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Abstract

We propose a robust optimization approach to address a multi-period, inventory control problem

under ambiguous demands, that is, only limited information of the demand distributions such as

mean, support and some measures of deviations. Our framework extends to correlated demands and

is developed around a factor-based model, which has the ability to incorporate business factors as

well as time series forecast effects of trend, seasonality and cyclic variations. We can obtain the

parameters of the replenishment policies by solving a tractable deterministic optimization problem

in the form of second order cone optimization problem (SOCP), with solution time, unlike dynamic

programming approaches, is polynomial and independent on parameters such as replenishment lead

time, demand variability, correlations, among others. The proposed truncated linear replenishment

policy (TLRP), which is piecewise linear with respect to demand history, improves upon static and

linear policies. Our computational studies also suggest that it performs better than simple heuristics

derived from dynamic programming.
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1 Introduction

Inventory ties up working capital and incurs holding costs, reducing profit every day excess stock is

held. Good inventory management has hence become crucial to businesses as they seek to continually

improve their customer service and profit margins, in the heat of global competition and demand

variability. Baldenius and Reichelstein [4] offered perhaps the most convincing study of the contribution

of good inventory management to profitability. They studied inventories of publicly traded American

manufacturing companies between 1981 and 2000, and they concluded that “Firms with abnormally

high inventories have abnormally poor long-term stock returns. Firms with slightly lower than average

inventories have good stock returns, but firms with the lowest inventories have only ordinary returns”.

The ability to incorporate more realistic assumptions about product demand into inventory models is

one key factor to profitability. Practical models of inventory would need to address the issue of demand

forecasting while staying sufficiently immunized against uncertainty and maintaining tractability. In

most industrial contexts, demand is uncertain. Many demand histories have factors that behave like

random walks that evolve over time with frequent changes in their directions and rates of growth or

decline. In practice, for such demand processes, inventory managers often rely on forecasts based on

a time series of prior demands, which are often correlated over time. For example, a product demand

may depend on factors such as market outlook, oil prices and so forth, and contains effects of trend,

seasonality, cyclic variation and randomness.

In this paper, we address the problem of optimizing multi-period inventory using factor-based sto-

chastic demand models, where the coefficients of the random factors can be forecasted statistically,

perhaps using historical time-series data. We assume that the demands may be correlated and are

ambiguous, that is, limited information of the demand distributions (only the mean, support and some

measures of deviations) are available. Using robust optimization techniques, we develop a tractable

methodology that uses past demand history to adaptively control multi-period inventory. Our model

also includes a range of features such as delivery delay and capacity limit on order quantity.

Our work is closely related to the multi-period inventory control problem, a well studied problem

in operations research. For the single product inventory control problem, it is well-known that the

base-stock policy based on a critical fractile is optimum. See Scarf [40, 41], Azoury [3], Miller [36] and

Zipkin [44]. For correlated demands, Veinott [43], characterized conditions under which a myopic policy

is optimum. Extending the results of Veinott, Johnson and Thompson [31] considered an autoregressive,

moving-average (ARMA) demand process, zero replenishment lead-time and no backlogs, and showed
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the optimality of a myopic policy when there demand in each period is bounded. Lovejoy [33] showed

that a myopic critical-fractile policy is optimum or near optimum in some inventory models with adaptive

demand processes, citing exponential smoothing on the demand process and Bayesian updating on

uniformly distributed demand as examples. Song and Zipkin [42] addressed the case of Poisson demand,

where the transition rate between states is governed by a Markov process.

Although optimum policies can be characterized in many interesting variants of inventory control

problems, it is not easy to compute them efficiently, that is, in polynomial time with respect to the input

size of the problem. In this paper, we use the term tractable replenishment policy if the parameters of

the policy are polynomial in size and can be obtained in polynomial time. For instance, the celebrated

optimum base-stock policy may not necessarily be a tractable one. Sampling-based approximation have

been applied to the inventory control problem. Levi, Roundy, and Shmoys [35] gave theoretical results

on the sample size required to achieve ε-optimum solution. They showed that when the sample size is

greater than 9
2ε2

(
min(b,h)

b+h

)−2
ln(2

δ ), the solution of the sample average approximation is at most 1 + ε

times the optimum solution with probability of at least 1− δ, with b being the backlog cost and h being

the holding cost. For instance, for the case of b = 100 and h = 2, it would require an exuberant 6× 108

independent demand samples to ensure a 99%-optimum solution with 99% confidence. Using marginal

cost accounting and cost-balancing techniques, Levi et. al. [34] proposed an elegant 2-approximation

algorithm for the inventory control problem. However, there is a lack of computational studies demon-

strating the effectiveness of the approximation algorithm. Other sampling-based approaches include

infinitesimal perturbation analysis (see Glasserman et. al. [28]) which uses stochastic gradient estima-

tion technique, and the concave adaptive value estimation procedure, which successively approximates

the objective cost function with a sequence of piecewise linear functions (see Godfrey et. al., [29] and

Powell et. al. [38]).

One of the fundamental assumptions of stochastic models, which has recently been challenged,

is the availability of probability distributions in characterizing uncertain parameters. Bertsimas and

Thiele [16] illustrated that an optimum inventory control policy that is heavily tuned to a particular

demand distribution may perform poorly against another demand distribution bearing the same mean

and variance. One approach to account for distributional ambiguity is to consider a family of demand

distributions, which can be characterized by their descriptive statistics such as partial moments infor-

mation, support and so forth. Research on inventory control under ambiguous demand distributions

dates back to Scarf [39], where he considered a newsvendor problem and determined orders that mini-

mize the maximum expected cost over all possible demand distributions with the same first and second
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moments and with non-negative support. Various extensions of Scarf’s single period results have been

studied by Gallego and Moon [26]. Although the solutions to these single period models are in the form

of second order cone optimization problem (SOCP), which are polynomial time solvable, the minimax

approach does not scale well computationally with the number of periods. Nevertheless, the optimum

policies for multi-period inventory control problems under various forms of demand ambiguity have been

characterized by Kasugai and Kasegai [32] and Gallego, Ryan and Simchi-Levi [27].

In recent years, robust optimization has witnessed an explosive growth and has become a domi-

nant approach to address optimization problem under uncertainty. Traditionally, the goal of robust

optimization is to immunize uncertain mathematical optimization problems against infeasibility while

preserving the tractability of the models. See, for instance, Ben-Tal and Nemirovski [7, 8, 9], Bertsimas

and Sim [13, 14], Bertsimas, et al. [12], El-Ghaoui and Lebret [23], and El-Ghaoui, et al. [24]. Many

robust optimization approaches have the following two important characteristics:

(a) The model of data uncertainty in robust optimization permits distributional ambiguity. Data

uncertainty can also be completely distributional-free and specified by an uncertainty set para-

meterized by the “Budget of Uncertainty”, which controls the size of uncertainty set. Another

model of uncertainty is to consider uncertain parameters with unknown distributions but having

the same descriptive statistics such as known means and variances.

(b) The solution (or approximate solution) to a robust optimization model can be obtained by solv-

ing a tractable deterministic mathematical optimization problem such as SOCP, whose associated

solvers are commercially available, robust and efficiently optimized. Robust optimization method-

ology often decouples model formulation from the optimization engine, which enables the modeler

to focus on modeling the actual problem and not to be hindered by algorithm design.

Based on the framework of robust optimization, Bertsimas and Thiele [16] developed a new approach

to address demand ambiguity in a multi-period inventory control problem, which has the advantage

of being computationally tractable. They considered a family of demand distributions similar to Scarf

and enforced independence across time periods. Bertsimas and Thiele mapped the demand uncertainty

model into a “Budget of Uncertainty” model of Bertsimas and Sim [14] and proposed an open-loop

inventory control approach in which the solutions can be obtained by solving a tractable linear opti-

mization problem. They showed that the optimum solution of robust model has a base-stock structure

and the tractability of the problem readily extends to problems with capacities and over networks,
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and their paper characterized the optimum policies for these cases. The analysis of the robust mod-

els and computational experiments for independent demands suggest that robust approaches compare

well against an optimum model under exact distribution and is yet immunized against distributional

ambiguity. Using similar approach, Adida and Perakis [1] proposed a deterministic robust optimization

formulation for dealing with demand uncertainty in a dynamic pricing and inventory control problem

for a make-to-stock manufacturing system. They developed a demand-based fluid model and showed

that the robust formulation is not much harder to solve than the nominal problem. Other related work

in the robust inventory control literature includes Beinstock and Ozbay [18], where they proposed a

robust model focusing on base-stock policy structure.

To address the inadequacy of open-loop robust optimization models involving multistage decision

process, Ben-Tal et al. [5] introduced the concept of adjustable robust counterpart, which permits deci-

sions to be delayed until the availability of information. Unfortunately, with the additional flexibility in

modeling, adjustable robust counterpart models are generally NP -hard and the authors have proposed

and advocated the use of linear decision rule as a tractable approximation. Ben-Tal et.al. [6] applied

their model to a multi-period inventory control problem and showed by means of computational studies,

the advantages of the linear replenishment policy over the open-loop model in which the replenishment

policy is static. We emphasize that in contrast to stochastic models, the uncertainty considered in ad-

justable robust counterpart is completely distribution-free, that is, the data uncertainty is characterized

only by its support. Due to the different models of uncertainty, it is meaningless to compare adjustable

robust counterpart models vis-a-vis stochastic ones.

To bridge the gap between robust optimization and stochastic models, Chen et al. [20] introduced

the notions of directional deviations known as forward and backward deviations and proposed compu-

tationally tractable robust optimization models for immunizing linear optimization problems against

infeasibility, which enhanced the modeling power of robust optimization in the characterization of am-

biguous distributions. In a parallel work, Chen et al. [21] proposed several piecewise linear decision

rules for approximating stochastic linear optimization problems that improve upon linear rules. These

approaches have been unified by Chen and Sim [22]1, where they proposed a general family of distribu-

tions characterized by the mean, covariance, directional deviations and support and showed how it can

be extended to approximate solution for a two period stochastic model under a satisficing objective.

In this paper, we extend these new ideas of robust optimization to the multi-period inventory control
1Note that the first alphabetically ordered author bearing the same last name in Chen et al. [20] and Chen et al. [21]

is a different person from that of Chen and Sim [22].
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problem. Instead of the “Budget of Uncertainty” demand model, we focus on uncertain demands being

robustly characterized by their descriptive statistics. The former requires specification on the size of

uncertainty set, which, as exemplified in Berstsimas and Sim [15], can be dependent on the types of

stochastic optimization problem we are addressing. We feel that the “Budget of Uncertainty” approach

to uncertainty, though has its strengths, is less appealing when we compare vis-a-vis stochastic demand

models, which is the case in this paper. Our contributions over the related works of Bertsimas and

Thiele [16] and Ben-Tal et.al. [6] can be summarized as follows:

(a) Our proposed robust optimization approximation is based upon a comprehensive factor-based

demand model that can capture correlations such as the autoregressive nature of demand, the

effect of external factors, as well as trends and seasonality, among others. In addition, we provide

for distributional ambiguity in the underlying factors by considering a family of distributions

characterized by the mean, covariance, support and directional deviations. In contrast, the robust

optimization model of Bertsimas and Thiele [16] is restricted to independent demands with an

identical mean and variance, while the model of Ben-Tal et.al. [6] is confined to completely

distribution-free demand uncertainty.

