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Abstract

We present a robust method for capturing articulated hand motions in realtime using a single depth camera. Our

system is based on a realtime registration process that accurately reconstructs hand poses by fitting a 3D articulated

hand model to depth images. We register the hand model using depth, silhouette, and temporal information. To

effectively map low-quality depth maps to realistic hand poses, we regularize the registration with kinematic

and temporal priors, as well as a data-driven prior built from a database of realistic hand poses. We present

a principled way of integrating such priors into our registration optimization to enable robust tracking without

severely restricting the freedom of motion. A core technical contribution is a new method for computing tracking

correspondences that directly models occlusions typical of single-camera setups. To ensure reproducibility of our

results and facilitate future research, we fully disclose the source code of our implementation.

1. Introduction

Tracking and animating humans in motion is a fundamen-
tal problem in computer graphics and computer vision. A
particularly important question is how to accurately recon-
struct the shape and articulation of human hands. Hand
motion is a crucial component of non-verbal communica-
tion, plays an important role in the animation of humanoid
avatars, and is central for numerous human-computer inter-
faces. Accurate realtime body tracking [SFC∗11, WZC12]
and face tracking [CHZ14] systems have been recently pro-
posed. Hand tracking is now gaining traction in the research
community as a next natural step towards a complete sys-
tem for online human communication in desktop environ-
ments [OKA11a, MKO13, SRS∗14, SMRB14, TSLP14]. Re-
cent industrial trends in interaction systems for virtual en-

vironments have lead to the development of (closed source)
software packages for the processing of RGBD data, like the
Intel RealSense SDK, or purpose-designed hardware, like the
Leap Motion and the Nimble sensors.

In this paper we introduce a system for realtime hand tracking
suitable for personal desktop environments. Our non-invasive

setup using a single commodity RGBD sensor does not re-
quire the user to wear a glove or markers. Such single-camera
acquisition is particularly advantageous as it is cheap, does
not require any sensor calibration, and does not impede user
movements.

Accurate hand tracking with a non-invasive sensing device
in realtime is a challenging scientific problem. Human hands
are highly articulated and therefore require models with suffi-
ciently many degrees of freedom to adequately describe the
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Figure 1: The two different sensors used in our experiments

provide data with substantially different characteristics. Top:

Intel’s Creative Interactive Gesture camera (time of flight)

provides a complete silhouette image Ss, but low quality

depth measurements, resulting in severe noise in the point

cloud Xs. Bottom: Point clouds acquired by the PrimeSense

camera (structured light) are much smoother, but the silhou-

ette image can contain significant gaps.

corresponding motion space. Hand motion is often fast and ex-
hibits intricate geometric configurations with complex contact
patterns among fingers. With a single-camera RGBD setup,
we are faced with incomplete data due to self-occlusions and
high noise levels (see Figure 1). Yet the simplicity of the
hardware and the ease of deployment make this setup the
most promising for consumer applications as evidenced by
the recent proliferation of new consumer-level sensors. To
cope with the limited amount of available information, we
employ an articulated template model as a geometric prior
for shape completion and topology control. Our model does
not only encode geometry, but also serves as a domain to rep-
resent information about plausible hand poses and motions.
This statistical information, built by analyzing a database of
annotated poses, is directly embedded into the optimization,
which allows accurate tracking with a high number of degrees
of freedom even in challenging scenarios.

Contributions. We present a complete system for realtime
hand tracking using a single commodity RBGD input sensor.
Our core technical contributions are:

• a novel articulated registration algorithm that efficiently
integrates data and regularization priors into a unified real-
time solver; see Section 4 and Appendix F,

• a combined 2D/3D registration method to align the 3D
hand model to the acquired depth map and extracted sil-
houette image; see Section 4.1,

• a new way of computing data-to-model correspondences
that accounts for occlusions and significantly improves the
robustness of the tracking; see Section 4.1,

• a new regularization strategy that combines a statistical
pose-space prior with kinematic and temporal priors to
simultaneously ensure the inferred hand poses are plausible
and aid the algorithm in recovering from loss-of-tracking;
see Section 4.2,

• exposing an interesting relationship between the well
known point-to-plane registration energy and Gauss-
Newton linearization; see Appendix D.
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Figure 2: A visualization of the template hand model with

the number and location of degrees of freedom of our op-

timization. From left to right: The cylinder model used for

tracking, the skeleton, the BVH skeleton exported to Maya to

drive the rendering, the rendered hand model.

Another important contribution of our paper is that we fully
disclose our source code†. To the best of our knowledge, no
other freely available implementation is available, and we
believe that publishing our code will not only ensure repro-
ducibility of our results, but also facilitate future research in
this domain.

Note that there is a widespread belief [WZC12, ZSZ∗14,
QSW∗14] that ICP-like techniques are too local and prone
to local minima to successfully deal with fast articulated mo-
tion. One of our contributions is to show this commonly held
belief should be re-considered. We demonstrate that a regular-
ized geometric registration approach in the spirit of ICP can
achieve outstanding performance. We believe this will signif-
icantly impact future research in this domain, as it will allow
further development of registration techniques for real-time
tracking, in contraposition to commonly employed techniques
from the vision community like discriminative [TSLP14] and
PSO [QSW∗14] methods.

Our regularized geometric registration achieves robust, highly
articulated hand tracking at up to 120 frames per second (fps).
We quantitatively and qualitatively compare the performance
of our algorithm to recent appearance-based and model-based
techniques (see Section 6). These comparisons show a signif-
icant improvement in accuracy and robustness compared to
the current state-of-the-art.

2. Related Work

We discuss the most relevant papers on human hand track-
ing related to our approach. For a more general overview
of human motion analysis using depth sensors we refer to
the recent survey of [YZW∗13]. Tracking algorithms can be
roughly divided into two main classes, appearance-based

and model-based methods [EBN∗07]. Appearance-based ap-
proaches train a classifier or a regressor to map image features
to hand poses. Consequently, while these systems can robustly

† https://github.com/OpenGP/htrack

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

102



Tagliasacchi et al. / Robust Articulated-ICP for Real-Time Hand Tracking

linear

solve
data fitting

converged?

