)

µ2
3

)

− ζ3

(4π)6T 2

(3+2Lb)

4

(

32µ4
3 +8µ2

3µ
2
m+µ4

m

)

, (4.41)

and

µ1,3 = T− 1
2

{

µ1(Λ) +
T 2

12

(

µ3(Λ) + µm(Λ)
)

− Lb
(4π)2

(

µmµ
2
h(Λ) + µ3µ

2
σ(Λ)

)

− ζ3

(4π)4T 2

1

6
(4µ2

3 + µ2
m)

(

µ1 +
1

12
T 2(µ3 + µm)

)

+
1

(4π)4

1

8
(3 + 2Lb + L2

b)(8µ
3
3 + 2µ3µ

2
m + µ3

m)

+
T 2

(4π)2

[
(2 + 3Lb)

48
(3g2 + g′2)µm − Lb

2

((

λh +
7

12
λm

)

µm +

(
1

3
λm +

3

2
λσ

)

µ3

)

− Nc

24
µmg

2
Y

(
3Lb − Lf

)
]}

− 1

(4π)2

(

2λσ,3µ3,3 − 1

2
µm,3

(
3g2

3 + g′
3

2 − 2λm,3
)
)(

c+ ln

(
3T

Λ3d

))

. (4.42)

We explicated the dependence of the 4d RG-scale Λ in terms where the running can

be verified to cancel the logarithmic scale dependence, rendering the 3d parameters Λ-

independent. The running is determined by the β-functions listed in appendix A.1. In

the xSM the cancellation of the RG-scale is slightly more subtle than in the SM, since the

running of the masses starts at order O(µ2
m, µ

2
3). Therefore, the running of the one-loop

mass corrections is crucial. In the above formulas, the 3d running is in fact not exact,

as we did not include two-loop terms with singlet-temporal scalar couplings x3, x
′
3, y3 and

y′
3. However, this approximation is justified since temporal couplings only arise at O(g4)

because the singlet couples only indirectly to gauge fields. Hence, the omitted terms pro-

portional to x2
3, . . . are numerically negligible. The SM result for the three-dimensional
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mass parameter reads

(
µ2
h,3

)

SM
= µ2

h(Λ) +
T 2

12

(
3

4
(3g2(Λ) + g′2(Λ)) +Ncg

2
Y (Λ) + 6λh(Λ)

)

+
µ2
h(Λ)

(4π)2

((
3

4
(3g2 + g′2) − 6λh

)

Lb −Ncg
2
YLf

)

+
T 2

(4π)2

[
167

96
g4 +

1

288
g′4 − 3

16
g2g′2 +

(1 + 3Lb)

4
λh(3g2 + g′2)

+ Lb

(
17

16
g4 − 5

48
g′4 − 3

16
g2g′2 − 6λ2

h

)

+
1

T 2

(

c+ ln

(
3T

Λ3d

))(
39

16
g4

3 + 12g2
3h3 − 6h2

3 + 9g2
3λ2,3 − 12λ2

h,3

− 5

16
g′4

3 − 9

8
g2

3g
′2
3 − 2h′2

3 − 3h′′2
3 + 3g′2

3 λh,3

)

− 1

96

(

9Lb − 3Lf − 2
)(

(Nc + 1) g4 +
1

6
Y2f g

′4
)

nf

+
Nc

32

(

7Lb − Lf − 2
)

g2g2
Y − Nc

4

(

3Lb + Lf
)

λhg
2
Y

+
Nc

96

((

9(Lb − Lf ) + 4
)

Y 2
φ − 2

(

Lb − 4Lf + 3
)

(Y 2
q + Y 2

u )

)

g′2g2
Y

− NcCF

6

(

Lb − 4Lf + 3
)

g2
s g

2
Y +

Nc

24

(

3Lb − 2(Nc − 3)Lf
)

g4
Y

]

, (4.43)

where CF = N2
c −1

2Nc
= 4

3 is the fundamental quadratic Casimir of SU(3). In the xSM the

running of µ2
h(Λ) starts at O(µ2

m) which is apparent from the β-function (A.15). Therefore,

also the one-loop mass correction in the second line of µ2
h,3 is affected by it which is required

for the cancellation of the RG-scale. This result can be found in refs. [111, 157] where the

latter neglects the two-loop contributions involving g′. The matching relations of the

marginal operator coefficients are listed in appendix A.3. Additionally also the couplings

between temporal scalars and the Higgs doublet receive singlet-induced corrections:

h3 =
g2(Λ)T

4

[

1 +
1

(4π)2

((
43

6
Lb +

17

2
− (Nc + 1)nf

3
(Lf − 1)

)

g2 +
g′2

2
− 2Ncg

2
Y + 12λh

)

− ζ3

(4π)4T 2

2

3
µ2
m

]

, (4.44)

h′
3 =

g′2(Λ)T

4

[

1 +
1

(4π)2

(
3g2

2
− 1

6

(

(Lb − 1)Y 2
φ + (Lf − 1)Y2f nf

)

g′2

− 2(Y 2
q + Y 2

u )Ncg
2
Y + 12λh

)

− ζ3

(4π)4T 2

2

3
µ2
m

]

, (4.45)

h′′
3 =

g(Λ)g′(Λ)T

2

[

1 +
1

(4π)2

((
43

12
Lb − 1

)

g2 −
Y 2
φ

3

(
1

4
Lb − 1

)

g′2 + 4λh +
2

3
Nc g

2
Y

− (Lf − 1)

(
Nc + 1

6
g2 +

Y2f

12
g′2

)

nf

)

− ζ3

(4π)4T 2

2

3
µ2
m

]

. (4.46)
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Due to the absence of singlet contributions, other 3d parameters in the dimensionally

reduced Lagrangian (4.8) agree with the Standard model. For completeness, we collect

these results below, with nf = 3 the number of fermion generations

g2
3 = g2(Λ)T

[

1 +
g2

(4π)2

(
43

6
Lb +

2

3
− (Nc + 1)nf

3
Lf

)]

, (4.47)

g′2
3 = g′2(Λ)T

[

1 − g′2

(4π)2

1

6

(

LbY
2
φ + LfY2f nf

)]

, (4.48)

m2
D = g2T 2 1

3

(
5

2
+

(Nc + 1)

4
nf

)

, (4.49)

m′
D

2
= g′2T 2 1

24

(

4Y 2
φ + Y2f nf

)

, (4.50)

m′′
D

2
= g2

sT
2
(
Nc

3
+
nf

3

)

, (4.51)

κ3 = T
g4

(4π)2

1

3

(

17 − (Nc + 1)nf

)

, (4.52)

κ′
3 = T

g′4

(4π)2

1

6

(

2Y 4
φ − Y4f nf

)

, (4.53)

κ′′
3 = T

g2g′2

(4π)2
2
(

Y 2
φ − (Y 2

ℓ +NcY
2
q )nf

)

. (4.54)

We point out, that eq. (3.87) in ref. [151] misprints the gluon Debye mass m′′
D

2, which we

corrected above in eq. (4.51).