(b) We propose a new policy called the truncated linear replenishment policy and show that it gives

improved approximation to the multi-period inventory control problem over static and linear de-

cision rules used in the robust optimization proposals of Bertsimas and Thiele [16] and Ben-Tal

et.al. [6] respectively. We also do not restrict the policy structure to base-stock. We develop

a new bound on a nested sum of expected positive values of random variables and show that

the parameters of the truncated linear replenishment policy can be obtain by solving a tractable

deterministic mathematical optimization problem in the form of SOCP, whose solution time is in-

dependent on replenishment lead time, demand variability, correlations, among others. Although

we are unable to quantify the level of approximation, to the best of knowledge, this is the best

tractable deterministic approximation of the multi-period inventory control problem to date.

(c) We study the computational performance of the static, linear and truncated linear replenish-

ment policies against the optimum history dependent policy and two dynamic programming based

heuristics, namely, the myopic policy and a history independent base-stock policy. We analyze

the impact of the solutions over realistic ranges of planing horizon, cost parameters and demand

correlations. In contrast, the computational experiment of Bertsimas and Thiele [16] is confined to

independent demands, while the experiment considered in Ben-Tal et.al. [6] does not benchmark
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against stochastic demand models. Our computational results show that even under an unrealistic

assumption that the demand distributions are available, the truncated linear replenishment policy,

together with information on the directional deviations, yield reasonably good solutions against

the optimum and give the best overall performance among tractable policies and simple dynamic

programming based heuristics.

This paper is organized as follows. In Section 2 we describe a stochastic inventory model. We

formulate our robust inventory models in Section 3 and discuss extensions in Section 4. We describe

computational results in Section 5 and conclude the paper in Section 6.

Notations: Throughout this paper, we denote a random variable with the tilde sign such as ỹ and

vectors with bold face lower case letters such as y. We use y′ to denote the transpose of vector y. Also,

denote y+ = max(y, 0), y− = max(−y, 0), and ‖y‖2 =
√∑

y2
i .

2 Stochastic Inventory Model

The stochastic inventory model involves the derivation of replenishment decisions over a discrete plan-

ning horizon consisting of a finite number of periods under stochastic demand. The demand for each

period is usually a sequence of random variables which are not necessarily identically distributed and

not necessarily independent. We consider an inventory system with T planning horizons from t = 1 to

t = T . External demands arrive at the inventory system and the system replenishes its inventory from

some central warehouse (or supplier) with ample supply. The time line of events is as follows:

1. At the beginning of the tth time period, before observing the demand, the inventory manager

places an order of xt at unit cost ct for the product to be arrived after a (fixed) order lead-time

of L periods. Orders placed at the beginning of the tth time period will arrive at the beginning of

t + Lth period. We assume that replenishment ceases at the end of the planning horizon, so that

the last order is placed in period T −L. Without loss of generality, we assume that purchase costs

for inventory are charged at the time of order. The case where purchase costs are charged at the

time of delivery can be represented by a straight-forward shift of cost indices.

2. At the beginning of each time period t, the inventory manager faces an initial net-inventory yt

and receives an order of xt−L. The demand of inventory for the period is realized at the end of

the time period. After receiving a demand of dt, the net-inventory at the end of the period is

yt + xt−L − dt.
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3. Excess inventory is carried to the next period incurring a per-unit overage (holding) cost. On the

other hand, each unit of unsatisfied demand is backlogged (carried over) to the next period with a

per-unit underage (backlogging) penalty cost. At the last period, t = T , the penalty of lost sales

can be accounted through the underage cost.

We assume a risk neutral inventory manager whose objective is to determine the dynamic ordering

quantities xt from period t = 1 to period t = T − L so as to minimize the total expected ordering,

inventory overage (holding) and underage (backlog) costs in response to the uncertain demands. Observe

that for L ≥ 1, the quantities xt−L, t = 1, . . . , L are known values. They denote orders made before

period t = 1 and are inventories in the delivery pipeline when the planning horizon starts.

We introduce the following notations:

• d̃t: stochastic exogenous demand at period t

• d̃t: a vector of random demands from period 1 to t, that is, d̃t = (d̃1, . . . , d̃t)

• xt(d̃t−1): order placed at the beginning of the tth time period after observing d̃t−1. The first

period inventory order is denoted by x1(d̃0) = x0
1

• yt(d̃t−1): net-inventory at the beginning of the tth time period

• ht: unit inventory overage (holding) cost charged on excess inventory at the end of the tth time

period

• bt: unit underage (backlog) cost charged on backlogged inventory at the end of the tth time period

• ct: unit purchase cost of inventory for orders placed at the tth time period

• St: the maximum amount that can be ordered at the tth time period.

We use xt(d̃t−1) to represent the non-anticipative replenishment policy at the beginning of period

t. That is, the replenishment decision is based solely on the observed information available at the

beginning of period t, which is given by the demand vector d̃t−1 = (d̃1, . . . , d̃t−1). Given the order

quantity xt−L(d̃t−L−1) and stochastic exogenous demand d̃t, the net-inventory at the end of the t time

period (which is also the net-inventory at start of t + 1 time period) is given by

yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t, t = 1, . . . , T. (1)

In resolving the initial boundary conditions, we adopt the following notations:
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• The initial net-inventory of the system is y1(d̃0) = y0
1.

• When L ≥ 1, the orders that are placed before the planning horizon starts are denoted by

xt(d̃t−1) = x0
t , t = 1− L, . . . , 0.

Note that Equation (1) can be written using the cumulative demand up to period t and cumulative

order received as follows:

yt+1(d̃t) = y0
1︸︷︷︸

initial inventory

+
min{L,t}∑

τ=1

x0
τ−L

︸ ︷︷ ︸
committed orders

+
t∑

τ=L+1

xτ−L(d̃τ−L−1)

︸ ︷︷ ︸
order decisions

−
t∑

τ=1

d̃τ .

︸ ︷︷ ︸
cumulative demands

(2)

Observe that positive (respectively negative) value of yt+1(d̃t) represents the total amount of inven-

tory overage (respectively underage) at the end of the period t after meeting demand. Thus, the total

expected cost, including ordering, inventory overage and underage charges is equal to

T∑

t=1

(
E

(
ctxt(d̃t−1)

)
+ E

(
ht(yt+1(d̃t))+

)
+ E

(
bt(yt+1(d̃t))−

))
.

Therefore, the multi-period inventory problem can be formulated as a T stage stochastic optimization

model as follows:

ZSTOC = min
T∑

t=1

(
E

(
ctxt(d̃t−1)

)
+ E

(
ht(yt+1(d̃t))+

)
+ E

(
bt(yt+1(d̃t))−

))
.

s.t. yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t t = 1, . . . , T

0 ≤ xt(d̃t−1) ≤ St t = 1, . . . , T − L

(3)

The aim of the stochastic optimization model is to derive a feasible replenishment policy that

minimizes the expected ordering and inventory costs. That is, we seek a sequence of action rules

that advises the inventory manager the action to take in time t as a function of demand history.

Unfortunately, the decision variables in Problem (3), xt(d̃t−1), t = 1 . . . T−L and yt(d̃t−1), t = 2 . . . T +1

are functionals, which means that Problem (3) is an optimization problem with infinite number of

variables and constraints, and hence generally intractable.

The stochastic optimization problem (3) can also be formulated as a dynamic programming problem.

For simplicity, assuming zero lead-time, the dynamic programming requires the following updates on

the value function:

Jt(yt, d1, . . . , dt−1) = min
x∈[0,St]

E
(
ctx + rt(yt + x− d̃t)+

Jt+1(yt + x− d̃t, d1, . . . , dt−1, d̃t) | d̃1 = d1, . . . , d̃t−1 = dt−1

)
,
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where rt(u) = ht max(u, 0) + bt max(−u, 0). Maintaining the value function Jt(·) is computationally

prohibitive, and hence most inventory control literatures identify conditions such that the value functions

are not dependent on past demand history, so that the state space is computationally amenable. For

instance, it is well known that when the lead-time is zero and the demands are independently distributed

across time periods, there exists base-stock levels, qt such that the following replenishment policy,

xt(d̃t−1) = min
{

max
{

qt − yt(d̃t−1), 0
}

, St

}
(4)

is optimum. Hence, instead of being a function of the entire demand history, the optimum demand

policy can be characterized by the net-inventory level as follow:

xt(yt) = min {max {qt − yt, 0} , St} .

Note that in order to obtain an optimum history independent base-stock policy for positive lead-time,

L > 0, we require some restrictions on the cost parameters. See for instance, Zipkin [44].

3 Robust Inventory Model

Stochastic inventory control problem requires full information of the demand distributions, which is

practically prohibitive. Furthermore, even if the probability distributions are known, due to compu-

tational complexity, we may not be able to obtain the optimum solution based on the risk neutral

preference. The robust optimization approach we are proposing aims to address these issues collec-

tively. As such, the modeler remains risk neutral but he/she is uncertain of the underlying probability

distributions and that computing the optimum policy is computationally prohibitive. We first relax the

assumption of full distributional knowledge and modify the representation of uncertain demands with

the aim of producing a computationally tractable model.

3.1 Factor-based Demand Model

We introduce a factor-based demand model in which the uncertain demand are affinely dependent on

zero mean random factors z̃ ∈ <N as follows:

dt(z̃) ∆= d̃t = d0
t +

N∑

k=1

dk
t z̃k, t = 1, . . . , T,

where

dk
t = 0 ∀k ≥ Nt + 1,
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and 1 ≤ N1 ≤ N2 ≤ · · · ≤ NT = N . Under a factor-based demand model, the random factors, z̃k,

k = 1, . . . , N are realized sequentially. At period t, the factors, z̃k, k = 1, . . . , Nt has already been

unfolded. In progressing to period t + 1, the new factors z̃k, k = Nt + 1, . . . , Nt+1 are made available.

Demand that is affected by random noise or shocks can be represented by the factor-based demand

model. For independently distributed demand, which is assumed in most inventory models, we have

dt(z̃) = d0
t + z̃t, t = 1, . . . , T,

in which z̃t are independently distributed. However, in many industrial contexts, demands across

periods may be correlated. In fact, many demand histories behave more like random walks over time

with frequent changes in directions and rate of growth or decline. See Johnson and Thompson [31] and

Graves [30]. In those settings, we may consider standard forecasting techniques such as an ARMA(p, q)

demand process (see Box et al. [19]) as follows:

dt(z̃) =





d0
t if t ≤ 0
p∑

j=1

φidt−j(z̃) + z̃t +
min{q,t−1}∑

j=1

θiz̃t−j otherwise,

where φ1, . . . , φp, θ1, . . . , θq are known constants. Indeed, its is easy to show by induction that dt(z̃) can

be expressed in the form of a factor-based demand model. Song and Zipkin [42] presented a world driven

demand model where the demand is Poisson with rate controlled by finite Markov states representing

different business environments. However, it may be difficult to determine exhaustively the business

states and their state transition probabilities. On the other hand, factor-based models have been used

extensively in finance for modeling returns as affine functions of external factors, in which the coefficients

of the factors can be determined statistically. In the same way, we can apply the factor-based demand

model to characterize the influence of demands with external factors such as market outlook, oil prices

and so forth. Effects of trend, seasonality, cyclic variation, and randomness can also be incorporated.