3D correspondences

2D correspondences

yesno

bounds pose space

temporal

collision

silhouette posed model

distance trans. point cloud

lost tracking?

yesno
color image

depth image

reinitialize

θ(t)

[θ,θ]

Figure 3: Overview of our algorithm. For each acquired frame we extract a 3D point cloud of the hand and the 2D distance

transform of its silhouette. From these we compute point correspondences to align a cylinder model of the hand to best match

the data. This registration is performed in an ICP-like optimization that incorporates a number of regularizing priors to ensure

accurate and robust tracking.

determine a hand pose from a single frame, appearance-based
methods are optimal in scenarios where only a rough pose esti-
mate is desired [WPP11] or highly discriminative features can
be extracted [WP09]. Conversely, model-based techniques
approach tracking as an alignment optimization, where the ob-
jective function typically measures the discrepancy between
the data synthesized from the model and the one observed by
the sensor. While model-based methods can suffer from loss-
of-tracking [WZC12], regularizing priors can be employed to
infer high-quality tracking even when sensor data is incom-
plete or corrupted [MKO13,SMRB14]. In this work we focus
on improving the robustness and accuracy of model-based
approaches by combining effective 2D and 3D registration
energies with carefully designed priors.

Appearance-based hand tracking. During the past few
years, numerous appearance-based methods have been de-
veloped for hand tracking. Approaches based on near-
est neighbor search [WP09, WPP11, RKEK13], decision
trees [KKKA12, TYK13, TCTK14, KVK∗14], or con-
volutional networks [TSLP14] have demonstrated that
appearance-based methods can be successfully employed for
realtime hand tracking. The strength of these methods is the
capability of inferring a hand pose from a single frame with-
out the need of relying on temporal coherence, which avoids
drift. However, such appearance-based approaches are tightly
linked to the training data and often do not generalize well
to previously unseen hand poses, i.e., poses not contained in
the training database. For this reason most of these methods
assume a single hand in isolation to avoid data explosion, and
often do not reach the accuracy of model-based methods.

Model-based hand tracking. A popular approach to hand
motion capture is to use a marker-based system (e.g. Vi-
con, OptiTrack). A 3D hand model can then be fitted to
the tracked markers to get the final hand poses. A small
number of markers has been shown to be sufficient for re-
constructing the 3D hand poses via inverse kinematics tech-
niques [HRMO12]. However, due to frequent occlusions of

the markers, motion sequences acquired using marker-based
systems often need a significant amount of manual clean-
ing. To overcome this issue, [ZCX12] propose to comple-
ment a marker-based system with RGBD data to capture
hand motion even in case of significant self-occlusion. Re-
cently, accurate model-based tracking has been achieved
in a multiple camera setup [SOT13, SRS∗14], where the
multiple vantage points help resolving challenging occlu-
sions. Multiple camera systems have also been used suc-
cessfully to model precise hand-hand and hand-object in-
teractions [OKA11b, BTG∗12, WMZ∗13]. All of the above
methods require a complex acquisition setup and manual
calibration, which makes them less suitable for the kind of
consumer-level applications that we target with this work.

Particle-swarm optimization (PSO) methods achieve interac-
tive (15 fps) tracking with a single RGBD camera [OKA11a].
PSO techniques have also been applied successfully to model
challenging interaction between two hands [OKA12] at a
reduced rate of 4 fps. PSO is an optimization heuristic that
does not use the gradient information of the considered opti-
mization problem, but instead uses a sampling strategy. For
this reason the accuracy and efficiency of PSO approaches
heavily rely on the number of samples used. Oikonomidis
et al. [OLA14] introduced a more advanced sampling strat-
egy that improves tracking efficiency without compromising
quality. However, gradient-based optimization approaches
converge faster and more accurately than PSO when close
to the solution, and are therefore well suited for realtime
applications [QSW∗14].

Compelling 60 fps realtime performance was recently shown
using gradient-based optimization by [MKO13], where the
optimization is expressed as a convex rigid body simulation,
and numerous heuristics for re-initialization were employed
to avoid tracking failures. Rather than resorting to reinitializa-
tion for robustness, [SMRB14] formulate the optimization in
a subspace of likely hand poses. While the lower number of
optimization variables leads to efficient computations, track-
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ing accuracy can be limited by the reduced pose complexity
induced by the subspace.

In this paper, we show that hand tracking can be formulated as
a single gradient-based optimization to obtain an efficient and
accurate real-time tracking system running at up to 120 fps.
By using a combination of geometric and data-driven priors
we achieve significant improvements in tracking quality and
robustness.

3. Overview

Robust hand tracking with a commodity depth sensor is
highly challenging due to self-occlusion, low quality/density
of sensor data and the high degree of articulation of the hu-
man hand. We address these issues by proposing a regularized
articulated ICP-like optimization that carefully balances data
fitting with suitable priors (Figure 3). Our data fitting per-
forms a joint 2D-3D optimization. The 3D alignment ensures
that every point measured by the sensor is sufficiently close
to the tracked model M. Simultaneously, as we cannot create
such constraints for occluded parts of the hand, we integrate a
2D registration that pushes the tracked model to lie within the
sensor visual hull. A carefully chosen set of priors regularizes
the solution to ensure the recovered pose is plausible.

Acquisition device. Our system processes raw data acquired
at 60 fps from a single RGBD sensor. Figure 1 illustrates this
data for the PrimeSense Carmine 1.09 structured light sensor
as well as the Creative Gesture Camera time-of-flight sensor.
From the raw data our algorithm extracts a 2D silhouette

image Ss and a 3D point cloud Xs. The two sensors exhibit
different types of imperfections. The precision of depth mea-
surements in the PrimeSense camera is significantly higher.
However, substantial holes often occur at grazing angles, e.g.
note the gap in the data where we would expect to see the in-
dex finger. Conversely, the Creative Gesture Camera provides
an accurate and gap-free silhouette image, but suffers from
high noise in the depth measurements, therefore resulting in
very noisy point clouds. Our algorithm is designed to handle
both types of imperfections. This is achieved by formulating
an optimization that jointly considers silhouette and point
cloud, balancing their contribution in a way that conforms to
the quality of sensor data.