Two-loop electroweak Debye masses m
D

and m′

D
. Above, we quoted the one-loop

electroweak Debye masses mD and m′
D, which are standard, as their two-loop corrections

are of higher order at final ultrasoft scale EFT. To reach a consistent O(g4) order at the

soft scale, these Debye masses should be computed at two-loop order, and at this order

they receive contributions from the singlet. We point out, that the QCD Debye mass is

independent of singlet contributions at two-loop order. We omit its two-loop result here,

since these are further suppressed at the ultrasoft scale than two-loop contributions to the

EW Debye masses because the Higgs couples only indirectly to the gluon sector.

The singlet-induced two-loop corrections to the electroweak Debye masses read

m′2
D =

T 2

(4π)2

1

12
g′2 λm − 1

(4π)4
g′2 µ2

m

(

1 +
1

2
Lb

)

+ (SM terms) , (4.55)

m2
D =

T 2

(4π)2

1

12
g2 λm − 1

(4π)4
g2 µ2

m

(

1 +
1

2
Lb

)

+ (SM terms) . (4.56)

Their standard Model contributions have initially been computed in refs. [129, 130] and

are reproduced in eqs. (A.112) and (A.113) in appendix A.4.

4.3 Integrating out the soft scale

The second step of dimensional reduction integrates out heavy temporal scalars at the

soft scale. The resulting simplified 3d EFT at the ultrasoft scale assumes light, dynamical

– 33 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
0

doublet and singlet scalars. Since the singlet couples to gauge fields only indirectly, its

couplings to temporal scalars Aa0 and B0 are suppressed already at leading order. Hence,

we include only one-loop effects of temporal scalars in ultrasoft singlet parameters instead

of including two-loop corrections for tadpole and singlet mass parameter. All correlators

are then encoded in the one-loop contribution of the effective potential (see appendix B

for the one-loop master integral)

V 1loop

eff, soft ≃ 3Jsoft(mA) + Jsoft(mB) . (4.57)

Denoting the background fields v3 for the doublet and s3 for the singlet, the (3d) back-

ground field-dependent mass eigenvalues read

m2
A = m2

D + h3v
2
3 + 2s3(x3 + y3s3) , (4.58)

m2
B = m′2

D + h′
3v

2
3 + 2s3(x′

3 + y′
3s3) , (4.59)

and give rise to the (one-loop) matching relations

µ̄1,3 = µ1,3 − 1

4π

(

3mDx3 +m′
Dx

′
3

)

, (4.60)

µ̄2
σ,3 = µ2

σ,3 − 1

2π

(

3mDy3 +m′
Dy

′
3

)

− 1

4π

(

3
x2

3

mD

+
x′2

3

m′
D

)

, (4.61)

µ̄3,3 = µ3,3 − 3

4π

(

3
x3y3

mD

+
x′

3y
′
3

m′
D

)

+
1

8π

(

3
x3

3

m3
D

+
x′3

3

m′3
D

)

, (4.62)

λ̄σ,3 = λσ,3 − 1

8π

(

3
x4

3

m5
D

+
x′4

3

m′5
D

)

+
1

2π

(

3
x2

3y3

m3
D

+
x′2

3 y
′
3

m′3
D

)

− 1

2π

(

3
y2

3

mD

+
y′2

3

m′
D

)

, (4.63)

µ̄m,3 = µm,3 − 1

2π

(

3
h3x3

mD

+
h′

3x
′
3

m′
D

)

, (4.64)

λ̄m,3 = λm,3 +
1

4π

(

3
h3x

2
3

m3
D

+
h′

3x
′2
3

m′3
D

)

− 1

2π

(

3
h3y3

mD

+
h′

3y
′
3

m′
D

)

. (4.65)

Therein soft corrections stem only from correlators since field normalisations contribute at a

higher order due to non-existing tree-level contributions. In particular, all soft contributions

at leading order are gauge-independent, as there are no gauge field propagators involved
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at one-loop order. The remaining parameters are referred from [111, 159, 172]

ḡ2
3 = g2

3

(

1 − g2
3

6(4π)mD

)

, (4.66)

ḡ′2
3 = g′2

3 , (4.67)

µ̄2
h,3 = µ2

h,3 − 1

4π

(

3h3mD + h′
3m

′
D + 2NcCFδ3m

′′
D

)

+
1

(4π)2

(

3g2
3h3 − 3h2

3 − h′
3

2 − 3

2
h′′

3
2

−
(

3

4
g4

3 − 12g2
3h3

)

ln

(
Λ3d

2mD

)

− 6h2
3 ln

(
Λ3d

2mD

)

− 2h′
3

2
ln

(
Λ3d

2m′
D

)

− 3h′′
3

2
ln

(
Λ3d

mD +m′
D

))

, (4.68)

λ̄3 = λ3 − 1

2(4π)

(
3h2

3

mD

+
h′

3
2

m′
D

+
h′′

3
2

mD +m′
D

)

. (4.69)

In general the ultrasoft Higgs self-energy µ̄2
h,3 receives contributions from interactions with

singlet and temporal scalars. Even though these are two-loop topologies, we discard them

due to the suppression of x3, x
′
3, y3, y

′
3 in analogy with discarding contributions with quartic

self-interactions of temporal scalars. This is apparent for κ3, κ
′
3, κ

′′
3 that lack a tree-level

contribution O(g2) and consequently their leading contribution is O(g4). For simplicity,

we drop corrections from temporal scalars to marginal operators due to their numerical

insignificance.

These relations complete our construction of the high-T 3d EFT of the SM augmented

with a real scalar singlet. As an effective theory, it can be used to examine the thermody-

namics of the electroweak phase transition of the fundamental model (cf. refs. [172, 173]). In

particular, ref. [172] showcases the computation of the two-loop thermal effective potential

in the 3d EFT of the xSM constructed in this section. This is analogous to our section 3.4.

5 Discussion

The pipeline between collider phenomenology of BSM theories and their implications to

early universe cosmology and the potential birth of stochastic GW background convolves

multiple complicated stages. One goal of this article is to take steps towards that, on

theoretical grounds, uncertainties related to the prediction of the thermodynamics are not

the largest in this pipeline.

Concretely, we gave a fresh qualitative review of the thermodynamics of the electroweak

phase transition and focused on scalar extensions of the SM. In particular, we concentrated

on the framework of high-temperature dimensional reduction. As an automatic all-order

resummation scheme it perturbatively defers the infrared problem of thermal field theory.

Thereafter, the IR sensitive physics is encoded in a dimensionally reduced EFT that can be

studied non-perturbatively on the lattice. However, the constructed 3d EFT is powerful al-

ready in perturbative studies. The tutorial-styled computations explicated in section 3 aim
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to make this technique more accessible with emphasis on a scientific community studying

the thermodynamics of the EWPT for a wide variety of BSM theories.

The majority of studies of the electroweak phase transition in BSM setups are re-

stricted to perturbative computations of the thermal effective potential. They are often

limited to one-loop order and naive leading order resummation usually of Arnold-Espinosa

type. Therefrom, a straightforward extension to a non-perturbative treatment is less ap-

parent and the IR problem remains in its core. On perturbative grounds, important con-

tributions in the weak coupling expansion are missed which roots in a misalignment of

loop and coupling (power counting) expansions. This omission causes a residual, artificial

RG scale dependence which cannot be compensated by RG-improvement at one-loop. A

recent study [159] concludes that this kind of leftover artificial renormalisation scale de-

pendence can pose a dramatic two to three orders-of-magnitude theoretical uncertainty for

subsequent analyses of the cosmic gravitational wave background originating from cosmic

phase transitions. Such an uncertainty for thermodynamic parameters can compromise

predictions for e.g. the signal-to-noise ratio for LISA and other future GW experiments.