Instead of assuming full distributions on the factors, which is practically prohibitive, we adopt

a modest distributional assumption on the random factors, such as known means, supports and some

aspects of deviations. The factors may be partially characterized using the directional deviations, which

are recently introduced by Chen et al. [20].

Definition 1 (Directional deviations) Given a random variable z̃ with zero mean, the forward deviation

is defined as

σf (z̃) ∆= sup
θ>0

{√
2 ln(E(exp(θz̃)))/θ2

}
(5)
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and backward deviation is defined as

σb(z̃) ∆= sup
θ>0

{√
2 ln(E(exp(−θz̃)))/θ2

}
. (6)

Given a sequence of independent samples, we can essentially estimate the magnitude of the directional

deviations from (5) and (6). Some of the properties of the directional deviations include:

Proposition 1 (Chen et al. [20])

Let σ, p and q be respectively the standard, forward and backward deviations of a random variable, z̃

with zero mean.

(a)

p ≥ σ q ≥ σ.

If z̃ is normally distributed, then p = q = σ.

(b) For all θ ≥ 0,

P(z̃ ≥ θp) ≤ exp(−θ2/2);

P(z̃ ≤ −θq) ≤ exp(−θ2/2).

Proposition 1(a) shows that the directional deviations are no less than the standard deviation of the

underlying distribution, and under the normal distribution, these two values coincide with the stan-

dard deviation. As exemplified in Proposition 1(b), the directional deviations provide an easy bound

on the distributional tails. The advantage of using the directional deviations is the ability to cap-

ture distributional asymmetry and stochastic independence, while keeping the resultant optimization

model computationally amicable. We refer the reader to the paper by Natarajan et al. [37] for the

computational experience of using directional derivations derived from real-life data.

In this paper, we adopt the random factor model introduced by Chen and Sim [22], which encom-

passes most of the uncertainty models found in the literatures of robust optimization.

Assumption U: We assume that the uncertainties {z̃j}j=1:N are zero mean random variables, with

positive definite covariance matrix, Σ. Let W be the smallest convex set containing the support of z̃.

We denote a subset, I ⊆ {1, . . . , N}, which can be an empty set, such that z̃j , j ∈ I are stochastically

independent. Moreover, the corresponding forward and backward deviations are given by pj = σf (z̃j)

and qj = σb(z̃j) respectively for j ∈ I and that pj = qj = ∞ for j /∈ I.

The choice of the support set, W can influence the computational tractability of the problem.

Henceforth, we assume that the support set is a second order conic representable set (a.k.a conic
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quadratic representable set) proposed in Ben-Tal and Nemirovski [7], which includes polyhedral and

ellipsoidal sets. A common support set is the interval set, which is given by W = [−z, z̄], in which

z, z̄ > 0.

For notational convenience, we define the following sets:

I1
∆= {i : pj < ∞} Ī1

∆= {i : pj = ∞}
I2

∆= {i : qj < ∞} Ī2
∆= {i : qj = ∞}.

Furthermore, if pj = ∞ (respectively qj = ∞), its product with zero remains zero, that is, pj × 0 = 0

(respectively qj × 0 = 0).

3.2 Bound on E((·)+)

In the absence of full distributional information, it would be meaningless to evaluate the optimum

objective as depicted in Problem (3). Instead, we aim to minimize a good upper bound on the objective

function. Such approach of soliciting inventory decisions based on partial demand information is not

new. In the 50s, Scarf [39] considered a min-max newsvendor problem with uncertain demand d̃ given

by only its mean and standard deviations. Scarf was able to obtain solutions to the tight upper bound

of the newsvendor problem. The central idea in addressing such problem is to solicit a good upper

bound on E((·)+), which appears at the objective of the newsvendor problem and also in Problem (3).

The following result is well known:

Proposition 2 (Scarf’s upper bound [39]) Let z̃ be a random variable in [−µ,∞) with mean µ and

standard deviation σ, then for all a ≥ −µ,

E((z̃ − a)+) ≤





1
2

(
−a +

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ

.

Moreover, the bound is achievable.

Interestingly, Bertsimas and Thiele [16] used the bound of Proposition 2 to calibrate the “Budget of

Uncertainty” parameter in their robust inventory models. Unfortunately, it is generally computationally

intractable to evaluate tight probability bounds involving multivariate random variables with known

moments and support information (see Bertsimas and Popescus [17]). We adopt the bounds of Chen

and Sim [22] to evaluate the expected positive part of an affine sum of random variables under the

Assumption U.
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Definition 2 We say a function, f(z) is non-zero crossing with respect to z ∈ W if at least one of the

following conditions hold:

1. f(z) ≥ 0 ∀z ∈ W

2. f(z) ≤ 0 ∀z ∈ W.

Theorem 1 (Chen and Sim [22]) Let z̃ ∈ <N be a multivariate random variable under the Assumption

U. Then

E((y0 + y′z̃)+) ≤ π(y0, y),

where π(y0, y) is given by

π(y0,y) = min r1 + r2 + r3 + r4 + r5

s.t. y10 + max
z∈W

z′y1 ≤ r1

0 ≤ r1

max
z∈W

z′(−y2) ≤ r2

y20 ≤ r2

1
2y30 + 1

2‖(y30,Σ1/2y3)‖2 ≤ r3

infµ>0
µ
e exp

(
y40

µ + ‖u‖22
2µ2

)
≤ r4

uj ≥ pjy4j ∀j ∈ I1, y4j ≤ 0 ∀j ∈ Ī1

uj ≥ −qjy4j ∀j ∈ I2, y4j ≥ 0 ∀j ∈ Ī2

y50 + infµ>0
µ
e exp

(
− y50

µ + ‖v‖22
2µ2

)
≤ r5

vj ≥ qjy5j ∀j ∈ I2, y5j ≤ 0 ∀j ∈ Ī2

vj ≥ −pjy5j ∀j ∈ I1, y5j ≥ 0 ∀j ∈ Ī1

y10 + y20 + y30 + y40 + y50 = y0

y1 + y2 + y3 + y4 + y5 = y.

ri, yi0 ∈ <, yi ∈ <N , i = 1, . . . , 5,u, v ∈ <N

(7)

Moreover, the bound is tight if y0 + y′z is a non-zero crossing function with respect to z ∈ W. That is,

if

y0 + y′z ≥ 0 ∀z ∈ W

we have E
(
( y0 + y′z )+

)
= π(y0,y) = y0. Likewise, if

y0 + y′z ≤ 0 ∀z ∈ W,

we have E
(
( y0 + y′z )+

)
= π(y0,y) = 0.
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Remark 1: Due to the presence of the constraints, infµ>0 µ exp
(

a
µ + b2

µ2

)
≤ c, the set of constraints in

Problem (7) is not exactly second order cone representable (see Ben-Tal and Nemirovski [10]). Fortu-

nately, using a few second order cones, we can accurately approximate such constraints to a good level

of numerical precision. The interested readers can refer to Chen and Sim [22].

Remark 2: Note that the first and third constraints involving the support set, W take the form of

v0 + max
z∈W

v′z ≤ 0

or equivalently as

v0 + v′z ≤ 0 ∀z ∈ W.

Such a constraint is known as the robust counterpart whose explicit formulation under difference choices

of tractable support set,W is well discussed in Ben-Tal and Nemirovski [7, 10]. SinceW is a second order

conic representable set, the robust counterpart is also second order cone representable. For instance, if

W = [−z, z̄], the corresponding robust counterpart is representable by the following linear inequalities,

v0 + z′t + z̄′s ≤ 0

for some s, t ≥ 0 satisfying s− t = v.

Remark 3: Note that under the Assumption U, it is not necessary to provide all the information such

as the directional deviations. So, whenever such information is unavailable, we can assign an infinite

value to the corresponding parameter. For instance, suppose the factor z̃j has standard deviation, σ

and unknown directional deviations, we would set pj = qj = ∞. With more information on the random

factors, the bound of Problem (7) is never worse off.

Remark 4: In the absence of uncertainty, the non-zero crossing condition ensures that the bound is

tight. That is, y+ = E(y+) = π(y,0).

The robust model of Bertsimas and Thielle [16] uses Proposition 2. We next show that for a

univariate random variable with one-sided support, the bound of Theorem 1 is as tight.

Proposition 3 Let z̃ be a random variable in [−µ,∞) with mean µ and standard deviation σ, then for

all a ≥ −µ,

E((z̃ − a)+) ≤ π(−a, 1) =





1
2

(
−a +

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ
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Figure 1: Comparing bounds of E((z̃ − a)+)

Proof : See Appendix A.

We can further improve the bound if the distribution of the random variable z̃ is sufficiently light

tailed such that the directional deviations are close to its standard deviation, such as those of normal

and uniform distributions. Figure 1 compares the bounds of E((z̃ − a)+) in which µ = 1 and σ =

σf (z̃) = σb(z̃) = 2. Bound 1 corresponds to the bound of Proposition 2, while Bound 2 corresponds

to the bound of Theorem 1. Clearly, despite the lack of tightness results, incorporating the directional

deviations can potentially improve the bound on E((z̃− a)+). We will further demonstrate the benefits

in our computational experiments.

3.3 Tractable Replenishment Policies

Having introduced the demand uncertainty model, a suitable approximation of the replenishment policy

xt(d̃t−1) is needed to obtain a tractable formulation. That is, we seek a formulation in which the policy

can be obtained by solving a optimization problem that runs in polynomial time and scalable across

time period. We review two tractable replenishment policies, static as well as linear with respect to

the random factors of demand, which are decision rules prevalent in the context of robust optimization.

We introduce a new replenishment policy, known as the truncated linear replenishment policy, which

improves over these policies.
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Static replenishment policy

The static replenishment policy, a.k.a the open-loop policy, has order decisions not being influenced by

the random factors of demand as follows:

xt(d̃t−1) = x0
t . (8)

A tractable model under such replenishment policy is as follows:

ZSRP = min
T∑

t=1

(
ctx

0
t + htπ

(
y0

t+1, yt+1

)
+ btπ

(−y0
t+1,−yt+1

))

s.t. y0
t+1 = y0

t + x0
t−L − d0

t t = 1, . . . , T

yk
t+1 = yk

t − dk
t k = 1, . . . , N, t = 1, . . . , T

0 ≤ x0
t ≤ St t = 1, . . . , T − L,

(9)

with y0
1 being the initial net-inventory and yk

1 = 0 for all k = 1, . . . , N . For L ≥ 1, x0
t are the known

committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (8), it is evident from Equation (1) that the net-inventory level also takes an affine

structure,

yt+1(d̃t) = y0
t+1 +

N∑

k=1

yk
t+1z̃k. (10)

Using Theorem 1, we can bound the excess net-inventory at time period t, that is, E
(
(yt+1(d̃t))+

)
≤

π(y0
t+1, yt+1). Proceeding similarly for the backlog inventory gives the objective function of Problem

(9). Equating the coefficients of the constant and z̃k term of Equation (1) gives the first two sets of

constraints in Problem (9) respectively. The last set of constraints enforce the range on order quantity,

that is, non-negativity and upper limit.

Theorem 2 The expected cost of the stochastic inventory problem under the static replenishment policy,

xSRP
t (d̃t−1) = x0∗

t t = 1, . . . , T − L

in which x0∗
t , t = 1, . . . , T − L are the optimum solution of Problem (9), is at most ZSRP .