Tracking model. Our algorithm registers a template
hand model to the sensor data. Similar to other tech-
niques [OKA11a, SMRB14], we employ a simple (sphere
capped) cylinder model as a geometric template; see Figure 2.
We optimize for 26 degrees of freedom, 6 for global rotation
and translation and 20 for articulation. Like in [MKO13],
the model can be quickly adjusted to the user by specifying
global scale, palm size and finger lengths. In most scenarios,
it is sufficient to perform a simple uniform scaling of the
model. Such a coarse geometry is sufficient for hand tracking,
as the signal-to-noise ratio for commercially available RGBD

sensor cloudXs

sensor silh. Ss

wristband mask

depth image

PCA wristband hand ROI

ℓ

Figure 4: We first identify the wristband mask by color

segmentation, then compute the 3D orientation of the forearm

as the PCA axis of points in its proximity. Offsetting a 3D

sphere from the wristband center allows isolating the region

of interest. The obtained silhouette image and sensor point

clouds are shown on the right.

sensors is low for samples on the fingers when compared to
the size of a finger. Furthermore, the computation of closest-
point correspondences can be performed in closed form and
in parallel, which is essential for real-time performance. The
hand’s palm region may be better approximated by geome-
tries other than a cylinder, but we found using only cylinder
primitives to work well for tracking in terms of accuracy
and efficiency. Furthermore, it simplified the implementa-
tion as the same correspondence computation routine can be
used for all primitives in the model. While the geometry of
the model used for tracking remains coarse, our algorithm
computes joint angles (including rigid transformation) in the
widespread BVH motion sequence format; these can be used
to drive a high-resolution skinned hand rig as illustrated in
Figure 2-d.

Preprocessing. The silhouette image Ss is not directly avail-
able from the sensor and needs to be computed. This labeling
can be obtained by extracting the sensor color image and per-
forming a skin color segmentation [OKA12,SMRB14], or can
be obtained directly from depth images by performing a clas-
sification with randomized forests [TSLP14]. Another possi-
bility is to exploit a full-body tracking algorithm [SFC∗11]
and segment the hand according to the wrist position. For ges-
tural tracking, where the hand is typically the closest object
to the sensor [QSW∗14], a black wristband can be used to
simplify segmentation by creating a gap in the depth image.
Similarly to this method, in our system the user wears a col-

ored wristband. We first identify the position of the wristband
in the scene by color segmentation, then retrieve the 3D points
in the proximity of the wristband and compute the principal
axis. This axis, in conjunction with the wristband centroid, is
then used to segment the hand point cloud. Any depth pixel
within the hand point cloud is labelled as belonging to the
silhouette image Ss as shown in Figure 4.

4. Optimization

In this section we derive the objective functions of our model-
based optimization method and provide the rationales for
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Figure 5: Illustration of correspondences computations. The

circles represent cross-sections of the fingers, the small black

dots are samples of the depth map. (a) A configuration that

can be handled by standard closest point correspondences.

(b) Closest point correspondences to the back of the cylinder

model can cause the registration to fall into a local minimum.

Note that simply pruning correspondences with back-pointing

normals would not solve this issue, as no constraints would

remain to pull the finger towards the data. (c) This problem

is resolved by taking visibility into account, and computing

closest points only to the portion “M of M facing the camera.

our design choices. Let F be the sensor input data consist-
ing of a 3D point cloud Xs and 2D silhouette Ss (see Fig-
ure 1). Given a 3D hand model M with joint parameters
θ = {θ1,θ2, . . . ,θ26}, we aim at recovering the pose θ of the
user’s hand, matching the sensor input data F . To achieve
this goal, we solve the optimization problem

min
θ

E3D +E2D+Ewrist
︸ ︷︷ ︸

Fitting terms

+Epose +Ekin. +Etemporal
︸ ︷︷ ︸

Prior terms

, (1)

combining fitting terms that measure how well the hand pa-
rameters θ represent the data frame F , with prior terms that
regularize the solution to ensure realistic hand poses. For
brevity of notation we omit the arguments θ,Xs,Ss of the
energy terms. We first introduce the fitting terms and present
our new solution to compute tracking correspondences. Then
we discuss the prior terms and highlight their benefits in terms
of tracking accuracy and robustness. More details on the im-
plementation of the optimization algorithm will be given in
Section 5 and the appendix.

4.1. Fitting Energies

Point cloud alignment. The term E3D models a 3D geomet-
ric registration in the spirit of ICP as

E3D = ω1 ∑
x∈Xs

‖x−ΠM(x,θ)‖2, (2)

where ‖ · ‖2 denotes the ℓ2 norm, x represents a 3D point
of Xs, and ΠM(x,θ) is the projection of x onto the hand
model M with hand pose θ. Note that we compute a sum of
absolute values of the registration residuals, not their squares.
This corresponds to a mixed ℓ2/ℓ1 norm of the stacked vector
of the residuals. For 3D registration such a sparsity-inducing

(a) (b) (c)

c1 c1 c1

c2

c2 c2

Figure 6: Illustration of the impact of self-occlusion in corre-

spondences computations. (a) The finger c2 initially occluded

by finger c1 becomes visible, which causes new samples to

appear. (b) Closest correspondences to the portion of the

model visible from the camera do not generate any constraints

that pull c2 toward its data samples. This is the approach

in [WZC12], where these erroneous matches are then simply

pruned. (c) Our method also considers front-facing portions

of the model that are occluded, allowing the geometry to

correctly register.

norm has been shown to be more resilient to noisy point
clouds containing a certain amount of outliers such as the
ones produced by the Creative sensor (Figure 1). We refer
to [BTP13] for more details.

3D correspondences. The 3D registration term involves
computing the corresponding point y = ΠM(x,θ) on the
cylinder model M for each sensor point x ∈ Xs. In contrast
to standard closest point search, we define the correspon-
dence y as the closest point on the front-facing part “M of M.
This includes parts of the model that are oriented towards
the camera but occluded by other parts. In our experiments
we learned that this seemingly simple extension proved abso-
lutely essential to obtain high-quality tracking results. Only
considering model points that are visible from the sensor
viewpoint, i.e., matching to the rendered model, is not suf-
ficient for handling occlusions or instances of disappearing
and reappearing sensor data; see Figure 5 and Figure 6.