Tools to automate dimensional reduction are much needed to handle large numbers of

Feynman diagrams that arise at multi-loop orders. By adopting sophisticated tool from

zero temperature, developments towards such automation have been taken recently [159,

171]. As a concrete application of dimensional reduction, we derived for the first time the

high-temperature 3d EFT of the real-singlet extended Standard Model (with a dynamical

singlet) — one of the most widely studied BSM models in particle cosmology. This poses

the main technical part of our investigation displayed in section 4. Perturbative studies of

this 3d EFT to scrutinise the EWPT in this model are presented in refs. [172, 173].

We conclude by envisioning specific but also model-independent future avenues:

(i) The derived 3d EFT of the xSM is indispensable for subsequent studies. Lattice sim-

ulations can probe its equilibrium thermodynamics and in particular expose the char-

acter of the phase transition and determine parameter regions that admit SFOPT.

Additionally, out-of-equilibrium properties of the phase transition such as bubble

nucleation rate can be investigated by non-perturbative studies of the 3d EFT.

A leftover gauge dependence indicates an incomplete basis of higher dimensional

operators in the dimensionally reduced theory. In general, it is interesting how their

effects influence the IR dynamics of the system [225].

(ii) The real singlet scalar model (not coupled to SM) offers a testing platform for dif-

ferent approaches. Implications could be drawn for dark sector phase transitions, by

determining the mapping of 4d parameters and temperature to its 3d phase structure.

The latter was comprehensively analysed in ref. [160].

Since a real scalar theory is purely bosonic, it evades problems of discretising chi-

ral fermions on lattice. Hence, a comparison between 3d EFT and full 4d lattice

simulations is feasible (see related ref. [150]) also when including higher dimensional

operators. In this context, its lattice-continuum relations with higher dimensional

operators are needed. It remains to be determined which lattice measurements and
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extrapolations are required to extract the continuum physics from simulations in

presence of higher dimensional operators.

(iii) It would be worth investigating how large parameter space scans of past EWPT

studies (using a one-loop thermal potential) are affected when complete O(g4) ef-

fects are included. We advocate pre-existing software to implement the perturbative

dimensionally reduced 3d EFT approach. An example are parameter space scans us-

ing CosmoTransitions [215], BSMPT [214], PhaseTracer [216] to examine the phase

structure of individual BSM models.
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A Detailed computation in the xSM

This appendix collects details of the dimensional reduction computation in the xSM from

section 4 and extends our results of the 3d parameters to marginal operators defined in

eq. (4.7).

A.1 Counterterms and β-functions of the 4d theory

One-loop counterterms and β-functions are listed e.g. in section 3.2 in ref. [151]. Using

field renormalisations Zφ for the Higgs, Zq the left handed quark doublet and Zt the top

quark, we define the bare top Yukawa parameter

gY (b) ≡ Z
− 1

2

φ Z
− 1

2
q Z

− 1
2

t Λǫ(gY + δgY ) . (A.1)

This convention for gY and its counterterm δgY align with eqs. (C.22) and (C.29) in ref. [157]

in contrast to eqs. (2.20) and (3.38) of ref. [151]. Since these references use Landau gauge,
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we merely display the ξ-dependent counterterms in general covariant gauge:

δZφ =
1

(4π)2

1

ǫ

(
3

4
(3−ξ2)g2 +

1

4
(3−ξ1)g′2 −Ncg

2
Y

)

, (A.2)

δZA =
1

(4π)2

1

ǫ
g2

(
25

6
− 1

3
nf(1+Nc)−ξ2

)

, (A.3)

δZB = − 1

(4π)2

1

ǫ
g′2 1

6

(

Y 2
φ +Y2fnf

)

, (A.4)

δZq = − 1

(4π)2

1

ǫ

(
1

2
g2

Y +
3

4
g2ξ2 +

1

4
g′2Y 2

q ξ1 +CFg
2
s ξ3

)

, (A.5)

δZu = − 1

(4π)2

1

ǫ

(

g2
Y +

1

4
g′2Y 2

u ξ1 +CFg
2
s ξ3

)

, (A.6)

δgY = − 1

(4π)2

1

ǫ

(
3YqYu

4
g′2 +

3

4
g2ξ2 +

YqYu−Yφ(Yq−Yu)

4
g′2ξ1 +CFg

2
s (3+ξ3)

)

, (A.7)

δλh =
1

(4π)2

1

ǫ

(
3

16
(3g4 +2g2g′2 +g′4)−3g4

Y +12λh+
1

4
λm− 1

2
λh(3g2ξ2 +g′2ξ1)

)

, (A.8)

δµm =
1

(4π)2

1

ǫ

(

6λhµm+2λm(µm+µ3)− 1

4
µm(3g2ξ2 +g′2ξ1)

)

, (A.9)

δλm =
1

(4π)2

1

ǫ
λm

(

6λh+2λm+3λσ− 1

4
(3g2ξ2 +g′2ξ1)

)

, (A.10)

where hypercharges are defined in eq. (4.16). Essentially also the unphysical gauge fixing

parameter receives renormalisation: ξ(b) = ξ(1 + δZξ) with δZξ1
= δZB and δZξ2

= δZA.

The two-loop computation of tadpole and mass parameters receives contributions that

require new counterterms:

δµ1 =
1

(4π)2

1

ǫ

(

µ2
hµm+µ2

σµ3

)

+
1

(4π)4

(
1

ǫ2
− 1

ǫ

)(
1

8
µ3
m+µ3

3 +
1

4
µ3µ

2
m

)

, (A.11)

δµ2
h =

1

(4π)2

1

ǫ

1

4

(

24λhµ
2
h+µ2

m+2λmµ
2
σ−µ2

h(g′2ξ1 +3g2ξ2)
)

− 1

(4π)4

1

ǫ

(
1

2
λm(µ2

3 +µ3µm)−µ2
m

(
1

32
(3g2 +g′2)−Nc

8
g2

Y − 9

4
λh− 3

8
λm

))

+
1

(4π)4

1

ǫ2

(
1

2
λm(µ2

3 +µ3µm)

−µ2
m

(
1

32
(3+2ξ1)g′2 +

3

32
(3+2ξ2)g2 −Nc

8
g2

Y − 9

4
λh− 5

8
λm

))

, (A.12)

δµ2
σ =

1

(4π)2

1

ǫ

1

2

(

6λσµ
2
σ+4λmµ

2
h+4µ2

3 +µ2
m

)

− 1

(4π)4

1

ǫ

(

15λσµ
2
3 +2λmµ3µm−µ2

m

(
1

2
(3g2 +g′2)−Nc

2
g2

Y − 3

4
λσ− 5

4
λm

))

(A.13)