Proof : See Appendix B.
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Linear replenishment policy

A more refined replenishment policy introduced in Ben Tal et. al [6], and Chen et al. [20] is the linear

replenishment policy where the order decisions are affinely dependent on the random factors of demand,

that is,

xLRP
t (d̃t−1) = x0

t + x′tz̃, (11)

in which the vector xt = (x1
t , . . . , x

N
t ) satisfies the following non-anticipative constraints:

xk
t = 0 ∀k ≥ Nt−1 + 1. (12)

Since the order decision is made at the beginning of the tth period, the non-anticipative constraints

ensure that the linear replenishment policy is not influenced by demand factors that are unavailable up

to the beginning of the tth period. The model for the linear replenishment policy is as follows:

ZLRP = min
T∑

t=1

(
ctx

0
t + htπ

(
y0

t+1, yt+1

)
+ btπ

(−y0
t+1,−yt+1

))

s.t. yk
t+1 = yk

t + xk
t−L − dk

t k = 0, . . . , N, t = 1, . . . , T

xk
t = 0 ∀k ≥ Nt−1 + 1, t = 1, . . . , T − L

0 ≤ x0
t + x′tz ≤ St ∀z ∈ W t = 1, . . . , T − L

(13)

with y0
1 being the initial net-inventory and yk

1 = 0 for all k = 1, . . . , N . For L ≥ 1, x0
t are the known

committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (11), the net-inventory level has a structure similar to Equation (10). The objective

function and the first set of constraints are hence obtained in similar manner as Problem (9). The last

set of constraints ensures that the linear replenishment policy is confined within the ordering capacity

for all possible states of random factors. Observe that under the assumption that W is tractable conic

representable uncertainty set, the robust counterpart

0 ≤ x0
t + x′tz ≤ St ∀z ∈ W

can be represented concisely as tractable conic constraints. Therefore, Problem (13) is essentially a

tractable conic optimization problem.

Theorem 3 The expected cost of the stochastic inventory problem under the linear replenishment policy,

xLRP
t (d̃t−1) = x0∗

t + x∗t
′z̃ t = 1, . . . , T − L

in which xk∗
t , k = 0, . . . , N, t = 1, . . . , T −L are the optimum solution of Problem (13), is at most ZLRP .

Moreover, ZLRP ≤ ZSRP .
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Proof : See Appendix C.

Truncated linear replenishment policy

Chen et al. [21] studied the weakness of linear decision rules (or policy) and showed that carefully chosen

piecewise linear decision rules can strengthen the approximation of stochastic optimization problems.

Indeed, a base-stock policy such as Equation (4), can be shown by induction to be piecewise linear with

respect to the historical demands. In the same spirit, we introduce a new piecewise linear replenishment

policy, which we call the truncated linear replenishment policy. It takes the following form:

xTLRP
t (d̃t−1) = min

{
max

{
x0

t + x′tz̃, 0
}

, St

}
, (14)

where the vector xt = (x1
t , . . . , x

N
t ) satisfies the following non-anticipative constraints:

xk
t = 0 ∀k ≥ Nt−1 + 1. (15)

Note that the truncated linear replenishment policy is piecewise linear and directly satisfies the ordering

range constraint as follows:

0 ≤ xTLRP
t (d̃t−1) ≤ St.

Before introducing the model, we present the following bound on a nested sum of expected positive

values of random variables:

Theorem 4 Let z̃ ∈ <N be a multivariate random variable under Assumption U. Then

E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)
≤ η((y0, y), (x0

1,x1), . . . , (x0
p, xp)) (16)

where

η((y0,y), (x0
1, x1), . . . , (x0

p,xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑

i=1

w0
i , y +

p∑

i=1

wi

)
+

p∑

i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i , xi −wi)
)
}

.

Moreover, the bound is tight if y0 + y′z +
∑p

i=1

(
x0

i + xi
′z

)+ and x0
i + xi

′z, i = 1, . . . , p are non-zero

crossing functions with respect to z ∈ W.

Proof : See Appendix D.

Remark : It is easy to establish that

E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)
≤ E

((
y0 + y′z̃

)+
)

+
p∑

i=1

E
((

x0
i + xi

′z̃
)+

)

≤ π
(
y0,y

)
+

p∑

i=1

π(x0
i ,xi).
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However, this is a weaker bound, considering the fact that

η((y0, y), (x0
1, x1), . . . , (x0

p, xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑

i=1

w0
i ,y +

p∑

i=1

wi

)
+

p∑

i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i , xi −wi)
)
}

≤ π
(
y0,y

)
+

p∑

i=1

π(x0
i ,xi).

The model for the truncated linear replenishment policy can be formulated as follows:

ZTLRP = min
T∑

t=1

ctπ(x0
t , xt) +

L∑

t=1

(
htπ(y0

t+1, yt+1) + btπ(−y0
t+1,−yt+1)

)
+

T∑

t=L+1

(
htη

(
(y0

t+1, yt+1), (−x0
1,−x1), . . . , (−x0

t−L,−xt−L)
)
+

btη
(
(−y0

t+1,−yt+1), (x0
1 − St, x1), . . . , (x0

t−L − St,xt−L)
))

s.t. yk
t+1 = yk

t + xk
t−L − dk

t k = 0, . . . , N, t = 1, . . . , T

xk
t = 0 ∀k ≥ Nt−1 + 1, t = 1, . . . , T − L

(17)

with y0
1 being the initial net-inventory and yk

1 = 0 for all k = 1, . . . , N . For L ≥ 1, x0
t are the known

committed orders made at time periods t = 1− L, . . . , 0.

Under Equation (14), the net-inventory levels, yt+1(d̃t) are no longer affinely dependent on z̃. The

terms at the objective function account for the costs associated with excess net-inventory and backlog,

taking into considerations of the piecewise linear policy. It can be shown that the truncated linear

replenishment policy dominates over the linear replenishment policy as follows:

Theorem 5 The expected cost of the stochastic inventory problem under the truncated linear replen-

ishment policy,

xTLRP
t (d̃t−1) = min

{
max

{
x0∗

t + x∗t
′z̃, 0

}
, St

}
t = 1, . . . , T − L

in which xk∗
t , k = 0, . . . , N , t = 1, . . . , T − L are the optimum solution of Problem (17), is at most

ZTLRP . Moreover, ZTLRP ≤ ZLRP .

Proof : See Appendix E.

Remark : For the case of unbounded ordering quantity, that is, St = ∞, the truncated linear replen-

ishment policy becomes,

xTLRP
t (d̃t−1) = max

{
x0

t + x′tz̃, 0
}

,
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and we can simplify Problem (17) as follows:

ZTLRP = min
T∑

t=1

ctπ(x0
t ,xt) +

L∑

t=1

(
htπ(y0

t+1,yt+1) + btπ(−y0
t+1,−yt+1)

)
+

T∑

t=L+1

(
htη

(
(y0

t+1,yt+1), (−x0
1,−x1), . . . , (−x0

t−L,−xt−L)
)
+

btπ
(−y0

t+1,−yt+1

))

s.t. yk
t+1 = yk

t + xk
t−L − dk

t k = 0, . . . , N, t = 1, . . . , T

xk
t = 0 ∀k ≥ Nt−1 + 1, t = 1, . . . , T − L.

(18)

We have shown that ZSTOC ≤ ZTLRP ≤ ZLRP ≤ ZSRP . The linear replenishment policy improves

over the static replenishment policy because it is able to adapt to demand history. Since setting the

coefficient of the random factors xt to be zero in Problem (13) gives Problem (9), it is evident from

Equation (11) that the linear replenishment policy subsumes the static replenishment policy. Observe

that in Problem (13) from which the solution of the linear replenishment policy is derived, the set of

constraints restricting the ordering quantity,

0 ≤ x0
t + x′tz ≤ St ∀z ∈ W t = 1, . . . , T − L

can be over constraining on the decision policy. For the case when the uncertainty set W is unbounded,

such as W = {z : z ≥ −z}, the decision variables xt will be driven to zeros. This means that the

order decision of Problem (13) degenerates to a static replenishment policy, losing the ability to adapt

to the history of random factors. The truncated linear replenishment policy, on the other hand, avoids

this issue. Moreover, we also note that in Problem (13), information of mean, variance, directional

deviations are not utilized at the set of constraints restricting the ordering quantity. In contrast, the

truncation linear replenishment policy is defined to satisfy the ordering constraint. Hence, the robust

model of Problem (18) does not have the explicit constraints on ordering levels and is able to utilize

the additional information via the π and η functions for improving the bound.

It should be noted that establishing the bounds does not necessarily imply the superiority of trun-

cated linear replenishment policy over static and linear ones. Nevertheless, this behavior is observed

throughout our computational studies.

4 Other Extensions

In this section, we discuss some extension to the basic model.
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4.1 Fixed Ordering Cost

Unfortunately, with fixed ordering cost, the inventory replenishment problem becomes nonconvex and

is much harder to address. Using the idea of Bertsimas and Thiele [16], we can formulate a restricted

problem where the time period in which the orders that can be placed is determined at the start of the

planning horizon as follows:

ZSTOCF = min
T∑

t=1

(
E

(
ctxt(d̃t−1) + Ktrt + ht(yt+1(d̃t))+

)
+ E

(
bt(yt+1(d̃t))−

))
.

s.t. yt+1(d̃t) = yt(d̃t−1) + xt−L(d̃t−L−1)− d̃t t = 1, . . . , T

0 ≤ xt(d̃t−1) ≤ Strt t = 1, . . . , T − L

rt ∈ {0, 1} t = 1, . . . , T − L.

(19)

In Problem (19), inventory can only be replenished at period where the corresponding binary variable

rt takes the value of one. We can then incorporate the tractable replenishment policies developed in

the previous section. The resulting optimization model is a conic integer program, which is already

addressed in commercial solvers such as CPLEX 10.1. Admittedly, algorithms for solving conic integer

program are still at their infancy. On the theoretical front, Atamtürk and Narayanan [2] recently

developed general-purpose conic mixed-integer rounding cuts based on polyhedral conic substructures

of second-order conic sets, which can be readily incorporated in branch-and-bound algorithms that solve

continuous conic optimization problems at the nodes of the search tree. Their preliminary computational

experiments suggest that the new cuts are quite effective in reducing the integrality gap of continuous

relaxations of conic mixed-integer programs.

4.2 Supply Chain Networks

The models we have presented in the preceding section can also be extended to more complex supply

chain networks such as the series system, or more generally the tree network. These are multi-stage

system where goods transit from one stage to the next stage, each time moving closer to their final

destination. In many supply chains, the main storage hubs, or the sources of the network, receive

their supplies from outside manufacturing plants in a tree-like hierarchical structure and send items

throughout the network until they finally reach the stores, or the sinks of the network. The extension

to tree structure uses the concept of echelon inventory and closely follows Bertsimas and Thiele [16].

We refer interested readers to their paper.
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5 Computational Studies

We studied the computational performance of the static, linear and truncated linear replenishment

policies against the optimum history dependent policy and two dynamic programming based heuristics,

namely, the myopic policy and a history independent base-stock policy. We also analyzed the impact

of the solutions over realistic ranges of planing horizon, cost parameters and demand correlations. To

benchmark the performance, we have to assume knowledge of the underlying the distribution. We did

not conduct experiments to test robustness of policies against distributional ambiguity such as those

studied in Bertsimas and Thiele [16] and Chen and Sim [22]. Instead, we have focused on how good

or bad the tractable replenishment policies perform against the optimum policy obtained by dynamic

programming, as well as against common heuristics used in inventory control.