To calculate y, we first compute the closest points xC of x to
each cylinder C ∈M. Recall that our hand model consists
of sphere-capped cylinders so these closest points can be
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Figure 7: Correspondence computations. The top row shows

the strategy used in [QSW∗14] adapted to our gradient-based

framework according to the formulation given in [WZC12].

The bottom row shows the improved accuracy of our new

approach.
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silhouette w/o silhouette w/ silhouette

Figure 8: Our 2D silhouette registration energy is essential

to avoid tracking errors for occluded parts of the hand. When

no depth data is available for certain parts of the model,

a plausible pose is inferred by ensuring that the model is

contained within the sensor silhouette image Ss.

computed efficiently in closed form and in parallel for each
x ∈ Xs. We then identify back-facing points using the dot
product of the cylinder surface normal n at xC and the view
ray vector v. For efficiency reasons, we use a simplified ortho-
graphic camera model where the view rays are constant, i.e.,
v = [0 0 1]T . If a point on a cylinder is back-facing (nT v > 0),
we project x onto the cylinder’s silhouette contour line from
the camera perspective, whose normals are orthogonal to v.

A different strategy to address visibility issues has been intro-
duced in [QSW∗14]. These methods propose an energy that
penalizes areas of the model falling in front of the data, which
is then optimized using particle swarms. This energy can be
integrated into our optimization following the formulation
in [WZC12, Eq. 15]. However, such an energy is prone to
create local minima in gradient-based optimization, as illus-
trated in Figure 7. Here the thumb has difficulty entering the
palm region, as it must occlude palm samples before reaching
its target configuration. Our correspondence search avoids
such problems. Furthermore, note how [QSW∗14] follows
a hypothesize-and-test paradigm where visibility constraints
in the form of ray-casting are easy to include. As discussed
in [GPKT12], such constraints are much more difficult to
include in iterative optimization techniques like ours. How-
ever, our front-facing correspondences computation provides
a simple and elegant way to deal with such shortcomings.

Silhouette alignment. The 3D alignment energy E3D ro-
bustly measures the distance between every point in the 3D
point cloud Xs to the tracked model M. However, as hands
are highly articulated, significant self-occlusions are com-
mon during tracking. Such self-occlusions are challenging,
because occluded parts will not be constrained when only
using a 3D alignment energy. For this reason, we use a 2D
silhouette term E2D that models the alignment of the 2D sil-
houette of our rendered hand model with the 2D silhouette

Figure 9: An illustration of the PCA pose-space used to

regularize the optimization. Black dots denote the samples of

the data base. High likelihood poses are located nearby the

mean of the latent space (dark red). The eigenvalues of the

PCA define the metric in the low-dimensional space, skewing

it in certain directions. Poses that, according to this metric,

are far from the mean are likely to be unnatural and will be

penalized in the optimization.

extracted from the sensor data as

E2D = ω2 ∑
p∈Sr

‖p−ΠSs
(p,θ)‖2

2, (3)

where p is a 2D point of the rendered silhouette Sr, and
ΠSs

(p,θ) denotes the projection of p onto the sensor silhou-
ette Ss. Figure 8 shows why the silhouette term is crucial
to avoid erroneous poses when parts of the model are oc-
cluded. Without the silhouette energy, the occluded fingers
can mistakenly move to wrong locations, since they are not
constrained by any samples in the depth map.

2D correspondences. In Equation 3, we compute the silhou-
ette image Sr by first rendering the hand model M from
the viewpoint of the sensor, caching the bone identifier and
the 3D location associated with each pixel in a texture. The
projection function ΠSs

(p,θ) to compute the closest corre-
sponding point to the sensor silhouette is evaluated efficiently
using the 2D distance transform of Ss. We use the linear time
algorithm of [FH12] and store at every pixel the index to the
closest correspondence.

Wrist alignment. The inclusion of the forearm for hand
tracking has been shown beneficial in [MKO13]. Our wrist
alignment energy encodes a much simplified notion of the
forearm in the optimization that enforces the wrist joint to be
located along its axis.

Ewrist = ω3‖Π2D(k0(θ))−Πℓ(k0(θ))‖
2
2, (4)

Minimizing this energy helps preventing the hand from er-
roneously rotating/flipping during tracking; an occurrence
of this can be observed at 04:03 in the accompanying video.
Here k0 is the 3D position of the wrist joint, and ℓ is the 2D
line extracted by PCA of the 3D points associated with the
wristband; see Figure 4. Note that Π2D causes residuals to
be minimized in screen-space, therefore the optimization of
this energy will be analogous to the one of Equation 3. We
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θ̃

µ

P

Figure 10: An illustration of the energies involved in our

pose-space prior. For illustration purposes the full dimen-

sional parameter vector θ ∈ R
3, while latent space variable

θ̃ ∈ R
2. The PCA optimization in [SMRB14] constrains the

pose parameters θ to lie on the subspace P . Conversely, we

penalize the distance of our pose from P (Equation 5); simul-

taneously, we ensure our pose remains likely by preventing it

from diverging from the mean of the distribution (Equation 6).

optimize in screen space because, due to occlusion, we are
only able to observe half of the wrist and this causes its axis
to be shifted toward the camera.

4.2. Prior Energies

Minimizing the fitting energies alone easily leads to unrealis-
tic or unlikely hand poses, due to the deficiencies in the input
data caused by noise, occlusions, or motion blur. We there-
fore regularize the registration with data-driven, kinematic,
and temporal priors to ensure that the recovered hand poses
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Figure 11: Beyond favoring natural poses, the data prior

term also positively affects convergence speed. Top: With the

same number of iterations, only with activated data term does

the model fully register to the scan. The illustration below

shows how the same final state requires significantly fewer

iterations with the data term.

depth image without PCA with PCA

Figure 12: Our pose-space regularization using a PCA prior

ensures that a meaningful pose is recovered even when sig-

nificant holes occur in the input data.

are plausible. Each of these terms plays a fundamental role in
the stability of our tracking algorithm, as we illustrate below.