+
1

(4π)4

1

ǫ2

(

21λσµ
2
3 +4λmµ3µm−µ2

m

(
3

8
(3g2 +g′2)−Nc

2
g2

Y − 3

4
λσ− 5

4
λm−3λh

))

,
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and their corresponding β-functions are

Λ
d

dΛ
µ1 =

1

(4π)2
2
(

µ2
hµm + µ2

σµ3

)

− 1

(4π)4

(
1

2
µ3
m + 4µ3

3 + µ3µ
2
m

)

, (A.14)

Λ
d

dΛ
µ2
h =

1

(4π)2
2

(
1

4
µ2
m +

1

2
λmµ

2
σ − µ2

h

(
3

4
(3g2 + g′2) −Ncg

2
Y − 6λh

))

(A.15)

− 1

(4π)4

(

2λmµ
2
3 + 2λmµ3µm − µ2

m

(
1

8
(3g2 + g′2) − Nc

2
g2

Y − 9λh − 3

2
λm

))

,

Λ
d

dΛ
µ2
σ =

1

(4π)2
2

(

2µ2
3 +

1

2
µ2
m + 3λσµ

2
σ + 2λmµ

2
h

)

(A.16)

− 1

(4π)4
2

(

30λσµ
2
3 + 4λmµ3µm − µ2

m

(

(3g2 + g′2) −Ncg
2
Y − 3

2
λσ − 5

2
λm

))

,

which are necessarily gauge-independent. The remaining β-functions are listed in sec-

tion 3.2 of ref. [151].

A.2 Correlators from the one-loop effective potential in general covariant

gauge

In the background field method, the scalar fields are shifted by φi → φi + δi,2v/
√

2 for

i = 1, 2 and σ → σ + s, around real background fields v and s. We can read the scalar

correlators from the effective potential expanded in these background fields

Veff = V0,0 +
1

2
V2,0v

2 +
1

4
V4,0v

4 + V0,1s + V0,2s
2

+ V0,3s
3 + V0,4s

4 +
1

2
V2,1v

2s +
1

2
V2,2v

2s2

+ V0,5s
5 +

1

2
V2,3v

2s3 +
1

4
V4,1v

4s

+
1

8
V6,0v

3 + V0,6s
6 +

1

4
V4,2v

4s2 +
1

2
V2,4v

2s4 , (A.17)

up to dimension-6 terms. In our convention, the coefficients V relate to correlators appear-

ing in the matching relations of eqs. (4.19)–(4.30) as

Γ(φ†φ)2 = 8V4,0 , Γσ4 = 24V0,4 , Γφ†φσ2 = 4V2,2 , Πφ†φσ = 2V2,1 , Πσ3 = 6V4,0 ,

and similarly for 1- and 2-point correlators and marginal operators.

In Landau gauge, the background-dependent mass eigenvalues can be solved from the

mass matrix constructed from the coefficients of the bilinear parts of the φi- and σ-fields

that mix in the broken phase. By employing the shorthand notation for the parameters of

the shifted theory

µ̃2
h ≡ µ2

h + λhv
2 +

1

2
µms+

1

2
λms

2 , (A.18)

µ̃2
σ ≡ µ2

σ + 2µ3s+ 3λσs
2 +

1

2
λmv

2 , (A.19)

µ̃3 ≡ µ3 + 3λσs , (A.20)

µ̃m ≡ µm + 2λms , (A.21)
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the scalar mass eigenvalues read

m2
G = µ̃2

h , (A.22)

m2
± =

1

2
(µ̃2
h + µ̃2

σ) + λhv
2 ±

√
√
√
√

(
1

2
(−µ̃2

h + µ̃2
σ) − λhv

2

)2

+ v2

(
1

2
µm + λms

)2

, (A.23)

where the Goldstone mass eigenvalue m2
G is triple degenerate. Since the singlet does not

couple to the gauge fields or top quark, their mass eigenvalues align with the SM

m2
W± =

1

4
g2v2 , m2

Z =
1

4
(g2 + g′2)v2 , (A.24)

m2
γ = 0 , m2

t =
1

2
g2

Y v
2 . (A.25)

In general covariant gauge, the three Goldstone mass eigenvalues are replaced by [170, 236]

m±
1

2
=

1

2

(

m2
G ±

√

m2
G

(

m2
G − ξ2g2v2 − ξ1g′2v2

))

, (A.26)

m±
2

2
=

1

2

(

m2
G ±

√

m2
G

(

m2
G − ξ2g2v2

))

, (A.27)

where m±
2

2
is double degenerate. Based on these background field dependent mass eigen-

values, the one-loop effective potential becomes

V 1loop

eff = Jb(m
+
1 ) + Jb(m

−
1 ) + 2Jb(m

+
2 ) + 2Jb(m

−
2 ) + Jb(m+) + Jb(m−)

+ d
(

2Jb(m
±
W ) + Jb(mZ)

)

− 4NcJf (mt) . (A.28)

And by comparing to the expansion (A.17), we can solve for the desired correlators. For a

crosscheck, we also compute all one-loop correlators directly in the unbroken phase.

A.3 Matching of marginal operators

Marginal operators of eq. (4.7) arise at O(g5) and O(g6), at which contributions from the

field normalisations are absent in their matching. We get

c6,0 =T 2
[

ζ3

(4π)4T 2

(
3

8
g6 +

3

8
g4g′2 +

3

8
g2g′4 +

1

8
g′6 − 28

3
Nc g

6
Y +80λ3

h+
1

3
λ3
m

−2λ2
h(3g2ξ2 +g′2ξ1)

)

− ζ5

(4π)6T 4
µ2
m

(

36λ2
h+6λhλm+λ2

m

)

+
ζ7

(4π)8T 6

5

4
(6λh+λm)µ4

m− ζ9

(4π)10T 8

7

12
µ6
m

]

, (A.29)

c0,6 =T 2
[

ζ3

(4π)4T 2

(
1

6
λ3
m+9λ3

σ

)

− ζ5

(4π)6T 4

3

4

(

144λ2
σµ

2
3 +λ2

mµ
2
m

)

+
ζ7

(4π)8T 6

(

240λσµ
4
3 +

5

8
λmµ

4
m

)

− ζ9

(4π)10T 8

7

48

(

1024µ6
3 +µ6

m

)]

, (A.30)
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c4,2 =T 2
[

ζ3

(4π)4T 2
λm

(

24λ2
h+2λ2

m+λm(12λh+3λσ)−λh(3g2ξ2 +g′2ξ1)

)

− ζ5

(4π)6T 4

(

6λmµm

(

8λhµ3 +5λhµm+λσµm

)

+λ2
m

(

12µ2
3 +16µ3µm+

17

2
µ2
m

)

+µ2
m

(

36λ2
h+18λhλσ− 3

2
λh(3g2ξ2 +g′2ξ1)+

1

16
(3g4ξ2

2 +2g2g′2ξ2ξ1 +g′4ξ2
1)

))

+
ζ7

(4π)8T 6

5

4
µ2
m

(

24(2λh+λm)µ2
3 +4(6λh+5λm)µ3µm+(9λh+5λm+3λσ)µ2

m

)