We are aware of the folding horizon implementation, where the replenishment policy can be en-

hanced by solving repeatedly with updated demand information. For instance, the static replenishment

policy proposed by Bertsimas and Thiele [16] has a base-stock structure under the folding horizon

implementation. Since more accurate information is used each time the model is solved, the results

will only improve. Unfortunately, due to the computational intensiveness of the evaluation, we have

excluded folding horizon implementations from our computational studies. For instance, under the

folding horizon implementation, it would typically take about four minutes to evaluate the sample path

of a ten period model based on the truncated linear replenishment policy. Through sizing experiments,

we envisaged that it would require about 100,000 sample paths to reduce the standard error of the

estimated objective value to less than 1%, which amounts to about 280 days of computational time.

5.1 Experimental Setup

The demand process we considered is motivated by Graves [30] as follows:

dt(z̃) = z̃t + αz̃t−1 + αz̃t−2 + · · ·+ αz̃1 + µ, (20)

where the mean and shocks factors z̃t are independently uniform distributed random variables in [−z̄, z̄],

and have standard deviations and directional deviations numerically close to 0.58z̄.

Observe that the demand process of Equation (20) for t ≥ 2 can be expressed recursively as

dt(z̃) = dt−1(z̃)− (1− α)z̃t−1 + z̃t. (21)
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Hence, this demand process is an integrated moving average (IMA) process of order (0, 1, 1). See also

Box et al. [19]. Note that given µ̄ = dt−1(z̃)− (1− α)z̃t−1 at time period t, the distribution of dt(z̃) is

uniform in [−z̄ + µ̄, z̄ + µ̄].

A range of demand processes can be modeled by varying α. With α = 0, the demand process follows

an i.i.d process of uniformly distributed random variables. As α grows, the demand process becomes

non-stationary and less stable with increasing variance. When α = 1, the demand process is a random

walk on a continuous state space.

We considered problems with T = 5, 10, 20 and 30, and selected parameters so that the demand,

dt(z̃) is nonnegative for all α ∈ [0, 1]. The lead-time L is zero, St = 260, unit ordering cost ct = 0.1,

and unit holding cost ht = 0.02 for all periods t = 1, . . . , T . In view of the long computational time for

dynamic programming, especially for T = 20 and 30, we have used more manageable parameters for

the demand process as follows:

• For T = 5, we used µ = 200, and z̄ = 20.

• For T = 10, we used µ = 200, and z̄ = 10.

• For T = 20, we used µ = 240, and z̄ = 6.

• For T = 30, we used µ = 240, and z̄ = 4.

Since unfulfilled demands are lost at the end of T , we set a relatively high backlog cost, bT = 10b1,

to heavily penalize unmet demand at the last period throughout our experiments. For notational

convenience, we use b and h to denote the backlog and holding cost from t = 1 . . . T − 1. In our study,

we varied α from 0 to 1 in steps of 0.25 and set b/h to range from 10 to 50.

We benchmarked our solutions against solution based on dynamic programming, where the optimum

replenishment policy can be characterized by the following backward recursion:

Jt(yt, dt−1, zt−1) = min
0≤x≤St

E
(
ctx + rt(yt + x− δt(dt−1, zt−1, z̃t))+

Jt+1(yt + x− δt(dt−1, zt−1, z̃t), δt(dt−1, zt−1, z̃t), z̃t)
)

where δt(dt−1, zt−1, z̃t) = dt−1 − (1 − α)zt−1 + z̃t and rt(u) = ht max(u, 0) + bt max(−u, 0). By letting

vt = dt − (1− α)zt, we have equivalently

Jt(yt, vt−1) = min
0≤x≤St

E
(
ctx + rt(yt + x− vt−1 − z̃t) + Jt+1(yt + x− vt−1 − z̃t, vt−1 + αz̃t)

)
,
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which reduces the state space by one dimension. The optimum replenishment policy at time t is a

function of the current net-inventory yt and vt−1 as follows:

xOPT
t (yt, vt−1) = arg min

0≤x≤St

E
(
ctx + rt(yt + x− vt−1 − z̃t) + Jt+1(yt + x− vt−1 − z̃t, vt−1 + αz̃t)

)
.

In our implementation, we discretized the value functions uniformly and used linear interpolations

for evaluating the intermediate points. The underlying expectations were computed using the well-

known Simpson’s rule of numerical integration. To obtain a near optimum policy within reasonable

time, we adjusted the level of discretization such that when the discretization is increased by two, the

improvement in objective value is less than 1%.

We also considered two heuristics. The first being a history independent base-stock policy (BSP),

where we computed the replenishment policy recursively by ignoring the dependency of previous de-

mands as follows:

JBSP
t (yt) = min

0≤x≤St

Ed̃t

(
ctx + rt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
,

where d̃t = z̃t + αz̃t−1 + αz̃t−2 + · · ·+ αz̃1 + µ. The replenishment policy is given by

xBSP
t (yt) = arg min

0≤x≤St

Ed̃t

(
ctx + rt(yt + x− d̃t) + JBSP

t+1 (yt + x− d̃t)
)
.

Under capacity limit on order quantities, the modified history independent base-stock policy is optimum

if the demands are independently distributed, which occurs only when α = 0. See Federgruen and

Zipkin [25]. Note that when α > 0, evaluating the expectation exactly involves multi-dimensional

integration, which can be computationally prohibitive. Therefore, at every dynamic programming

recursion, we computed the value functions approximately using sampling approximations from 500

instances of demand realizations instead.

The other heuristic we considered is an adaptive myopic policy (MP), where the replenishment level

is derived by minimizing the following one-period expected cost as described below:

xMP
t (yt, vt−1) = arg min

0≤x≤St

E
(
ctx + rt(yt + x− vt−1 − z̃t)

)
.

Under the uniform distribution, the myopic policy can be obtained using the critical fractile as follows:

xMP
t (yt, vt−1) = min

{(
vt−1 − z̄ + 2z̄

(
1− ct + ht

bt + ht

)
− yt

)+

, St

}
.

In contrast with the optimum dynamic programming recursion, the adaptive myopic policy optimizes

only the current period expected cost and ignores all subsequent costs.
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After obtaining the policies, we compared them using 100, 000 simulated inventory runs and reported

the sample means over all the runs. The results for the T = 5, 10, 20 and 30 problems solved are given in

Table 1, Table 2, Table 3 and Table 4 respectively. The robust policies were obtained using the bounds of

Theorem 1 and Theorem 4 where the support, covariance, directional deviations associated with random

factors are specified. In the tables, we have used TLRP, LRP, SRP, BSP, MP to denote the sample

mean of the expected cost under the simulated runs when the replenishment policies are the truncated

linear replenishment policy, linear replenishment policy, static replenishment policy, history independent

base-stock policy and adaptive myopic policy respectively. Correspondingly, we used OPT to denote

the values derived from the optimum policy. For convenience, we used these abbreviations to denote

the respective policies throughout this section. We also provided in the parenthesis, the performance of

the corresponding policy with respect to the optimum value. For example, the performance of TLRP

given in parenthesis shows the value of TLRP/OPT. A value of 1.05 hence shows that the deviation

from OPT is 5%. We also reported the model objective values for the robust models as ZTLRP , ZLRP

and ZSRP to four significant places. Throughout the tables, the sample errors of the mean are less than

1%, and the sample means are shown to three significant places.

5.2 Comparison of Policies

In all the cases tested, TLRP deviates from the optimum answer by not more than 7%, whereas LRP

is observed to deviate by as much as 29%, SRP by as much as 48%, MP by as much as 26%, and BSP

by as much as 20% from OPT.

For α = 0, TLRP and LRP perform well, coming within 1% from OPT. We observed that when

α is small, the model objective values of TLRP and LRP, ZTLRP , ZLRP , come near to the simulated

inventory runs, indicating the closeness of the bound. MP and BSP perform reasonably well for α ≤ 0.5

with deviation of not more than 10%. However, for large α, the deviation can exceed 20%. We observed

that TLRP is never worst off against LRP, SRP, and outperforms BSP and MP in most of the cases.

Moreover, TLRP has the sharpest lead against LRP, SRP and MP when the α is high. It is also

interesting to know that when α = 1, the bounds of LRP and SRP are rather close, while TLRP has

much better performance.

Overall, the out-performance of TLRP over the rest of the non-optimum policies can be as high as

14%. In relatively few cases, BSP and MP may outperform TLRP. However, the margins do not exceed

1%. The results suggest that TLRP has the best overall performance.
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Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 108(1) 108(1) 121(1.1) 115(1.07) 107(1) 108 108.0 108.0 120.8

30 108(1) 108(1) 124(1.13) 110(1.02) 108(1) 108 108.0 108.0 124.4

50 108(1) 108(1) 126(1.14) 109(1.01) 108(1) 108 108.0 108.0 125.8

α = 0.25

10 108(1.01) 109(1.01) 130(1.18) 116(1.08) 109(1.01) 107 108.3 109.1 130.3

30 108(1) 109(1.01) 136(1.22) 111(1.03) 110(1.02) 108 108.6 109.2 135.5

50 108(1) 109(1.01) 138(1.24) 110(1.02) 110(1.02) 108 108.8 109.2 137.6

α = 0.50

10 110(1.02) 118(1.06) 141(1.25) 119(1.1) 112(1.04) 108 111.2 117.7 140.5

30 111(1.02) 125(1.1) 148(1.31) 114(1.05) 115(1.06) 109 114.3 125.0 147.5

50 112(1.03) 130(1.12) 150(1.33) 113(1.04) 117(1.07) 109 116.7 129.6 150.5

α = 0.75

10 113(1.03) 133(1.14) 151(1.31) 126(1.15) 117(1.07) 110 119.0 133.3 151.1

30 118(1.05) 153(1.22) 163(1.35) 125(1.12) 124(1.1) 112 131.9 152.5 162.9

50 122(1.06) 166(1.25) 173(1.34) 130(1.14) 130(1.14) 114 142.7 166.2 172.7

α = 1

10 118(1.04) 152(1.21) 163(1.35) 137(1.21) 126(1.12) 113 132.3 152.3 163.3

30 131(1.06) 191(1.28) 193(1.31) 151(1.22) 145(1.18) 123 164.8 191.0 193.3

50 140(1.06) 223(1.28) 223(1.29) 168(1.28) 158(1.2) 132 195.2 222.9 223.3

Table 1: Performance of truncated linear replenishment policy T = 5
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Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 206(1) 206(1) 220(1.06) 214(1.04) 206(1) 206 206.0 206.0 220.2