Pose Space prior (data-driven). The complex and highly
coupled articulation of human hands is difficult to model
directly with geometric or physical constraints. Instead,
we use a publicly available database of recorded hand
poses [SMRB14] to create a data-driven prior Epose that en-
codes this coupling. We construct a low-dimensional sub-
space of plausible poses by performing dimensionality reduc-
tion using PCA (see Figure 9). We enforce the hand param-
eters θ to lie close to this low-dimensional linear subspace
using a data term Epose = Eprojection +Emean. To define the

data term, we introduce auxiliary variables θ̃, i.e, the PCA
weights, representing the (not necessarily orthogonal) projec-
tion of the hand pose θ onto the subspace; see Figure 10. The
projection energy measures the distance between the hand
parameters and the linear subspace as

Eprojection = ω4‖(θ−µ)−ΠP θ̃‖2
2, (5)

where µ is the PCA mean. The matrix ΠP , i.e., the PCA basis,
reconstructs the hand posture from the low-dimensional space.
To avoid unlikely hand poses in the subspace, we regularize
the PCA weights θ̃ using an energy

Emean = ω5‖Σθ̃‖2
2. (6)

Σ is a diagonal matrix containing the inverse of the standard
deviation of the PCA basis. Our tracking optimization is mod-
ified to consider the pose space by introducing the auxiliary
variable θ̃ and then jointly minimizing over θ and θ̃. The dif-
ference between our approach and optimizing directly in the
subspace is further discussed in Appendix A. Note how the
regularization energy in Equation 6 helps the tracking system
recover from tracking failures. When no sensor constraints
are imposed on the model, the optimization will attempt to
push the pose toward the mean – a statistically likely pose
from which tracking recovery is highly effective.

Figure 12 illustrates how the PCA data prior improves track-
ing by avoiding unlikely poses, in particular when the input
data is incomplete. We found that even when data coverage is
sufficient to recover the correct pose, the data term improves
the convergence of the optimization as illustrated in Figure 11.
Figure 13 shows how our regularized projective PCA formu-
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89%, #PCA=4 96%, #PCA=6 99%, #PCA=9 79%, #PCA=2

ω4 = 108 ω4 = 108 ω4 = 108 ω4 = 102

Figure 13: Optimizing directly in the PCA sub-

space [SMRB14] can lead to inferior registration accuracy.

We replicate this behavior by setting ω4 in Equation 5 to a

large value. Even when increasing the number of PCA bases

to cover 99% of the variance in the database, the model re-

mains too stiff to conform well to the input. Our approach

is able to recover the correct hand pose by optimizing for

projection distances even with a very limited number of bases

(right).

lation outperforms the direct subspace optimization proposed
in previous work.

Kinematic prior. The PCA data term is a computation-
ally efficient way of approximating the space of plausible
hand poses. However, the PCA model alone cannot guaran-
tee that the recovered pose is realistic. In particular, since
the PCA is symmetric around the mean, fingers bending
backwards beyond the physically realistic joint angle lim-
its are not penalized by the data prior. Similarly, the PCA
model is not descriptive enough to avoid self-intersections
of fingers. These two aspects are addressed by the kinematic
prior Ekinematic = Ecollision +Ebounds. Under the simplifying
assumption of a cylinder model, we can define an energy
Ecollision that accounts for the inter-penetration between each
pair of (sphere-capped) cylinders:

Ecollision = ω6 ∑
{i, j}

χ(i, j)(d(ci,c j)− r)2, (7)

where the function d(·, ·) measures the Euclidean distance
between the cylinders axes ci and c j, and r is the sum of the
cylinder radii. χ(i, j) is an indicator function that evaluates
to one if the cylinders i and j are colliding, and to zero
otherwise. The top row of Figure 14 shows how this term
avoids interpenetrations of the fingers.

To prevent the hand from reaching an impossible posture by
overbending the joints, we limit the joint angles of the hand
model:

Ebounds = ω7 ∑
θi∈θ

χ(i)(θi −θi)
2 +χ(i)(θi −θi)

2, (8)

where each hand joint is associated with conservative bounds
[
θi,θi

]
. For the bounds, we use the values experimentally

determined by [CD95]. χ(i) and χ(i) are indicator functions.
χ(i) evaluates to one if θi < θi, and to zero otherwise. χ(i) is
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Figure 14: Kinematic priors augment the data prior to ac-

count for inconsistencies in the pose space. The collision term

avoids self-collisions (top row), while the term for joint angle

bounds avoids overbending of the finger joints.

equal to one if θi > θi, and zero otherwise. The bottom row
of Figure 14 illustrates the effect of the joint angle bounds.

Temporal prior. A common problem in particular with
appearance-based methods are small-scale temporal oscil-
lations that cause the tracked hand to jitter. A standard way
to enforce temporal smoothness is to penalize the change of
model parameters θ through time, for example, by penalizing
a quadratic energy accounting for velocity ‖θ̇‖2 and acceler-
ation ‖θ̈‖2 [WZC12]. However, if we consider a perturbation
of the same magnitude, it would have a much greater effect if
applied at the root, e.g., global rotation, than if applied to an
element further down the kinematic tree, e.g., the last phalanx
of a finger. Therefore, we propose a solution that measures
the velocity and acceleration of a set of points attached to the
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Figure 15: The effect of the temporal prior. The graph shows

the trajectory of the y-coordinate of the fingertip over time as

the index finger is bend up and down repeatedly. The temporal

prior reduces jitter, but also helps avoiding tracking artifacts

that arise when fragments of data pop in and out of view.
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Figure 16: During fast motion, optimizing directly for a fully

articulated hand can lead to incorrect correspondences and

cause loss of tracking (middle row). By compensating for the

rigid motion ahead of solving for joint angles, our system can

better capture fast movements (bottom row).

kinematic chain. We consider the motion of vertices k of the
kinematic chain K (Figure 2) and build an energy penalizing
the velocity and acceleration of these points:

Etemporal = ω8 ∑
ki∈K

‖k̇(θ)‖2
2 +ω9 ∑

ki∈K

‖k̈(θ)‖2
2. (9)

Figure 15 illustrates how the temporal prior reduces jitter
and improves the overall robustness of the tracking; see also
accompanying video.