− ζ9

(4π)10T 8

7

16
µ4
m

(

48µ2
3 +16µ3µ3 +3µ2

m

)]

, (A.31)

c2,4 =

[
ζ3

(4π)4T 2

(

λ3
m+9λmλ

2
σ+3λ2

m(λh+2λσ)− 1

8
λ2
m(3g2ξ2 +g′2ξ1)

)

− ζ5

(4π)6T 4

(

9λ2
σµ

2
m+

1

4
λ2
m

(

64µ2
3 +32µ3µm+13µ2

m

)

+
3

8
λm

(

4λσ(4µ3 +µm)(12µ3 +5µm)+24µ2
mλh

)

− 3

8
λm(3g2ξ2 +g′2ξ1)

)

+
ζ7

(4π)8T 6

5

32
µ2
m

(

12λσµ
2
m(48µ3

3 +8µ3µm+µ2
m)

+2λm(256µ4
3 +256µ3

3µm+80µ2
3µ

2
m+24µ3µ

3
m+7µ4

m)

+24λhµ
4
m−µ4

m(g′2ξ1 +g2ξ2)
)

− ζ9

(4π)10T 8

7

16
µ2
m

(

256µ4
3 +64µ3

3µm+16µ2
3µ

2
m+4µ3µ

3
m+µ4

m

)]

, (A.32)

c0,5 =T
3
2

[
ζ3

(4π)4T 2

(

18λ2
σµ3 +

1

2
λ2
mµm

)

− ζ5

(4π)6T 4

(

48λσµ
3
3 +

1

2
λmµ

3
m

)

+
ζ7

(4π)8T 6

(

32µ5
3 +

1

8
µ5
m

)]

, (A.33)

c2,3 =T
3
2

[
ζ3

(4π)4T 2

λm
4

(

8(λm+3λσ)(2µ3 +µm)+24λhµm−µm(3g2ξ2 +g′2ξ1)
)

− ζ5

(4π)6T 4

1

8

(

4λm(4µ3 +3µm)(8µ2
3 +2µ3µm+µ2

m)

+12µ2
m

(

λσ(8µ3 +µm)+2µmλh

)

−µ3
m(3g2ξ2 +g′2ξ1)

)

+
ζ7

(4π)8T 6

5

16
µ2
m(4µ3 +µm)(16µ2

3 +µ2
m)

]

, (A.34)

c4,1 =T
3
2

[
ζ3

(4π)4T 2

(

12λhλmµm+2λ2
m(µ3 +µm)+24λ2

hµm−λhµm(3g2ξ2 +g′2ξ1)
)

− ζ5

(4π)6T 4

1

2
µ2
m

(

12λh(2µ3 +µm)+λm(8µ3 +5µm)

)

+
ζ7

(4π)8T 6

5

8
µ4
m

(

4µ3 +µm

)]

. (A.35)

Notably, all coefficients related to operators with Higgs field are gauge dependent, in analogy

to the Higgs-singlet portal coupling in eq. (4.35). The class of topologies responsible for
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this uncancelled contribution can be exemplified by the Higgs-singlet portal interaction

and sextic Higgs marginal operator

≃ (3g2ξ2 + g′2ξ1)µ2
m , (A.36)

≃ (3g2ξ2 + g′2ξ1)λ2
h . (A.37)

At zero external momenta the first diagram vanishes only in Landau gauge due its transver-

sality, since it is proportional to Σ
∫

PPµPνDµν(P )/P 8 = ξΣ
∫

P 1/P 6. Where Dµν(P ) is the

gauge field propagator in covariant gauge from eq. (A.38). Identically, the second diagram

contributes to the Higgs 6-point correlator (A.29) where also a leftover gauge dependence

remains. Similarly, other marginal operators with external Higgs legs are ξ-dependent.

This leftover O(g6) gauge dependence of the sextic correlator was pointed out in ref. [159].

Strikingly, the gauge dependence of the Higgs-singlet portal coupling λm arises already at

O(g4). This underlines the subtlety of the power counting of the cubic portal coupling µm
as discussed in section 4.

Higher dimensional operators can be used to estimate the accuracy of the dimensional

reduction by adding their effect at tree-level to 3d effective potential. It remains to be

understood how a gauge-invariant analysis is to be performed as some of these operators

are explicitly gauge-dependent. We leave this endeavour as a future challenge, and note that

at this stage these operators can be used as mere numerical estimates of the convergence

of perturbation theory.

A.4 Two-loop computation of correlators

This appendix documents diagram-by-diagram the results for the two-loop correlators used

in section 4.2 in terms of master sum-integrals of appendix B. Despite being an algorith-

mic loop-diagrammatic exercise, we believe that this explicit documentation can facilitate

future endeavours of dimensionally reduced high-T effective theories. Especially as one

might find this to be the non-trivial part of a dimensional reduction computation. The

computation was performed in general covariant gauge, where gauge parameters enter via

gauge field propagators for SU(2)

〈Aaµ(P )Abν(−P )〉 = δabDµν(P )

=
δab

P 2

(

PT
µν(P ) + ξ

PµPν
P 2

)

, (A.38)

and similarly for other gauge propagators of U(1) and SU(3). The transverse projector is

defined as PT
µν(P ) ≡ δµν − PµPν/P

2. This section displays results compactly employing

Landau gauge (ξ = 0) where gauge propagators are transversal. This transversality deci-

mates the number of integrals. For the Higgs self-energy, we only list new contributions of

the singlet scalar.

The corresponding Feynman rules and conventions (in Landau gauge) are outlined in

ref. [151]. The pure singlet diagrams are listed above in section 3.2.2, wherefore here we
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only include diagrams wherein the singlet couples to the SM. Note, that in this case also

the pure singlet counterterm diagrams contains SM contributions, and similarly the Higgs

counterterms have singlet contributions. Again the correlator is minus sum of Feynman

diagrams, and at two-loop level (two-loop diagrams, one-loop counterterm diagrams) we

employ massless propagators sufficient for a NLO dimensional reduction; see discussion at

the end of section 3.2.2.

Singlet tadpole. Diagrammatically, the renormalised singlet tadpole correlator Γ̂σ in

Landau gauge composes of (excluding pure singlet terms eqs. (c.1)–(c.7))

=−µm
(

I4b
1 −µ2

hI
4b
2

)

, (A.39)

=6λhµmI
4b
2 I

4b
1 , (A.40)

=
1

2
λmµmI

4b
2 I

4b
1 , (A.41)

=2λmµ3I
4b
2 I

4b
1 , (A.42)

+ =

+
1

4
µm(3g3+g′2)dI4b

2 I
4b
1 , (A.43)

=−2µmNcg
2
YF5 , (A.44)

+ =

− 1

4
µm(3g3+g′2)B4 , (A.45)

=−1

2
µ2
mµ3S4 , (A.46)

=−1

4
µ3
mS4 , (A.47)

=µmλmS3 , (A.48)

=−δµmI4b
1 , (A.49)

=µm

(

δZφI
4b
1 +δµ2

hI
4b
2

)

. (A.50)

Singlet self-energy. The renormalised singlet self-energy Π̂σσ in Landau gauge com-

poses of (excluding pure singlet terms eqs. (d.1)–(d.15))