30 206(1) 206(1) 224(1.08) 209(1.01) 206(1) 206 206.0 206.0 223.8

50 206(1) 206(1) 225(1.08) 208(1.01) 206(1) 206 206.0 206.0 225.3

α = 0.25

10 206(1) 206(1) 240(1.14) 214(1.04) 207(1.01) 206 206.0 206.1 239.5

30 206(1) 206(1) 247(1.18) 209(1.01) 208(1.01) 206 206.0 206.1 246.7

50 206(1) 206(1) 250(1.19) 208(1.01) 209(1.02) 206 206.0 206.1 249.7

α = 0.5

10 206(1) 213(1.03) 260(1.23) 214(1.04) 210(1.02) 206 206.3 213.0 260.0

30 206(1) 215(1.04) 271(1.28) 209(1.01) 212(1.03) 206 207.0 215.1 270.9

50 206(1) 216(1.04) 275(1.3) 208(1.01) 214(1.04) 206 207.5 216.0 275.5

α = 0.75

10 207(1.01) 232(1.1) 281(1.31) 215(1.04) 214(1.04) 206 210.5 231.6 280.8

30 211(1.02) 242(1.14) 296(1.38) 211(1.02) 218(1.05) 207 215.4 241.9 295.6

50 213(1.03) 247(1.16) 302(1.41) 211(1.02) 221(1.07) 207 218.2 247.4 301.8

α = 1

10 213(1.02) 257(1.18) 302(1.39) 220(1.06) 221(1.06) 208 220.6 257.4 301.8

30 222(1.05) 281(1.25) 322(1.46) 222(1.05) 231(1.1) 210 235.5 281.1 321.7

50 228(1.07) 296(1.29) 331(1.48) 229(1.08) 240(1.13) 212 245 296.0 331.5

Table 2: Performance of truncated linear replenishment policy T = 10
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Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 486(1) 486(1) 506(1.04) 496(1.02) 486(1) 486 486.0 486.0 506.3

30 486(1) 486(1) 511(1.05) 489(1.01) 486(1) 486 486.0 486.0 511.2

50 486(1) 486(1) 513(1.05) 488(1) 486(1) 486 486.0 486.0 513.2

α = 0.25

10 488(1) 520(1.06) 556(1.13) 497(1.02) 489(1.01) 486 490.7 520.0 556.1

30 490(1.01) 532(1.08) 570(1.15) 491(1.01) 491(1.01) 487 495.7 532.0 570.3

50 492(1.01) 538(1.09) 576(1.17) 490(1.01) 493(1.01) 487 499.0 537.9 576.4

α = 0.50

10 507(1.02) 588(1.14) 609(1.19) 515(1.04) 507(1.02) 496 528.0 587.7 609.3

30 534(1.05) 636(1.17) 643(1.21) 536(1.05) 536(1.05) 511 569.4 635.9 642.5

50 550(1.05) 667(1.19) 668(1.2) 564(1.08) 562(1.08) 522 600.0 667.3 667.9

α = 0.75

10 549(1.04) 674(1.18) 677(1.2) 562(1.07) 552(1.05) 527 601.4 673.7 677.1

30 620(1.05) 818(1.17) 818(1.17) 670(1.14) 654(1.11) 590 754.2 817.8 817.8

50 686(1.05) 959(1.15) 959(1.15) 788(1.21) 756(1.16) 652 898.2 958.5 958.5

α = 1

10 604(1.04) 780(1.19) 780(1.19) 631(1.09) 614(1.06) 578 708.0 780.1 780.1

30 773(1.05) 1120(1.14) 1120(1.14) 876(1.19) 828(1.12) 739 1057 1118 1119

50 935(1.04) 1460(1.11) 1460(1.11) 1130(1.25) 1040(1.15) 899 1398 1457 1457

Table 3: Performance of truncated linear replenishment policy T = 20
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Simulated Inventory Runs Objective Value

b/h TLRP LRP SRP MP BSP OPT ZTLRP ZLRP ZSRP

α = 0

10 726(1) 726(1) 749(1.03) 736(1.01) 726(1) 725 725.6 725.6 748.9

30 726(1) 726(1) 754(1.03) 729(1) 727(1) 726 725.6 725.6 754.4

50 726(1) 726(1) 757(1.04) 728(1) 729(1) 726 725.6 725.6 756.7

α = 0.25

10 726(1) 766(1.05) 830(1.12) 736(1.01) 729(1) 725 726.8 765.6 829.6

30 727(1) 778(1.06) 850(1.15) 729(1) 731(1.01) 726 728.5 777.7 850.4

50 727(1) 783(1.07) 860(1.17) 728(1) 732(1.01) 726 729.7 783.3 859.2

α = 0.50

10 738(1.01) 862(1.14) 913(1.21) 746(1.02) 742(1.01) 732 755.7 861.6 913.4

30 762(1.03) 909(1.18) 953(1.25) 757(1.02) 763(1.03) 743 792.5 908.6 952.7

50 778(1.04) 936(1.19) 972(1.26) 767(1.03) 778(1.04) 750 815.6 935.6 972.0

α = 0.75

10 787(1.03) 976(1.21) 1000(1.26) 789(1.03) 786(1.03) 763 840.3 976.1 1004

30 862(1.06) 1100(1.24) 1100(1.25) 886(1.09) 888(1.09) 816 963.8 1102 1103

50 902(1.06) 1190(1.23) 1190(1.23) 974(1.15) 970(1.14) 849 1064 1194 1194

α = 1

10 857(1.05) 1110(1.24) 1120(1.26) 868(1.06) 863(1.06) 818 965.4 1115 1119

30 1020(1.06) 1412(1.21) 1412(1.21) 1119(1.17) 1100(1.15) 957 1286 1412 1412

50 1150(1.06) 1700(1.18) 1700(1.18) 1370(1.26) 1310(1.2) 1090 1587 1704 1704

Table 4: Performance of truncated linear replenishment policy T = 30
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Simulated Inventory Runs Objective Value

α b/h TLRP with TLRP without OPT ZTLRP with ZTLRP without

directional dev. directional dev. directional dev. directional dev.

0 10 108(1.01) 108(1.01) 107 108.0 108.0

50 108(1) 108(1) 108 108.0 180.0

0.5 10 110(1.02) 110(1.02) 108 111.2 122.0

50 112(1.02) 113(1.03) 109 116.7 175.0

1 10 118(1.04) 122(1.07) 113 132.3 159.4

50 140(1.06) 163(1.24) 132 195.2 347.1

Table 5: Performance of truncated linear replenishment policy T = 5 with and without directional

deviations

5.3 Influence of Directional Deviations

Table 5 shows a comparison of the TLRP with and without information on the directional deviations.

In the latter case, the robust policies were obtained using the bound of Theorem 1 with information

only on the support and covariance associated with the random factors. When α = 0, information on

directional deviations has little impact on the model objective. It is observed that when α is high, the

directional deviations can significantly improve the performance of TLRP.

5.4 Effects of Demand Variability

We also investigated the influence of demand variability on the performance of the best robust policy,

namely, TLRP. Shown in Table 6 are results of TLRP for the T = 5 model, with b/h of 50, for α = 0,

α = 0.25, α = 0.5 and various degree of variability, as reported by z̄, the half range of the random

factor. It is observed that the bound of ZTLRP degrades significantly as demand variability increases.

However, the impact on the performance against the optimum policy is marginal.

5.5 Analysis of Policies

Although the robust models appear to be complex, implementing the policy derived from the model is

extremely easy. The truncated linear replenishment policy is computed simply by taking an affine sum

of random factors using weights given by the TLRP model solution and then restricting the range of
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Simulated Inventory Runs Objective Value

α z̄ TLRP OPT ZTLRP

10 104(1) 104 104.0

20 108(1) 108 108.0

0 30 112(1) 112 112.0

40 125(1.03) 118 131.8

50 136(1.04) 131 161.3

10 102(1) 102 102.0

20 108(1) 108 108.8

0.25 30 119(1.04) 114 128.9

40 142(1.05) 135 190.7

50 195(1.04) 187 306.4

10 104(1) 104 104.0

0.5 20 112(1.03) 132 116.7

30 139(1.06) 131 187.9

Table 6: Performance of truncated linear replenishment policy T = 5 with various demand range
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t zt dt xTRLP
t yt+1

1 13.3 213.3 260.0 46.7

2 6.2 212.9 214.5 48.4

3 14.5 224.2 224.8 48.9

4 -24.1 192.9 249.6 105.6

5 -32.3 172.7 139.5 72.5

Table 7: A sample path of the truncated linear replenishment policy

the order quantity. For example, a sample problem where α = 0.5 has the following model solution:



x0
1

x0
2

x0
3

x0
4

x0
5




=




260.00

191.93

218.29

243.57

126.31







x′1

x′2

x′3

x′4

x′5




=




0 0 0 0 0

0.25 0 0 0 0

1.7 0 0 0 0

0 1.04 0 0 0

1.29 1.44 1.6 1.5 0




Table 7 shows the sample path, constructed using weights from the model solution, and then applying

the relevant capacity constraints,

xTLRP
i (z) = min{(x0

i + x′iz)+, 260}.

In the above example, the inventory manager would order a quantity of 260, 215, 225, 250 and 140 for

periods 1 to 5 respectively.

Ben Tal et. al. [6] showed that the linear replenishment policy is equivalent to a history independent

base-stock if and only if it exhibits Markovian behavior and takes the form xt(d̃t−1) = x0
t + z̃t−1. The

truncated linear replenishment policy has a different structure and in general, we are unable to show

the connection with a base-stock structure. When the demands are independent, that is, α = 0, it is

observed that TLRP exhibits Markovian behavior for most input parameters. There are also instances

that LRP is Markovian while TLRP is not. For example, for T = 20, α = 0, b/h = 40, z̄ = 20, TLRP and

LRP are the same and having a Markovian structure. See Table 8. However, when z̄ = 40, the TLRP

and LRP policies presented in Table 9 and Table 10 respectively, show a difference in the structure. For

the case of correlated demands, we did not observe any Markovian structure in our experiments.
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


x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10




=




240

220

220

220

220

220

220

220

220

220







x′1

x′2

x′3

x′4

x′5

x′6

x′7

x′8

x′9

x′10




=




0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0




Table 8: TLRP and LRP for α = 0, T = 10, b/h = 40, z̄ = 20, St = 240




x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10




=




240.0

232.9

229.9

227.2

225.8

224.9

224.4

227.5

228.2

229.7







x′1

x′2

x′3

x′4

x′5

x′6

x′7

x′8

x′9

x′10




=




0 0 0 0 0 0 0 0 0 0

0.18 0 0 0 0 0 0 0 0 0

0.04 0.21 0 0 0 0 0 0 0 0

0.03 0.03 0.25 0 0 0 0 0 0 0

0.03 0.03 0.03 0.28 0 0 0 0 0 0

0.02 0.02 0.02 0.02 0.30 0 0 0 0 0

0.02 0.02 0.02 0.02 0.02 0.31 0 0 0 0

0 0 0 0 0 0 0.31 0 0 0

0 0 0 0 0 0 0 0.30 0 0

0 0 0 0 0 0 0 0 0.26 0




Table 9: TLRP for α = 0, T = 10, b/h = 40, z̄ = 40, St = 240
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


x0
1

x0
2

x0
3

x0
4

x0
5

x0
6

x0
7

x0
8

x0
9

x0
10




=




240.0

240.0

240.0

240.0

229.9

228.6

227.9

227.3

229.3

240.0







x′1

x′2

x′3

x′4

x′5

x′6

x′7

x′8

x′9

x′10




=




0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




Table 10: LRP for α = 0, T = 10, b/h = 40, z̄ = 40, St = 240

5.6 Computational Time

We formulated the robust models using an in-house developed software, PROF (Platform for Robust

Optimization Formulation). The Matlab based software is essentially a algebraic modeling language

for robust optimization that contains reusable functions for modeling multi-period robust optimization

using decision rules. After formulating the model, it calls upon a commercial SOCP solver, MOSEK 5.0

for solution. We have implemented bounds for π(·) of Theorem 1 and η(·) of Theorem 4. The sample

formulation of Problem (17) provided in Appendix F shows the ease of formulating the TLRP model

using the software. The size of the problem we considered is presented in Table 11. Our computation

was carried out on a 2.4GHz desktop with 2Mb memory. The computational time depends on the

number of periods. It typically takes less than 0.3 seconds to solve the TLRP model for T = 5. For

T = 10, 20 and 30, the times taken were 3 seconds, 30 seconds and 3 minutes respectively, suggesting

that the computational time scales reasonably well with respect to the size of the problem. Moreover,

the time needed for computation does not depend on the replenishment lead time, demand variability,

correlations, among others. On the other hand, much of the computational effort lies in solving the

optimum history dependent policy using dynamic programming. In the experiments, we have customized

and optimized the dynamic programming algorithm so that we can reduce the computational time to

less than three hours. For instance, we implemented the Golden-section search method and exploited

the fact that vt = µ + αz̃1 + · · ·+ αz̃t ∈ [µ− tαz, µ + tαz̄] to reduce the size of the state space. Table

12 compares the computational times of the TLRP model against the optimum dynamic programming
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model.