5. Implementation

In this section we provide more details on the implementation
of our optimization algorithm. The derivation of the necessary
gradients and Jacobians is given in the appendix.

Optimization. The optimization of the tracking energy of
Equation 1 over the pose θ is performed by solving the non-
linear least squares problem with a Levenberg-Marquardt
approach. The assumption is that a current estimate of θ is
known from which we then compute an update. More specifi-
cally, the high acquisition speed of the sensing device allows
us to employ the optimized parameters from the previous
time frame as the starting estimate. We then iteratively ap-
proximate the energy terms using Taylor expansion and solve
a linear system to get the update δθ at each iteration (see
appendix). As our algorithm achieves 60 fps tracking, the
previously reconstructed pose is of sufficiently high quality
allowing our solve to converge within seven iterations.

Initialization. As a user enters the scene our method is ini-
tialized by the fingertip detection and fitting from [QSW∗14].
Other appearance-based methods could be used for initializa-
tion as well [TSLP14]. We also re-initialize the tracking in
case a severe tracking failure is detected using the method
of [WZC12]. Such re-initialization occurs rarely (e.g. less
than 0.5% of the frames in the sequence of Figure 21).

Rigid bias. To improve the convergence of our solver in case
of fast motion, we first perform the optimization in Equation 1

adbadd flexex1 pinch count tigergrasp wave random

[Tang et al. 2014]

[Sridhar et al. 2013]

[Sridhar et al. 2014]

[ours]

[ours] + re-init.

10

20

30

40

50

mm

Figure 17: We quantitatively evaluate our algorithm on the

Dexter-1 dataset from [SOT13]. The measurements report

the root mean square errors of fingertip placements. The

acquisition setup consists of several calibrated video cameras

and a single depth camera. For our results and the method

of [TCTK14], only the depth image is used for tracking, while

the algorithms of Sridhar and colleagues also use the video

streams. The blue, green, and purple bars are reproduced

from [SRS∗14]. For our algorithm we report results without

(red) and with (orange) reinitialization.

for the rigid motion only by optimizing for the root of the
kinematic chain. As shown in Figure 16, optimizing first for
the rigid motion prior to the full pose estimation leads to
improved robustness of the tracking.

Parameters. For all our results we fix our parameters to
ω1 = ω2 = ω5 = 1, ω4 = 103, ω3 = ω6 = ω7 = 108, ω8 =
ω9 = 3. We determined these weights empirically by re-
tracking multiple sequences with different sets of param-
eters. Our system was tested on an Intel Core i7 4GHz with
NVIDIA GTX980 GPU running Ubuntu 12.02 . To run on a
60Hz RGBD device such as the PrimeSense Carmine 1.09
or the Creative Gesture Camera, we perform 1 rigid itera-
tion and 7 full iterations, at 1.5ms per iteration. We perform
closed form closest point correspondences and Jacobian com-
putation for the fitting energies on the GPU. The number of
iterations can be easily adapted to run on the new Intel Re-
alSense 3D Camera (F200) at 120Hz or at even higher frame
rates on future devices.

6. Evaluation

We refer to the video to best appreciate the realtime tracking
performance of our method. Here we analyze its performance
by providing a comparison to several state-of-the art solu-
tions.

Dexter-1 Dataset [SRS*14]. Figure 17 shows a quantitative
comparison with several existing methods on a publicly avail-
able data set acquired at 25 Hz. As the graph illustrates, our so-
lution clearly outperforms the method of [TCTK14] that uses
regression forest classifiers in an appearance-based approach
to estimate hand poses. We also significantly improve upon
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Figure 18: A few comparison frames illustrating the differ-

ence in performance of our method compared to [SMRB14]

(results provided by the authors of that paper). From left to

right we can observe problems related to: correspondences

to the back of the model, lack of silhouette energy (3 times)

and loss of tracking due to fast motion.

the gradient-based optimization methods of [SOT13,SRS∗14]
that, in addition to the depth information, use RGB data from
five additional video cameras. As the dataset is acquired at
25 Hz, the performance of our algorithm (red) is subopti-
mal. In particular, in a single frame fingers are occasionally
displaced by 2 to 3 times their radii, thus corrupting ICP
correspondences. By re-initializing with finger detection as
in [QSW∗14] our performance considerably improves, as
shown in the figure.

Subspace ICP [SMRB14]. Figure 18 shows a comparison
to the model-based approach of [SMRB14]. The recorded
sequences were directly processed by the authors and em-
ployed to pose our cylinder model for ease of comparison.
As the figure illustrates, our method clearly outperforms this
previous work. A key difference is that they optimize directly
in a PCA subspace, which tends to over-constrain the solu-
tion, while we introduce a PCA data term as a regularizer,
which preserves the full expressiveness of the tracking model.
In addition, we introduce collision handling, apply robust
norms for automatic outlier detection, and employ a more ad-
vanced correspondence search that handles self-occlusions. In
combination, these factors lead to substantial improvements
in tracking accuracy and robustness without compromising
computational efficiency.

Convex body solver [MKO13]. We compare to this algo-
rithm by employing the precompiled binaries from the Intel
Perceptual Computing SDK. We modifed the demo applica-
tion to save the recorded depth/color frames to disk while
tracking. We then re-tracked this data from scratch using our
technique. As illustrated in the video, as well as Figure 19,
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Figure 19: Comparison to the method of [MKO13]. The full

sequence can be seen in the accompanying video. We high-

light a few frames that are not resolved correctly by this

method, but that can be handled successfully with our solu-

tion. The last frame shows the better geometric approximation

quality of the convex body model used in [MKO13] compared

to our simpler cylinder model.

