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Abstract

Objective. EEG artifacts of non-neural origin can be separated from neural signals by

independent component analysis (ICA). It is unclear (1) how robustly recently proposed

artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2)

how artifact cleaning by a machine learning classifier impacts the performance of

brain–computer interfaces (BCIs). Approach. Addressing (1), the robustness of different

strategies with respect to the transfer between paradigms and electrode setups of a recently

proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which

contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing

(2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials

from 101 users and 3 paradigms. Main results. We show that (1) the proposed artifact classifier

generalizes to completely different EEG paradigms. To obtain similar results under massively

reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing

(2), ICA artifact cleaning has little influence on average BCI performance when analyzed by

state-of-the-art BCI methods. When slow motor-related features are exploited, performance

varies strongly between individuals, as artifacts may obstruct relevant neural activity or are

inadvertently used for BCI control. Significance. Robustness of the proposed strategies can be

reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.

Keywords: EEG, artifact removal, independent component analysis (ICA), blind source

separation (BSS), brain–computer interface (BCI)

(Some figures may appear in colour only in the online journal)

1. Introduction

Artifacts are omnipresent in recordings of the

electroencephalogram (EEG) and other brain signals.

For neuroscientific or clinical purposes the interpretation of

EEG signals depends on relatively clean recordings. Thus,

Content from this work may be used under the terms of

the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

artifact avoidance during measurement and post-hoc artifact

removal are important steps to enhance the signal-to-noise

ratio (SNR) before scientific interpretation of the data. While

task-independent artifacts may mask an existing effect,

artifacts systematically locked to an experimental task are

even more problematic: they may lead to misinterpretation of

the data and spurious results.

The field of the brain–computer interface (BCI) not only

makes use of offline analyses, but strives to interpret mental

states on a single-trial basis in real-time and in closed-

loop scenarios [1]. BCI research is especially sensitive to
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task-locked artifacts, as the decoding of a user’s intent by

a BCI system should not rely on task-related non-neural

signals. This requirement is most important when conducting

research with healthy study participants on a novel paradigm

or analysis method which should be transferable to severely

motor-impaired patients, because they may not be physically

capable of producing those artifacts [2–4]. Understandably,

the role of artifacts is thus scrutinized during peer-reviewed

publication processes.

The exclusive use of brain signals in BCI must typically

be dropped when it comes to practical tests with end-users in

need, as hybrid BCI approaches [5, 6] provide a richer and

more reliable control than pure BCIs. Additionally, interest in

novel types of studies is growing amongst EEG researchers.

Such studies include users (inter-)acting in space [7–9] like

in collaborative and social paradigms (for a review see [10]),

the interaction between users and machines [11] and the non-

medical use of BCI methods [12, 13].

From an EEG practitioner’s point of view, a fully

automatic algorithmic solution for the treatment of artifacts

is desirable. It would put him or her in control of artifacts

and enable him or her to either remove them or check

their influence. Ideally, this would be realized by a global

classifier which could be trained once and then reliably

separates multiple types of artifactual components from

neural components. The classifier should work robustly across

data from different users and across domains. The latter

includes changing experimental paradigms and tasks, different

preprocessing methods and varying EEG electrode setups. It

should do so without any need of re-training, and it should not

require separate artifact recordings before it can be applied to

novel scenarios.

1.1. State-of-the-art IC artifact classification

For an extensive review of artifact reduction techniques

in the context of BCI-systems, we refer the reader to

[14]. In our work, we concentrate on a class of popular

artifact rejection approaches, which decompose the original

EEG into independent source components (ICs) using

independent component analysis (ICA). This method exploits

the assumption that artifactual signal components and neural

activity are generated independently. Artifactual ICs are hand-

selected and then discarded. The remaining neural components

are used to reconstruct the EEG [15, 16].

While assumptions for the application of ICA methods

are only approximately met in practice (no systematic co-

activation of artifactual and neural activity, linear mixture

of independent components (ICs), stationarity of the sources

and the mixture, prior knowledge about the number of

components), their application usually leads to a good, albeit

not perfect separation for common artifacts such as blinks, eye

movements or scalp muscles [17–20]. ICA has successfully

been applied to the removal of cochlea implant artifacts [21].

However, gait-related artifacts are reported to remain in most

of the ICs in EEG recorded during mobile activities [9, 22].