6 Conclusions

In this paper, we propose a robust optimization approach to address a multi-period, inventory control

problem under ambiguous demands. Interestingly, even though the best robust policy does not neces-

sarily have a base-stock structure, our computational studies suggest that it can perform better than

simple heuristics derived from dynamic programming. Perhaps against popular beliefs, the structural

behavior of an optimum policy derived from a simplified model may not necessarily lead to better

inventory control in practice.
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A Proof of Proposition 3

Proof : The bound E((z̃ − a)+) ≤ π(−a, 1) follows directly from Theorem 1. Since the bound of

Proposition 2 is tight, it suffices to show

π(−a, 1) ≤





1
2

(
−a +

√
σ2 + a2

)
if a ≥ σ2−µ2

2µ

−a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
if a < σ2−µ2

2µ

With z = µ and p = q = z̄ = ∞, we first simplify the bound as follows:

π(y0, y) = min r1 + r2 + r3

s.t. y10 + t1µ ≤ r1

0 ≤ r1

−t1 = y11

t1 ≥ 0

h1µ ≤ r2

y20 ≤ r2

h1 = y21

h1 ≥ 0
1
2y30 + 1

2

√
y2
30 + σ2y2

31 ≤ r3

y10 + y20 + y30 = −a

y11 + y21 + y31 = 1

= min (y10 − y11µ)+ + max{y21µ, y20}+ 1
2y30 + 1

2

√
y2
30 + σ2y2

31

s.t. y11 ≤ 0

y21 ≥ 0

y10 + y20 + y30 = −a

y11 + y21 + y31 = 1.

(22)

Clearly, with y10 = y20 = 0, y30 = −a, y11 = y21 = 0 and y31 = 1, we see that π(y0,y) ≤ −1
2a +

1
2

√
a2 + σ2. Now for a < σ2−µ2

2µ , we let y10 = y11 = 0,

y20 = µσ2−µ2−2µa
µ2+σ2 ,

y21 = σ2−µ2−2µa
µ2+σ2 ≥ 0,

y30 = (µ + a)µ2−σ2

µ2+σ2 ,

y31 = 2µ µ+a
µ2+σ2 .
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which are feasible in Problem (22). Hence,

π(−a, 1) ≤ (y10 − y11µ)+ + max{y21µ, y20}+ 1
2y30 + 1

2

√
y2
30 + σ2y2

31

= −a− 1
2
(µ + a)

µ2 − σ2

µ2 + σ2
+

1
2

√
(a + µ)2︸ ︷︷ ︸
=a+µ

= −a
µ2

µ2 + σ2
+ µ

σ2

µ2 + σ2
.

B Proof of Theorem 2

Proof : Under the static replenishment policy and using the factor-based demand model, the net-

inventory at the end of period t is given by

ySRP
t+1 (d̃t) = y0

1 +
min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

xSRP
τ−L (d̃τ−L−1)−

t∑

τ=1

dτ (z̃)

= y0
1 +

min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

x0∗
τ−L −

t∑

τ=1

d0
τ −

t∑

τ=1

N∑

k=1

dk
τ z̃k

= y0
1 +

min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

x0∗
τ−L −

t∑

τ=1

d0
τ

︸ ︷︷ ︸
=y0∗

t+1

+
N∑

k=1

(
t∑

τ=1

(−dk
τ )

)

︸ ︷︷ ︸
=yk∗

t+1

z̃k

= y0∗
t+1 +

N∑

τ=1

yk∗
t+1z̃k

where yk∗
t+1 k = 0, . . . , N , t = 1, . . . , T are the optimum solutions of Problem (9). Clearly, the static

replenishment policy, xSRP
t (d̃t−1) is feasible in Problem (3). Moreover, by Theorem 1, we have

E
(

ctx
SRP
t (d̃t−1) + ht

(
ySRP

t+1 (d̃t)
)+

+ bt

(
ySRP

t+1 (d̃t)
)−)

= E


ctx

0∗
t + ht

(
y0∗

t+1 +
N∑

k=1

yk∗
t+1z̃k

)+

+ bt

(
−y0∗

t+1 −
N∑

k=1

yk∗
t+1z̃k

)+



≤ ctx
0∗
t + htπ

(
y0∗

t+1,y
∗
t+1

)
+ btπ

(−y0∗
t+1,−y∗t+1

)
.

(23)

Hence, ZSTOC ≤ ZSRP .

C Proof of Theorem 3

Proof : Observe that Problem (13) with additional constraints xk
t = 0, k = 1, . . . , N , t = 1 . . . , T − L

gives the same feasible constraint set as Problem (9). Moreover, the objective functions of both problems
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are the same. Hence, ZLRP ≤ ZSRP . Under the linear replenishment policy, the net-inventory at the

end of period t is given by

yLRP
t+1 (d̃t) = y0

1 +
min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

xLRP
τ−L (d̃τ−L−1)−

t∑

τ=1

dτ (z̃)

= y0
1 +

min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

(
x0∗

τ−L +
N∑

k=1

xk∗
τ−Lz̃k

)
−

t∑

τ=1

d0
τ −

t∑

τ=1

N∑

k=1

dk
τ z̃k

= y0
1 +

min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

x0∗
τ−L −

t∑

τ=1

d0
τ

︸ ︷︷ ︸
=y0∗

t+1

+
N∑

k=1

(
t∑

τ=1

(xk∗
τ−L − dk

τ )

)

︸ ︷︷ ︸
=yk∗

t+1

z̃k

= y0∗
t+1 +

N∑

τ=1

yk∗
t+1z̃k

where yk∗
t+1 k = 0, . . . , N , t = 1, . . . , T are the optimum solutions of Problem (13). Clearly, the linear

replenishment policy, xLRP
t (d̃t−1) is feasible in Problem (3). Moreover, by Theorem 1 and that z̃ being

zero mean random variables, we have

E
(

ctx
LRP
t (d̃t−1) + ht

(
yLRP

t+1 (d̃t)
)+

+ bt

(
yLRP

t+1 (d̃t)
)−)

= E


ct

(
x0∗

t + x∗t
′z̃

)
+ ht

(
y0∗

t+1 +
N∑

k=1

yk∗
t+1z̃k

)+

+ bt

(
−y0∗

t+1 −
N∑

k=1

yk∗
t+1z̃k

)+



≤ ctx
0∗
t + htπ

(
y0∗

t+1, y
∗
t+1

)
+ btπ

(−y0∗
t+1,−y∗t+1

)
.

(24)

Hence, ZSTOC ≤ ZLRP .

D Proof of Theorem 4

Proof : We first show the following bound:
(

y +
p∑

i=1

x+
i

)+

≤
(

y +
p∑

i=1

wi

)+

+
p∑

i=1

(
(−wi)

+ + (xi − wi)
+)

(25)

for all wi, i = 1, . . . , p. Note that for any scalars a, b

a+ + b+ ≥ (a + b)+ (26)

a+ + b+ = a+ + (b+)+ ≥ (a + b+)+. (27)

43



Therefore, we have
(

y +
p∑

i=1

wi

)+

+
p∑

i=1

(
(−wi)

+ + (xi − wi)
+)

≥
(

y +
p∑

i=1

(
wi + (−wi)+ + (xi − wi)+

)
)+

from Inequality (27)

=

(
y +

p∑

i=1

(
w+

i + (xi − wi)+
)
)+

≥
(

y +
p∑

i=1

x+
i

)+

from Inequality (26).

For notational convenience, we denote y(z̃) = y0 + y′z̃, xi(z̃) = x0
i + xi

′z̃ and wi(z̃) = w0
i + wi

′z̃.

To prove Inequality (16), it suffices to show that for any w0
i ,wi, i = 1, . . . , p, we have

π

(
y0 +

p∑

i=1

w0
i , y +

p∑

i=1

wi

)
+

p∑

i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i , xi −wi)
)

≥ E

((
y(z̃) +

p∑

i=1

wi(z̃)

)+)
+

p∑

i=1

(
E

(
(−wi(z̃))+

)
+ E

(
(xi(z̃)− wi(z̃))+

))

≥ E

((
y(z̃) +

p∑

i=1

xi(z̃)+
)+)

,

where the first inequality follows from Theorem 1 and the last inequality follows from Inequality (25).

To prove the tightness of the bound, we consider the case when x0
i + xi

′z, i = 1, . . . , p are non-zero

crossing functions with respect to z ∈ W. Let

K = {k : x0
k + xk

′z ≥ 0 ∀z ∈ W}.

Hence,

y0 + y′z +
p∑

i=1

(
x0

i + xi
′z

)+ = y0 + y′z +
∑

i∈K

(
x0

i + xi
′z

) ∀z ∈ W.

Therefore, if

y0 + y′z +
p∑

i=1

(
x0

i + xi
′z

)+ ≥ 0 ∀z ∈ W

or equivalently,

y0 + y′z +
∑

i∈K

(
x0

i + xi
′z

) ≥ 0 ∀z ∈ W,
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we have

E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)

= E

((
y0 + y′z̃ +

∑

i∈K

(
x0

i + xi
′z̃

)
)+)

= y0 +
∑

i∈K
x0

i .

Likewise, if

y0 + y′z +
p∑

i=1

(
x0

i + xi
′z

)+ ≤ 0 ∀z ∈ W

or equivalently,

y0 + y′z +
∑

i∈K

(
x0

i + xi
′z

) ≤ 0 ∀z ∈ W,

we have

E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)
= E

((
y0 + y′z̃ +

∑

i∈K

(
x0

i + xi
′z̃

)
)+)

= 0.