=−2λm

(

I4b
1 −µ2

hI
4b
2

)

, (A.51)

=
1

2
µ2
m

(

I4b
2 −µ2

hI
4b
3

)

, (A.52)

=12λhλmI
4b
2 I

4b
1 , (A.53)

=λ2
mI

4b
2 I

4b
1 , (A.54)

=6λσλmI
4b
2 I

4b
1 , (A.55)

+ =

+
1

2
λm(3g2+g′2)dI4b

2 I
4b
1 , (A.56)

=−6µ2
mλhI

4b
3 I

4b
1 , (A.57)
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=−1

2
µ2
mλmI

4b
3 I

4b
1 , (A.58)

=−8µ2
3λmI

4b
3 I

4b
1 , (A.59)

+ =

−1

4
µ2
m(3g2+g′2)dI4b

3 I
4b
1 , (A.60)

=−4µmµ3λmS4 , (A.61)

=−2µ2
mλmS4 , (A.62)

=
1

8
µ4
mS5 , (A.63)

=µ3
mµ3S5 , (A.64)

+ =

+
1

8
µ2
m(3g2+g′2)B10 , (A.65)

=2Ncµ
2
mg

2
YF6 , (A.66)

=
1

4
µ4
mS6 , (A.67)

=2µ2
mµ

2
3S6 , (A.68)

+ =

+
1

4
µ2
m(3g2+g′2)B8 , (A.69)

=−3µ2
mλhI

4b
2 I

4b
2 , (A.70)

=−2µmµ3λmI
4b
2 I

4b
2 , (A.71)

=−4Ncλmg
2
YF5 , (A.72)

=−1

2
µ2
mλmS4 , (A.73)

=−3

2
µ2
mλσS4 , (A.74)

+ =

−1

2
λm(3g2+g′2)B4 , (A.75)

=2λ2
mS3 , (A.76)

=2λm

(

δZφI
4b
1 +δµ2

hI
4b
2

)

, (A.77)

=−2δλI4b
1 , (A.78)

=−µ2
m

(

δZφI
4b
2 +δµ2

hI
4b
3

)

, (A.79)

=µmδµmI
4b
2 . (A.80)

Higgs self-energy. The singlet contributions to the renormalised SM Higgs doublet self-

energy Π̂φ†φ (in Landau gauge) read

=−1

2
λm

(

I4b
1 −µ2

σI
4b
2

)

, (A.81) =
1

4
µ2
m

(

I4b
2 −µ2

σI
4b
3

)

, (A.82)
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=3λhλmI
4b
2 I

4b
1 , (A.83)

=λ2
mI

4b
2 I

4b
1 , (A.84)

=
3

2
λσλmI

4b
2 I

4b
1 , (A.85)

=−3

2
µ2
mλhI

4b
3 I

4b
1 , (A.86)

=−1

2
µ2
mλmI

4b
3 I

4b
1 , (A.87)

=−1

8
µ2
mλmI

4b
3 I

4b
1 , (A.88)

=−3

4
µ2
mλσI

4b
3 I

4b
1 , (A.89)

+ =

− 1

16
µ2
m(3g2+g′2)dI4b

3 I
4b
1 ,

(A.90)

=−3µ2
mλhS4 , (A.91)

=−1

2
µ2
mλmS4 , (A.92)

=−µmµ3λmS4 , (A.93)

=
1

16
µ4
mS5 , (A.94)

=
1

4
µ3
mµ3S5 , (A.95)

=
1

2
Ncµ

2
mg

2
YF6 , (A.96)

=
1

8
µ4
mS6 , (A.97)

=
1

16
µ4
mS6 , (A.98)

=
1

2
µ2
mµ

2
3S6 , (A.99)

+ =

+
1

16
µ2
m(3g2+g′2)B8 , (A.100)

=−1

4
µ2
mλmI

4b
2 I

4b
2 , (A.101)

=−3

2
µ2
mλhS4 , (A.102)

=−1

4
µ2
mλmS4 , (A.103)

=−µ2
3λmS4 , (A.104)

=
1

2
λ2
mS3 , (A.105)

=
1

2
λm

(

δZσI
4b
1 +δµ2

σI
4b
2

)

,

(A.106)

=−1

2
δλmI

4b
1 , (A.107)

=−1

4
µ2
m

(

δZσI
4b
2 +δµ2

σI
4b
3

)

,

(A.108)

=−1

4
µ2
m

(

δZφI
4b
2 +δµ2

hI
4b
3

)

,

(A.109)

=
1

2
µmδµmI

4b
2 . (A.110)
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Electroweak Debye masses and gauge couplings at two-loop. The singlet contri-

butions to the gauge field self-energies are displayed in eqs. (4.55) and (4.56). Diagram-

matically the SU(2) gauge field self-energy composes of

ΠAa
µA

b
ν

⊃ , (A.111)

which is identical for U(1) when replacing the external legs: ΠAa
µA

b
ν

→ ΠBµBν
. Their

corresponding SM contributions to the Debye mass align with refs. [129, 130]:

(m′2
D )SM =T 2g′2 1

24

(

4Y 2
φ +Y2fnf

)

− T 2

(4π)2

[(
2Lb−5

72
Y 4
φ +

9Y4f +(Lb+4Lf −2)Y2fY
2
φ

144
nf +

(Lf −1)

144
(Y2fnf)

2
)

g′4

− 3

8

(

Y 2
φ −(Y 2

ℓ +NcY
2
q )nf

)

g′2g2 −g′2λhY
2
φ (A.112)

+
2Y 2

q +Y 2
u +Y 2

d

4
CFNcnf g

′2g2
s +

6(YqYu−Yφ(Yq−Yu))−5Y 2
φ

12
Nc g

′2g2
Y

]

,

(m2
D)SM =T 2g2 1

3

(
5

2
+
Nc +1

4
nf

)

+
T 2

(4π)2

[(
430Lb+207

72
+

(Nc +1)(43Lb−20Lf +11)

72
nf

− (Nc +1)2(Lf −1)

36
n2

f

)

g4 +
1

8

(

Y 2
φ −(Y 2

ℓ +NcY
2
q )nf

)

g′2g2

+g2λhY
2
φ − 1

2
CFNcnf g

2g2
s −Nc

12
g2g2

Y

]

. (A.113)

Additionally, we show the two-loop singlet contributions to the gauge couplings:

g′2
3 = g′4T

ζ3

(4π)4

1

36

[

λm − 1

(4π)2T 2

(

6Lb + 11
)

µ2
m

]

+ (SM terms) , (A.114)

g2
3 = g4T

ζ3

(4π)4

1

36

[

λm − 1

(4π)2T 2

(

6Lb + 11
)

µ2
m

]

+ (SM terms) . (A.115)

These contributions are formally of higher order, i.e. O(g6) in our power counting.