Because a thorough analysis of the achievable separation

performance is out of the scope of this paper, we refer the

reader to [17, 23, 24] on the question of which ICA variants are

well-suited for artifact rejection. Instead, we focus on practical

tools which avoid the time-consuming hand-rating process

of ICs by classifying ICs with the help of machine learning

methods into artifactual and non-artifactual components. Most

approaches concentrate on eye artifacts [25–31], but automatic

classification has also been successful for heart-beat artifacts

[28, 31], generic discontinuities [29], muscle artifacts [31–34]

and even very specialized artifacts such as cochlear implants

[21]. As most of these methods have a supervised basis, to

some degree they reflect the specific conditions of the training

set. The EEG practitioner is now faced with the question of

how well supervised methods generalize to his or her data

acquired under novel experimental conditions with different

preprocessing.

Unsupervised methods successfully circumvent this

problem for example by reverting to automatic thresholding

strategies [29]. However, these methods are often limited to

the use of one or two features and detect only certain types of

artifacts. It is unclear how to extend them to more complex

artifacts with a varying physiological fingerprint, such as

muscle artifacts. For supervised or template-based approaches,

first studies suggest that generalization to novel paradigms is

possible [28, 30, 31, 34]; however, efforts have concentrated

on eye artifacts [28, 30].

1.2. Robustness under novel paradigms and electrode setups

In this paper, we take a step forward by analyzing the

generalization ability of a state-of-the-art supervised IC

classification algorithm which we have recently proposed [34].

It is not restricted to the classification of eye or muscle artifacts,

but is equally well suited to detect other artifacts such as

loose electrodes. By comparing three strategies, we investigate

this multi-artifact classifier wrt. new electrode setups and

paradigms. We ask the following questions: How does a

change of the electrode setup impact the IC classification

performance? Is it necessary to hand-label components of the

new data set and retrain the classifier based on those? How

strong is the deterioration of IC classification performance

without re-training? We investigate these questions for three

data sets of 6303 labeled ICs from 35 participants in 3

experimental studies: a reaction time (RT) task embedded in

a simulated-driving task, an auditory event-related potential

study (ERP-BCI) and a study analyzing continuous EEG data

(CNT) of subjects instructed to listen to short stories.

1.3. Effect on BCI performance

After having demonstrated the robustness properties of the

IC classification, we are interested in the effects of automatic

ICA artifact cleaning on the classification of EEG trials in

BCI systems. As a first proof-of-concept, Halder et al [33]

applied artifact cleaning to data from three participants who

performed motor imagery. Depending on whether artifacts

were systematically co-activated with the task or not, opposite

effects of artifact cleaning on BCI classification performance

were demonstrated. To the best of our knowledge, only small
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data sets of one or two participants have been analyzed since

then [35, 36].

To fill this gap, we extend our analysis from [34] by

investigating the overall effect of ICA artifact cleaning on

BCI performance to data of 101 participants wrt. 3 BCI

paradigms: auditory event-related potentials, event-related

(de-)synchronization and slow motor-related potentials due

to motor imagery tasks.

1.4. Software for the EEG practitioner

Last but not least, we make our IC classification software

available as an EEGLAB plug-in ‘MARA’ (Multiple Artifact

Rejection Algorithm). EEGLAB [37] is a popular, Matlab-

based open-source tool and used by a growing community of

EEG researchers. As existing ICA-based plug-ins primarily

focus on the detection of eye artifacts [27–29], we hope this

will deliver a substantial contribution to the community by

assisting EEG practitioners with the rejection of multiple type

of artifacts.

2. Methods and materials

2.1. Processing chain for ICA artifact rejection

The typical process chain for artifact rejection with ICA

consists of the following steps: first, a rough pre-cleaning

of the data by channel rejection and trial rejection based on

variance criteria may be performed. Second, a dimensionality

reduction may help to avoid an unnatural splitting of (neural)

sources. Unfortunately, the optimal number of components

to extract remains unknown and has to be determined either

by visual inspection or by a heuristic, such as retaining 99%

of the explained variance or a fixed number of components.

Third, ICA methods decompose the observed EEG data x

into unknown source components s assumed to be mutually

independent and following the generative linear model

x = A · s. Finally, artifactual source components are identified

which allows the EEG signals to be reconstructed without

them.

In manual classification of ICs, experts ratings are

based on a component’s time series, its power spectrum

and spatial pattern (given by the respective column of A).