our method offers a substantial increase in tracking robust-
ness compared to [MKO13]. This can be attributed to any of
the improvements we presented, but it is difficult to quanti-
tatively identify the causes, because no control on tracking
parameters nor source code is given. Their approach com-
putes closest correspondences to the entire model, therefore
not explicitly handling occlusion. The authors also proposed
a technique to ensure that the model is fully contained in
the 3D convex hull of the data. Note that in camera space,
this amounts to constraints similar to the ones enforced by
our 2D registration (Equation 3), except that the distance
transform would be computed from the 2D convex hull of
the silhouette image. Figure 19 (Frame 448) illustrates how
our 2D registration better constrains feasible solutions. While
in [MKO13] correlation between fingers is manually intro-
duced as a grasping bias, our optimization is data driven and
encodes correlation in a more principled way. As illustrated
in Figure 19 and the video, this approach often loses tracking
during complex motion. However, it is sometimes capable of
recovering by sampling and then evaluating a reduced set of

Figure 20: Developing robust model-based tracking is essen-

tial to enable tracking of hands interacting with each other or

with other objects in the environment. Here we illustrate that

for our method tracking accuracy is not significantly affected

even though we are not modeling the second hand. Note that

such motion cannot be tracked successfully by appearance-

based methods such as [TSLP14].
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Figure 21: Quantitative comparison to [TSLP14]. The graph shows the average root mean square tracking error w.r.t. ground

truth across 2440 frames. Some frames where the accuracy of the two methods differs significantly are highlighted in the bottom

row.

poses, with an approach that is similar in spirit to [OKA11a].
One advantage of their method is the higher geometric fidelity
of their convex bodies hand model compared to our cylinder
model. Furthermore, our evaluation demonstrated how their
more precise representation of the hand’s Thenar eminence,
as well as the thumb articulation, can result in more natural
fitting in these regions.

Convolutional Networks [TSLP14]. Figure 21 shows a
quantitative comparison with the appearance-based method
of [TSLP14] on a dataset provided by the authors of that
paper. Overall, the tracking quality is comparable, with a
somewhat lower average error for our method. However, our
solution avoids many of the high-error peaks of [TSLP14]
where tracking is lost completely. An additional advantage of
our approach in comparison to any of the existing appearance-
based methods is that we can handle more complex interac-
tions of two hands, since such configurations are not part of
the training data sets of existing methods; see Figure 20.

Limitations. Single-camera depth acquisition yields incom-
plete data and as such the pose reconstruction problem is
inherently ill-posed. Tracking errors can occur in certain situ-

Figure 22: Our algorithm relies on the presence of salient

geometric features in the depth map. Challenging sequences

like a rotating fist lack such features when acquired with

current commodity depth sensors, which can result in loss of

tracking.

ations as explained above when insufficient data is acquired
due to occlusions or fast motion. Similarly, the resolution of
the sensor limits tracking accuracy. As shown in Figure 22,
when geometric features become indiscriminate, our registra-
tion approach fails. Integrating color and shading information
could potentially address this issue [dLGFP11]. While our
current system requires the user to wear a wristband for de-
tection and stabilization, this could be replaced by automatic
hand labeling, e.g. using forest classifiers as in [TSLP14].

Our cylinder model proved adequate for the data quality of
current commodity sensors, but is overall limited in geo-
metric accuracy, and hence might not scale with increasing
sensor resolution. Also, in our current implementation the
model needs to be manually adapted to the user through
simple scaling operations. Without such adaptation, tracking
accuracy degrades as shown in Figure 23. This user-specific
adaption could be automated [TSR∗14] and potentially even
performed simultaneously with the realtime tracking as re-
cently proposed for face tracking [BWP13].

The PCA model used in the prior energy is an efficient, but
rather simplistic representation of the pose space. We cur-
rently do not consider the temporal order in which the hand

Figure 23: When tracking with an uncalibrated model, track-

ing correspondences can map to data belonging to erroneous

portions of the model. In the figure, the index finger remains

attached to samples associated with the thumb.
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poses of the database have been acquired, which could poten-
tially be exploited for more sophisticated temporal priors.

7. Conclusions

We have introduced a new model-based approach to realtime
hand tracking using a single low-cost depth camera. This
simple acquisition setup maximizes ease of deployment, but
poses significant challenges for robust tracking. Our analysis
revealed that a major source of error when tracking articu-
lated hands are erroneous correspondences between the hand
model and the acquired data, mainly caused by outliers, holes,
or data popping in and out during acquisition. We demonstrate
that these problems can be resolved by our new formulation of
correspondence search. In combination with suitable 2D/3D
registration energies and data-driven priors, this leads to a
robust and efficient hand tracking algorithm that outperforms
existing model- and appearance-based solutions.

In our experiments we show that our system runs seamlessly
for sensors capturing data at 60 Hz. However, we can even
support higher frame rates of up to 120 fps in anticipation
of future sensors that have recently been announced. By
fully disclosing our source code and data we ensure that our
method and results are reproducible, as well as facilitating
future research and product development.

We are investigating a technique for efficient automatic per-
sonalization of the tracking model to the acquired user, in
order to facilitate a more seamless usage of our system across
different subjects. Other examples of future efforts are robust
two-hand tracking with object interactions, combinations of
hand tracking with full body tracking, and integrating our
hand tracking solution to new interfaces and realtime applica-
tions.
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Appendix A: Projective v.s. subspace PCA

In Equation 6, minimizing Epose over θ̃ has a closed form
solution:

θ̃ = (ω5Σ
2 +ω4I)−1(ω4ΠT

P (θ−µ)).

We can therefore rewrite our data-driven energy only as a
function of θ as

Epose = ω4‖(θ−µ)−ΠPMΠT
P (θ−µ)‖2

2,

where M = ω4(ω5Σ
2 +ω4I)−1. Our formulation does not

only allow the solution to stay close to the pose space, but
also penalizes unlikely poses replacing the conventional or-
thogonal projection matrix ΠPΠT

P by a matrix ΠPMΠT
P

taking into account the PCA standard deviation. Note that
when ω5 = 0 we retrieve the orthogonal projection ΠPΠT

P .