B Collection of integrals

This appendix collects definitions and results of sum-integrals encountered in our computa-

tion. Ref. [231] and references therein further showcase many explicit derivations. We use

dimensional regularisation in D = d+ 1 = 4 − 2ǫ dimensions in the MS-scheme with renor-

malisation scales Λ in 4d and Λ3d in 3d. Euclidean four-momenta are denoted as P ≡ (ωn,p)

with the bosonic Matsubara frequency ωn = 2πnT . We define the d-dimensional integral

measure as
∫

p
≡

(
Λ2eγE

4π

)ǫ ∫
ddp

(2π)d
, (B.1)
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and bosonic sum-integrals as

∑
∫

P

≡ T
∑

ωn

∫

p
,

∑
∫ ′

P

≡ T
∑

ωn 6=0

∫

p
, (B.2)

where a primed integral denotes the absence of a zero mode. For fermionic counterparts,

we employ the definition of ref. [151].

In pure 3d, we encounter the following integrals

Jsoft ≡ 1

2

∫

p
ln(p2 +m2) = −1

2

(
Λ2

3de
γE

4π

)ǫ [m2]
d
2

(4π)
d
2

Γ(−d
2)

Γ(1)

= −(m2)
3
2

12π
+ O(ǫ) , (B.3)

I3
α(m) ≡

∫

p

1

[p2 +m2]α
=

(
Λ2

3de
γE

4π

)ǫ [m2]
d
2

−α

(4π)
d
2

Γ(α− d
2)

Γ(α)
, (B.4)

S3
3(m1,m2,m3) ≡

∫

p,q

1

[p2 +m2
1][q2 +m2

2][(p+ q)2 +m2
3]

=
1

(4π)2

(
1

4ǫ
+

1

2
+ ln

(
Λ3d

m1 +m2 +m3

))

+ O(ǫ) , (B.5)

where we define the shorthand notation

D3d

SS(m1,m2) ≡ −I3
1 (m1)I3

1 (m2) , (B.6)

D3d

SSS(m1,m2,m3) ≡ S3
3(m1,m2,m3) . (B.7)

In the 4d computation, we encounter sum-integrals parameterised by

Zα1
s1;σ1

≡ ∑
∫

P{σ1}

pα1
0

[
P 2

]s1
,

Zs1s2s3;σ1σ2
≡ ∑

∫

P{σ1}Q{σ2}

1
[
P 2

]s1
[
Q2

]s2
[
(P +Q)2

]s3
, (B.8)

where the Matsubara four-momenta have implicit fermion signature P 2 =
[
(2n+σi)πT

]2
+

p2 with σi = 0(1) for bosons(fermions). Below we list some of the recurring integrals in
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d = 3 − 2ǫ

Zα;0 = I4b
α ≡ ∑

∫ ′

P

1

[P 2]α
=

(
Λ2eγE

4π

)ǫ

2T
[2πT ]d−2α

(4π)
d
2

Γ(α− d
2)

Γ(α)
ζ2α−d , (B.9)

Zα;1 = I4f
α ≡ ∑

∫

{P}

1

[P 2]α
=

(

22α−d − 1
)

I4b
α , (B.10)

Z111;00 = S3 ≡ ∑
∫

P,Q

1

P 2Q2(P +Q)2
= 0 , (B.11)

Z211;00 = S4 ≡ ∑
∫

P,Q

1

P 4Q2(P +Q)2
= − 1

(d− 5)(d− 2)
I4b

2 I
4b
2 , (B.12)

Z221;00 = S5 ≡ ∑
∫

P,Q

1

P 4Q4(P +Q)2
= 0 , (B.13)

Z311;00 = S6 ≡ ∑
∫

P,Q

1

P 6Q2(P +Q)2
= − 4

(d− 7)(d− 2)
I4b

3 I
4b
2 , (B.14)

Z121;10 = F ≡ ∑
∫

{P},Q

1

P 2Q4(P +Q)2
=

1

(d− 5)(d− 2)

(

I4f
2 I4f

2 − 2I4f
2 I4b

2

)

, (B.15)

F5 ≡ ∑
∫

{P},Q

P 2 + P ·Q
P 2Q4(P +Q)2

=
(

22−d − 1
)

I4b
2 I

4b
1 , (B.16)

F6 ≡ ∑
∫

{P},Q

P 2 + P ·Q
P 2Q6(P +Q)2

= I4f
1 I4b

3 − 1

2
F , (B.17)

B4 ≡ ∑
∫

P,Q

1

P 4(P +Q)2
(2P +Q)µ(2P +Q)νDµν(Q) = 0 , (B.18)

B8 ≡ ∑
∫

P,Q

1

P 6Q2
(P −Q)µ(P −Q)νDµν(P +Q) = I4b

2 I
4b
2 + S4 , (B.19)

B10 ≡ ∑
∫

P,Q

1

P 4Q4
(P −Q)µ(P −Q)νDµν(P +Q) = 4S4 − 3I4b

2 I
4b
2 . (B.20)

Here the power of integration-by-parts reduction (cf. ref. [224] and in particular section 3.4

of ref. [171]) is obvious. All massless two-loop sum-integrals reduce to one-loop masters.

Similar sum-integral structures are listed in appendix C of ref. [157] and can be used to

compute pure SM contributions to the Higgs self energy at two-loop. In broken phase

computations, we need massive sum-integrals (cf. ref. [111]), expanded at high-T setting
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m/T ≪ 1

Jb,hard(m) ≡ 1

2

∑
∫ ′

P

ln(P 2 +m2)

≃ m2 1

2
I4b

1 − 1

4
m4I4b

2 +
1

6
m6I4b

3 − 1

8
m8I4b

4 +
1

10
m10I4b

5 − 1

12
m12I4b

6

=
T 2

24
m2 − 1

(4π)2

m4

4

(
1

ǫ
+ Lb

)

+
ζ3

3(4π)4

m6

T 2
− ζ5

2(4π)6

m8

T 4

+
ζ7

(4π)8

m10

T 6
− 7

3

ζ9

(4π)10

m12

T 8
+ O(ǫ) , (B.21)

Jf (m) ≡ 1

2

∑
∫

{P}

ln(P 2 +m2)

≃ 1

2
m2I4f

1 − 1

4
m4I4f

2 +
1

6
m6I4f

3

= −T 2

48
m2 − 1

(4π)2

m4

4

(
1

ǫ
+ Lb

)

+
7

3

ζ3

(4π)4

m6

T 2
+ O(ǫ) , (B.22)

DSS(m1,m2) ≡ −∑
∫

P

1

P 2 +m2
1

∑
∫

Q

1

Q2 +m2
2

= −
(

T 2I3
1 (m1)I3

1 (m2) + I4b
1 I

4b
1

+ I4b
1

(

− (m2
1 +m2

2)I4b
2 + TI3

1 (m1) + TI3
1 (m2)

)

− I4b
2 T

(

m2
1I

3
1 (m2) +m2

2I
3
1 (m1)

)

+m2
1m

2
1I

4b
2 I

4b
2 + (m4

1 +m4
2)I4b

1 I
4b
3

)

+ O(m5) , (B.23)

DSSS(m1,m2,m3) ≡ ∑
∫

P,Q

1

[P 2 +m2
1][Q2 +m2

2][(P +Q)2 +m2
3]

= T 2S3
3(m1,m2,m3) + T

(

I3
1 (m1) + I3

1 (m2) + I3
1 (m3)

)

I4b
2

− (m2
1 +m2

2 +m2
3)S4 + (m4

1 +m4
2 +m4

3)(S5 + S6)

+ O(m3) + O(m5) , (B.24)

DS(m, δm2, δZ) ≡ ∑
∫

P

(δm2 + P 2δZ)

P 2 +m2

=
(

δm2 −m2δZ
)(

TI3
1 (m) + I4b

1 −m2I4b
2

)

+ O(m4) . (B.25)

Note that if one uses resummed propagators, all 3d integrals in these expressions obtain a

resummed 3d mass instead of a 4d mass. In DSS and DSSS all mixed soft/hard terms (that

are non-analytic in m2) will be cancelled in resummation at O(g4). For the latter integral,

we do not write down terms of O(m3) explicitly since these are absent in resummation at

O(g4). Whereas the O(m4) hard contribution is required for the matching of µ4
3 terms.