Unfortunately, ICA frequently results in mixed components

containing aspects of both neural and artifactual activity

which cannot be rated unambiguously [38]. Consequently,

such mixed components tend to be either retained or rejected

depending on the specific application. The subjective nature

of such expert decisions is reflected by the fact that experts

disagree with each other as well as with themselves over time

[39]. Nevertheless, the reliability of component classification

is often not reported, and if it is, researchers use one of many

metrics of inter-rater reliability statistics which are difficult

to compare directly (e.g. Krippendorff’s alpha in [20], inter-

class correlation coefficient in [40], degree of association phi

in [28], mean-squared error (MSE) or average agreement in

[34, 39]).

Automatic classification of ICs based on Machine

Learning methods offers a well-described algorithm which

rates consistently over time. However, this algorithm, too,

is of subjective nature in the sense that it is optimized to

predict labels similar to those labeling strategies applied by

human raters. The performance of the algorithm thus crucially

depends on the quality of the training set and its labels. For all

our IC data sets, experts were instructed to identify components

which are predominantly driven by artifacts.

In this paper, automatic IC classification is realized by

a linear pre-trained classifier. It is based on the following

six features which were determined in a feature selection

procedure described in [34]. One feature aims to detect outliers

in the time series of an IC, three features are extracted from

the spectrum, and two features extract information from the

scalp pattern of an IC—the latter depending directly on the

electrode layout.

(i) Current density norm. ICA itself does not provide

information about the locations of the sources s. However,

ICA patterns can be interpreted as EEG potentials for

which the location of the sources can be estimated. We

considered 2142 locations arranged in a 1 cm spaced

3D-grid, formulated the forward problem according to

[41–43] and sought the source distribution with minimal

l2-norm (i.e. the ‘simplest’ solution) [44, 45]. Since this

source distribution can model cerebral sources only, it

is natural that artifactual signals originating outside the

brain can only be modeled by rather complicated sources.

Those are characterized by a large l2-norm, which we use

as a feature.

(ii) Range within pattern. The logarithm of the difference

between the minimal and the maximal activation in a

pattern.

(iii) Mean local skewness. The mean absolute local skewness

of time intervals of 15 s duration. This feature aims to

detect outliers in the time series.

(iv) λ and fit error. These two features describe the deviation

of a component’s spectrum from a prototypical 1/ f curve

and its shape. The parameters k1, λ, k2 > 0 of the curve

f �→
k1

f λ
− k2 (1)

are determined by six points of the log spectrum: (1) the

log power at 2 Hz, (2) the log power at 3 Hz, (3) the

point of the local minimum in the band 5–13 Hz, (4)

the point 1 Hz below the third point of support, (5) the

point of the local minimum in the band 33–39 Hz, and (6)

the point 1 Hz below the fifth point of support. Finally,

the logarithm of λ and of the MSE of the approximation

of f to the real spectrum in the 8–15 Hz range are used as

features for the classifier.

(v) 8–13 Hz. The average log band power of the α band

(8–13 Hz).

2.2. Data sets and experimental paradigms

Data sets of four experimental EEG paradigms (named RT,

CNT, MI-BCI, ERP-BCI) were available for this study. For

three of them, RT, CNT and ERP-BCI, expert-labeled ICs
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(artifacts versus neural sources) were available. Two data sets

(MI-BCI, ERP-BCI) stem from BCI experiments. As the trial-

wise BCI tasks are known, the estimated single-trial BCI-

classification performance provides a metric for the influence

of a preceding artifact treatment.

RT. For this data set, labeled ICs were available. In a

simulated-driving study, participants performed a forced-

choice left or right key press RT task upon two auditory stimuli

in an oddball paradigm [34]. EEG data was recorded from

121 approx. equidistant sensors and high-noise channels were

rejected based on a variance criterion. We selected 43 runs of

10 min duration from eight participants that had 104 electrodes

in common. Prior to the IC computation via TDSEP [46], a

2 Hz high-pass filter was applied, and dimensionality was

reduced to 30 PCA components. Two experts hand-labeled the

resulting 30 ICs per run into artifactual and neural components

(1290 labeled ICs altogether).

Of these, 840 ICs (28 runs from 5 participants) were

used to train a linear classifier CRT to discriminate artifactual

from neural components. Another 450 ICs (15 runs from

3 remaining subjects) were available for estimating the

generalization performance of CRT. The training set contained

52% of artifactual ICs, the test set contained 59%.