Appendix B: Jacobians

Perspective projection Jacobian. The Jacobian of the per-
spective projection is a [2× 3] matrix depending from the
focal length of the camera f = [ fx, fy] and the 3D position x

at which it is evaluated [BTP14]:

Jpersp(x) =

[
fx/xz 0 −xx fx/x2

z

0 fy/xz −xy fy/x2
z

]

Skeleton Jacobian. The skeleton Jacobian Jskel(x) is a [3×
26] matrix. For each constraint, the bone identifier b = id(x)
associated to each 3D point x determines the affected portion
of the kinematic chain. That is, it identifies the non-zero
columns of Jskel(x). As discussed in [Bus04], the i-th column
of Jskel(x) contains the linearization of i-th joint about x.

Appendix C: Approximation using linearized function.

To approximate the following energies, we approximate E =
‖f(x)‖2

2 by linearizing f(x) as

f(x+δx)|x ≈ f(x)+J(x)δx.

The approximation is then expressed as

Ē = ‖f(x)+J(x)δx‖2
2. (10)

Joint bounds. The joint bounds energy can be written as

Ēbound = ω7 ∑
θi∈θ

χ(i)(δθi +θi −θi)
2+

χ(i)(δθi +θi −θi)
2

Temporal coherence. To compute the velocity k̇(θ) and the
acceleration k̈(θ) of a point k attached to the kinematic chain,
we use finite differences. The linearization of the temporal
energy becomes

Ētemporal = ω8 ∑
k∈K

‖Jskel(k)δθ+(k−kt−1)‖
2
2

+ω9 ∑
k∈K

‖Jskel(k)δθ+(k−2kt−1 +kt−2)‖
2
2,

where kt−1 and kt−2 are the position of such points from the
two previously optimized frames.
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Data-driven (PCA). The data-driven projection energy can
be rewritten as

Ēpose = ω4

∥
∥
∥(I−ΠPMΠT

P )(δθ+θ−µ)
∥
∥
∥

2

2
.

Appendix D: Approximation using Linearized ℓ2 Distance.

To approximate the following energies, we first reformulate
the quadratic form E = ‖f(x)‖2

2 as E = (‖f(x)‖2)
2. We then

linearize the ℓ2 norm ‖f(x)‖2 as

‖f(x+δx)‖2|x ≈ ‖f(x)‖2 +
f(x)T

‖f(x)‖2
J(x)δx.

The approximation is then expressed as

Ē =

(

‖f(x)‖2 +
f(x)T

‖f(x)‖2
J(x)δx

)2

.

When the energy is of the form E = ‖x−Π(x)‖2
2 where Π(x)

is a projection operator, Bouaziz et al. [BDS∗12] showed that
f(x)T J(x) = f(x)T . In this case, the approximate energy can
be simplified as

Ē =

(

‖f(x)‖2 +
f(x)T

‖f(x)‖2
δx

)2

.

Contrary to the approximation in Equation 10, the Jacobian of
the projection function does not need to be known. This for-
mulation is useful as the approximation in the equation above
only needs to evaluate the projection function and therefore
allows to use arbitrarily complex projection functions.

Point cloud alignment. We linearize the point cloud align-
ment energy as

Ē3D = ω1 ∑
x∈Xs

ωre(n
T (Jskel(y)δθ+d))2,

where y = ΠM(x,θ) is the closest point from x on the hand
model M with hand pose θ. n is the surface normal at y, and
d = (y− x). As we minimize the ℓ2 norm we use a weight
ωre = 1/‖d‖2 in an iteratively re-weighted least squares fash-
ion [BTP13].

Silhouette alignment. The silhouette energy is expressed
in screen space, and therefore employs the perspective pro-
jection Jacobian Jpersp(x), where x is the 3D location of a
rendered silhouette point p. Similarly to the point cloud align-
ment the linearization can be expressed as

Ē2D = ω2 ∑
p∈Sr

(nT (Jpersp(x)Jskel(x)δθ+d))2,

where d = (p−q) with q = ΠSs
(p,θ), and n is the 2D nor-

mal at the sensor silhouette location q.

Collision. Figure 24 illustrates the necessary notation with a
2D example, where xi and x j are the end-points of the short-
est segment between the two cylinders axes. The linearized

ni xi
n jx j

xi,x j

Figure 24: (left) Collision constraints definition, deepest pen-

etration points marked as xi,x j. (right) When the collision

energy is minimized in isolation the penetration points are

co-located.

energy is defined as

Ēcoll. =ω6 ∑
{i, j}

χ(i, j)
(

n
T
i

(
(Jskel(xi)−Jskel(x j))δθ+d

))2

where ni is the surface normal at xi (as shown in Figure 24),
and d = (xi −x j).

Appendix E: Non-Linear Least Squares Optimization

To solve our optimization problem we use a Levenberg-
Marquardt approach. We iteratively solve Equation 1 using
the approximate energies described in Appendix B through
Appendix D leading to a damped least squares minimization

min
δθ

Ē3D + Ē2D + Ēwrist + Ēpose + Ēkin. + Ētemp. + Ēdamp,

and update our hand pose using the update θ = θ+δθ. Note
that since our energies are written in the form:

ΣiĒi = Σi‖Jiδθ− ei‖
2
2,

our solve can be re-written as

δθ =
(

ΣiJ
T
i Ji

)−1(

ΣiJ
T
i ei

)

= 0. (11)

To stabilize the optimization, we introduce a damping energy
Ēdamp = λ‖δθ‖2

2, where λ = 100.

Appendix F: CPU/GPU Optimization

Our technique elegantly de-couples the components of our
optimization on CPU and GPU. With regards to Figure 3
only large-scale and trivially parallelizable tasks, like the
computation of constraints associated with 2D/3D ICP cor-
respondences are performed on GPU, while all others run
efficiently on a single CPU thread. In particular, the inversion
in Equation 11 is performed on CPU by Cholesky factor-
ization (Eigen3). As the final solve is performed on CPU,
we designed our optimization to minimize memory transfers
between CPU/GPU. First of all, note that although at each it-
eration we need to render an image of the cylinder model, the
texture is already located on the GPU buffers. Furthermore,
although the large (≈ 20k×26) Jacobian matrices associated
with E3D and E2D are assembled on the GPU, a CuBLAS
kernel is used to compute the much smaller (26×26, 26×1)
matrices JT

i Ji and JT
i ei. Only these need to be transferred

back to CPU for each solver iteration.
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