Indeed, for all k ∈ K, let (w0
i ,wi) = (x0

i , xi) and for all k /∈ K, (w0
i , wi) = (0,0). Therefore, using the

tightness result of Theorem 1, we have

E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)

≤ η((y0, y), (x0
1, x1), . . . , (x0

p, xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑

i=1

w0
i ,y +

p∑

i=1

wi

)
+

p∑

i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i , xi −wi)
)
}

≤ π

(
y0 +

∑

i∈K
x0

i ,y +
∑

i∈K
xi

)
+

∑

i∈K


π(−x0

i ,−xi)︸ ︷︷ ︸
=0

+π(0,0)


+

∑

i/∈K


π(−0,−0) + π(x0

i ,xi)︸ ︷︷ ︸
=0




= π

(
y0 +

∑

i∈K
x0

i ,y +
∑

i∈K
xi

)

=





y0 +
∑

i∈K
x0

i if y0 + y′z̃ +
∑

i∈K

(
x0

i + xi
′z̃

) ≥ 0 ∀z ∈ W

0 if y0 + y′z̃ +
∑

i∈K

(
x0

i + xi
′z̃

) ≤ 0 ∀z ∈ W

= E

((
y0 + y′z̃ +

p∑

i=1

(
x0

i + xi
′z̃

)+

)+)
.
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E Proof of Theorem 5

Proof : We first show that ZTLRP ≤ ZLRP . Let xk†
t , k = 0, . . . , N , t = 1, . . . , T − L and yk†

t+1,

k = 0, . . . , N , t = 1, . . . , T be the optimum solution to Problem (13), which is also feasible in Problem

(17). Based on the following inequality,

η((y0,y), (x0
1, x1), . . . , (x0

p, xp))

= min
w0

i ,wi,i=1,...,p

{
π

(
y0 +

p∑

i=1

w0
i , y +

p∑

i=1

wi

)
+

p∑

i=1

(
π(−w0

i ,−wi) + π(x0
i − w0

i , xi −wi)
)
}

≤ π
(
y0, y

)
+

p∑

i=1

π(x0
i , xi),

(28)

we have

ZTLRP ≤
T∑

t=1

ctπ(x0†
t , x†t) +

L∑

t=1

(
htπ(y0†

t+1,y
†
t+1) + btπ(−y0†

t+1,−y†t+1)
)

+

T∑

t=L+1

(
htη

(
(y0†

t+1, y
†
t+1), (−x0†

1 ,−x1), . . . , (−x0†
t−L,−x†t−L)

)
+

btη
(
(−y0†

t+1,−y†t+1), (x
0†
1 − St, x

†
1), . . . , (x

0†
t−L − St, x

†
t−L)

))

≤
T∑

t=1

ctπ(x0†
t , x†t) +

L∑

t=1

(
htπ(y0†

t+1,y
†
t+1) + btπ(−y0†

t+1,−y†t+1)
)

+

T∑

t=L+1

(
htπ

(
y0†

t+1, y
†
)

+ ht

t−L∑

i=1

π(−x0†
i ,−x†i ) +

btπ
(
−y0†

t+1,−y†t+1

)
+ bt

t−L∑

i=1

π(−x0†
i − St, x

†
i )

)
.

Observe that since x0†
t +x†t

′
z ≥ 0, −x0†

t −x†t
′
z ≤ 0 and x0†

t −St +x†t
′
z ≤ 0 for all z ∈ W, we have from

Theorem 1, π(x0†
i ,x†i ) = x0†

i ,π(−x0†
i ,−x†i ) = 0 and π(x0†

i − St, x
†
i ) = 0 for all i = 1, . . . , T − L. Hence,

ZTLRP ≤
T∑

t=1

(
ctx

0†
t + htπ

(
y0†

t+1, y
†
)

+ btπ
(
−y0†

t+1,−y†t+1

))
= ZLRP .

We next show that ZSTOC ≤ ZTLRP . Under the truncated linear replenishment policy, the net-

inventory at the end of period t is given by

yTLRP
t+1 (d̃t) = y0

1 +
min{L,t}∑

τ=1

x0
τ−L +

t∑

τ=L+1

xTLRP
τ−L (d̃τ−L−1)−

t∑

τ=1

dτ (z̃).
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Let xk∗
t , k = 0, . . . , N , t = 1, . . . , T −L and yk∗

t+1, k = 0, . . . , N , t = 1, . . . , T be the optimum solution

to Problem (17). It suffices to show that the following bounds:

(a)

E
(
xTLRP

t (d̃t−1)
)
≤ π(x0∗

t , x∗t ).

(b) For t = 1, . . . , L,

E
((

yTLRP
t+1 (d̃t)

)+
)
≤ π

(
y0∗

t+1,y
∗
t+1

)

and

E
((

yTLRP
t+1 (d̃t)

)−)
≤ π

(−y0∗
t+1,−y∗t+1

)

(c) For t = L + 1, . . . , T ,

E
((

yTLRP
t+1 (d̃t)

)+
)
≤ η

(
(y0∗

t+1, y
∗
t+1), (−x0∗

1 ,−x∗1), . . . , (−x0∗
t−L,−x∗t−L)

)

and

E
((

yTLRP
t+1 (d̃t)

)−)
≤ η

(
(−y0∗

t+1,−y∗t+1), (x
0∗
1 − St,x

∗
1), . . . , (x

0∗
t−L − St, x

∗
t−L)

)
.

For Bound (a), we note that

E
(
xTLRP

t (d̃t−1)
)

= E
(
min

{
max

{
x0∗

t + x∗t
′z̃, 0

}
, St

})

≤ E
(
max

{
x0∗

t + x∗t
′z̃, 0

})

= E
((

x0∗
t + x∗t

′z̃
)+

)

≤ π(x0∗
t , x∗t ).

We focus on deriving Bound (c), as the exposition of Bound (b) is similar. Indeed, using the bound of
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Theorem 4, we have for t ≥ L + 1,

E
((

yTLRP
t+1 (d̃t)

)+
)

= E




(
y0
1 +

L∑

τ=1

x0
τ−L +

t∑

τ=L+1

xTLRP
τ−L (d̃τ−L−1)−

t∑

τ=1

dτ (z̃)

)+



= E




(
y0
1 +

L∑

τ=1

x0
τ−L +

t∑

τ=L+1

min
{
max

{
x0∗

τ−L + x∗τ−L
′z̃, 0

}
, St

}−
t∑

τ=1

d0
τ −

t∑

τ=1

N∑

k=1

dk
τ z̃k

)+



≤ E




(
y0
1 +

L∑

τ=1

x0
τ−L +

t∑

τ=L+1

max
{
x0∗

τ−L + x∗τ−L
′z̃, 0

}−
t∑

τ=1

d0
τ −

N∑

k=1

t∑

τ=1

dk
τ z̃k

)+



= E

((
y0
1 +

L∑

τ=1

x0
τ−L +

t∑

τ=L+1

(
x0∗

τ−L + x∗τ−L
′z̃

)
+

t∑

τ=L+1

max
{−x0∗

τ−L − x∗τ−L
′z̃, 0

}−
t∑

τ=1

d0
τ −

N∑

k=1

t∑

τ=1

dk
τ z̃k

)+)

= E

((
y0
1 +

t∑

τ=1

x0
τ−L +

t∑

τ=L+1

x0∗
τ−L −

t∑

τ=1

d0
τ

︸ ︷︷ ︸
=y0∗

t+1

+

t∑

τ=L+1

(−x0∗
τ−L − x∗τ−L

′z̃
)+ +

N∑

k=1

(
t∑

τ=1

(xk
τ−L − dk

τ )

)

︸ ︷︷ ︸
=yk∗

t+1

z̃k

)+)

= E




(
y0∗

t+1 + y∗t+1
′z̃ +

t∑

τ=L+1

(−x0∗
τ−L − x∗τ−L

′z̃
)+

)+



≤ η
(
(y0∗

t+1, y
∗
t+1), (−x0∗

1 ,−x∗1), . . . , (−x0∗
t−L,−x∗t−L)

)
.
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Similarly

E
((

yTLRP
t+1 (d̃t)

)−)

= E
((

−yTLRP
t+1 (d̃t)

)+
)

= E




(
−y0

1 −
L∑

τ=1

x0
τ−L −

t∑

τ=L+1

xTLRP
τ−L (d̃τ−L−1) +

t∑

τ=1

dτ (z̃)

)+



= E




(
−y0

1 −
L∑

τ=1

x0
τ−L −

t∑

τ=L+1

min
{
max

{
x0∗

τ−L + x∗τ−L
′z̃, 0

}
, St

}−
t∑

τ=1

d0
τ +

t∑

τ=1

N∑

k=1

dk
τ z̃k

)+



≤ E




(
−y0

1 −
L∑

τ=1

x0
τ−L −

t∑

τ=L+1

min
{
x0∗

τ−L + x∗τ−L
′z̃, St

}
+

t∑

τ=1

d0
τ −

N∑

k=1

t∑

τ=1

dk
τ z̃k

)+



= E

((
− y0

1 −
L∑

τ=1

x0
τ−L −

t∑

τ=L+1

(
x0∗

τ−L − x∗τ−L
′z̃

)
+

t∑

τ=L+1

(−min
{
St − x0∗

τ−L − x∗τ−L
′z̃, 0

})
+

t∑

τ=1

d0
τ +

N∑

k=1

t∑

τ=1

dk
τ z̃k

)+)

= E

((
−y0

1 −
L∑

τ=1

x0
τ−L −

t∑

τ=L+1

x0∗
τ−L +

t∑

τ=1

d0
τ

︸ ︷︷ ︸
=−y0∗

t+1

+

t∑

τ=L+1

(
x0∗

τ−L − St + x∗τ−L
′z̃

)+ +
N∑

k=1

(
t∑

τ=1

(−xk∗
τ−L + dk

τ )

)

︸ ︷︷ ︸
=−yk∗

t+1

z̃k

)+)

= E




(
−y0∗

t+1 − y∗t+1
′z̃ +

t∑

τ=L+1

(
x0∗

τ−L − St + x∗τ−L
′z̃

)+

)+



≤ η
(
(−y0∗

t+1,−y∗t+1), (x
0∗
1 − St, x

∗
1), . . . , (x

0∗
t−L − St,x

∗
t−L)

)
.

F Sample Formulation in PROF

The following is a sample formulation of Problem (17) in PROF is presented in Table 13. Note that

the function meanpositivebound() implements π(·) of Equation (7), and meannestedposbound() im-

plements η(·) of Theorem 4.
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% Input Model of Uncertainty
Range = 20;
Z.zlow = Range*ones(N,1);
Z.zupp = Range*ones(N,1);
Z.p = .58*Range*ones(N,1);
Z.q = .58*Range*ones(N,1);
Z.sigma =.58*Range*ones(N,1);
Ny =[0 1:T];
Nx = [zeros(1,L) 0:T-L-1];
Nxms = [zeros(1,L) 0:T-L-1];
zcoef = eye(T,T);
MeanD = mu*ones(T,1);
for n = 2:T

zcoef(1:n-1,n)= alpha;
end

% Start PROF
startmodel
x = linearrule(T,N,Nx)
xms = linearrule(T,N,Nxms)
y = linearrule(T+1,N,Ny);

for i=1:T
addconst(xms(i,:) == x(i,:)-S*ldrdata([0 1],N));

end

hbound=0;
sbound=0;
for t=1:T

if L+1 ≤ t
hbound = hbound+ h*meannestedposbound(Z,y(t+1,0:t),-x(L+1:t,0:t),t);
sbound = sbound + b(t)*meannestedposbound(Z,-y(t+1,0:t),xms(L+1:t,0:t),t);

else
hbound = hbound+h*meanpositivebound(Z,y(t+1,:),1,N);
sbound = sbound + b(t)*meanpositivebound(Z,-y(t+1,:),1,N);

end
end

minimize (sbound+hbound + c*sum(meanpositivebound(Z,x(L+1:T,:),T-L,N)))
addconst(x(1:L,0)==initx); addconst(y(1,0)==inity);
for i=1:T

t addconst(y(i+1,:)==y(i,:)+x(i,:)-ldrdata([0 MeanD(i);(1:N)’ zcoef(:,i)],N));
end
m=endmodel;
s = m.solve(’MOSEK’)

Table 13: Formulation of Problem (17) using PROF
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