Indeed, in addition to O(m2) terms we need O(m4) terms due to cubic interaction µ3 which

can be compared eqs. (81) and (88) of the classic ref. [111].
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Sunset sum-integrals. Finally, let us inspect the high-T expansion of the massive two-

loop sunset sum-integral. See also ref. [237]. The result given in (B.24) shows almost

surprising cleanliness in the terms of the mass expansion. In particular, it is very pleasant

that the coefficients of even powers of mass are given in terms of full sum-integral structures,

as opposed to linear combinations of (massless) mixed soft/hard and hard sum-integral

structures. Essentially, this can be shown to take place by carefully expanding separately

the mixed modes and hard modes of the original massive sum-integral. The arithmetic

challenge arises from a proper treatment of the mixed modes, as a naive mass expansion can

only occur in propagators with non-vanishing Matsubara index (hard scale contribution).

Hence, the proper order of the mass expansion is chosen to be isolated with an iterative

approach. This operation is explicitly described below for the special case with three

degenerate masses. This simplifies the book keeping of the computation without any loss

of information, due to the obvious symmetry between the three masses.

It is well-motivated to symmetrise the computation as far as possible. Thus, we choose

to consider the hard modes by setting each propagator structure of the sunset integral

identical, with non-vanishing thermal component:

Dhard
SSS =

∑
∫

P,Q

(1 − δP0
)(1 − δQ0

)(1 − δP0+Q0
)

(P 2 +m2)(Q2 +m2)[(P +Q)2 +m2]
. (B.26)

We can expand this in a trivial manner up to O(m2) to find the following non-vanishing

contributions:

− 3T

∫

p

∑
∫

Q

1

p2Q2(p+Q)2
− 3m2

[
∑
∫

PQ

(1 − δP0
)(1 − δQ0

)

P 4Q2(P +Q)2
−T

∫

p

∑
∫

Q

(1 − δQ0
)

p2Q4(p+Q)2

]

, (B.27)

where we took note that all scaleless spatial integrals vanish, and more notably the massless

sunset integral S3 (B.11) vanishes [230, 238]. The first integral expression mixes soft and

hard modes. This naturally follows from the symmetrisation of the propagators, which

essentially adds contributions from the mixed part of the expansion. Hence, we reinsert it

in the second structure of interest.

Dmix

SSS = 3T

∫

p

∑
∫

Q

1 − δQ0

(p2 +m2)(Q2 +m2)[(p+Q)2 +m2]
− 3T

∫

p

∑
∫

Q

1

p2Q2(p+Q)2
(B.28)

Let us start the expansion towards O(m2) by solely considering the propagators with non-

vanishing thermal scale, which yields

3T

∫

p

∑
∫

Q

(1−δQ0
)

(p2 +m2)Q2(p+Q)2
−3T

∫

p

∑
∫

Q

1

p2Q2(p+Q)2
−6Tm2

∫

p

∑
∫

Q

1−δQ0

(p2 +m2)Q4(p+Q)2

= −3Tm2
∫

p

∑
∫

Q

[
1−δQ0

p2(p2 +m2)Q2(p+Q)2
+

2(1−δQ0
)

(p2 +m2)Q4(p+Q)2

]

. (B.29)

In both of these sum-integral terms it suffices to remove the mass terms inside the integral,

as we only wish to find contributions exactly at O(m2). Thus, we find the quadratic
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coefficient of the expansion as

Dm2

SSS = −3

[
∑
∫

PQ

(1−δP0
)(1−δQ0

)

P 4Q2(P +Q)2
+T

∫

p

∑
∫

Q

1−δQ0

p4Q2(p+Q)2
+T

∫

p

∑
∫

Q

2(1−δQ0
)

[p2 +m2]Q4(p+Q)2

]

≡ −3S4 , (B.30)

where S4 is defined by eq. (B.12).

We follow a similar procedure to find the coefficient of O(m4), with the slight difference

of using the results found above as the iterative subtraction element for the mixed element

expansion. This time, the hard expansion yields

3m4∑
∫

PQ

[
(1 − δP0

)(1 − δQ0
)(1 − δP0+Q0

)

P 6Q2(P +Q)2
+

(1 − δP0
)(1 − δQ0

)(1 − δP0+Q0
)

P 4Q4(P +Q)2

]

(B.31)

= 3m4
[
∑
∫

PQ

(1 − δP0
)(1 − δQ0

)

P 6Q2(P +Q)2
− T

∫

p

∑
∫

Q

1 − δQ0

p2Q6(p+Q)2

]

(B.32)

+ 3m4
[
∑
∫

PQ

(1 − δP0
)(1 − δQ0

)

P 4Q2(P +Q)4
− T

∫

p

∑
∫

Q

1 − δQ0

p4Q2(p+Q)4

]

. (B.33)

In order to fully extract the mixed contributions, we again expand the suitable propagators

and follow-up with a removal of the results of previous orders. This results in three separate

computations:

3T

∫

p

∑
∫

Q

[
(1 − δQ0

)

(p2 +m2)Q2(p+Q)2
− (1 − δQ0

)

p2Q2(p+Q)2
+

m2

p4Q2(p+Q)2

]

7→ 3m4T

∫

p

∑
∫

Q

(1 − δQ0
)

p6Q2(p+Q)2
, (B.34)

− 6Tm2
∫

p

∑
∫

Q

[
(1 − δQ0

)

(p2 +m2)Q4(p+Q)2
− (1 − δQ0

)

p2Q4(p+Q)2

]

7→ 6Tm4
∫

p

∑
∫

Q

(1 − δQ0
)

p4Q2(p+Q)4
, (B.35)

3Tm4
∫

p

∑
∫

Q

[
2(1 − δQ0

)

(p2 +m2)Q6(p+Q)2
+

(1 − δQ0
)

(p2 +m2)Q4(p+Q)4

]

7→ 3m4T

∫

p

∑
∫

Q

[
2(1 − δQ0

)

p2Q6(p+Q)2
+

(1 − δQ0
)

p2Q4(p+Q)4

]

. (B.36)

These contributions combine to the O(m4) coefficient of the mass expansion as

Dm4

SSS = 3

[
∑
∫

PQ

1

P 6Q2(P +Q)2
+

1

P 4Q2(P +Q)4

]

≡ 3[S5 + S6] , (B.37)

where S5 is defined in eq. (B.13) and S6 in (B.14).
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