CNT. For this data set, labeled ICs were available. Nine

participants continuously listened to audio–visual stories

during short runs of an average duration of 3.77 min [40]. The

resulting 71 recordings contained 62 EEG channels plus one

EOG channel. The recording of each run was appended with

a short eyes-closed and eyes-open recording and high-pass

filtered at 0.16 Hz. No dimensionality reduction was applied,

before ICs were estimated by FastICA [47] on the full set

of electrodes. This decomposition yielded 63 × 71 = 4473

components, which were hand-rated by three experts into 47%

artifactual and 53% neural source components.

ERP-BCI. For this data set, labeled ICs as well as

labeled BCI-trials were available. In a spatial auditory BCI

study which made use of auditory event-related potentials,

participants underwent a calibration run of approx. 30 min

duration and an online spelling run [48]. In the online run,

subjects were asked to write a sentence while auditory and

visual feedback was provided. EEG was recorded from 61

electrodes while the participants listened to a rapid sequence

of 6 auditory stimuli and were instructed to silently count the

number of appearances of a rare target tone.

For the classification of artifacts, data of 18 participants

was analyzed. Their EEG signals were band-pass filtered

between 0.1 and 40 Hz and the dimensionality was reduced

to 30 PCA channels. Subsequently 30 ICs were computed

per run using TDSEP. The resulting 540 source components

were hand-labeled into 72% artifactual and 31% neural source

components.

To assess the influence of artifact correction onto the

BCI classification performance, data of the 21 BCI novices

participating in the first session of the auditory ERP speller

study of Schreuder et al [48] was re-analyzed. Their calibration

measurement is used to train a shrinkage regularized linear

classifier based on spatio-temporal ERP features [48, 49]. BCI

performance evaluations are based on the re-analyzed online

data of these participants.

MI-BCI. For this data set, labeled BCI-trials were available,

but no labeled ICs. This data set was recorded with 119 EEG

channels from 80 healthy BCI novices, who first performed

motor imagery tasks (left hand, right hand and both feet)

in a calibration run (i.e. without feedback). Every 8 s, the

requested BCI task of the current trial was indicated by

a visual cue. A CSP-based BCI-classifier (see below) was

trained on the labeled calibration trials using the pair of classes

which provided best discrimination. During the three online

runs of 100 trials each participant controlled an application

which provided continuous visual feedback in the form of a

horizontally moving cursor [50].

Motor imagery data can be exploited by two different

types of EEG features.

(i) CSP-MI-BCI: the most common strategy makes use of

oscillatory features which describe event-related (de)-

synchronization (ERD/ERS) in the alpha- and beta band

of the EEG. After enhancing the SNR of these effects

by individual data-driven spatial filters, which are derived

by the common spatial patterns (CSP) analysis [51], CSP-

features can be classified by a shrinkage-regularized linear

classifier.

(ii) LRP-MI-BCI: the second strategy is based on slow motor-

related potentials (e.g. the lateralized readiness potential

(LRP)). Different classes of imagined movements are

distinguished with an ERP-type analysis [49, 52]: EEG

is band-pass filtered between 4 and 8 Hz, before a small

number of class-discriminative intervals is determined

on the calibration data. The average activity per interval

and channel is used as features for a binary shrinkage-

regularized linear classifier.

While the original online runs were performed with the

CSP-MI-BCI classifier, without artifact rejection, the offline

re-analysis makes use of both types of features in order to

assess the influence of a preceding artifact removal.

2.3. Robustness under novel paradigms and electrode setups

For the classification of artifactual IC components, three

classification strategies—fixed, adapted and study-specific—

were compared on the ERP-BCI and the CNT data set. Figure 1

visualizes the strategies. In the fixed scenario, classifier CRT is

trained once on features of labeled ICs of the RT data set,

and furthermore applied to ICs of any other data set. Neither

hand-labeling of novel ICs nor re-calculation of features or

any re-training of the classifier is necessary in this simplest

scenario. While hand-labeling of novel ICs is also avoided

successfully in the adapted strategy, a channel adaptation on

the RT-data is performed by cutting the training patterns to

the specific electrode layout of the test data set. Features then

need to be re-calculated based on the reduced patterns and a

4
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Figure 1. Schematic plot of the three transfer strategies fixed, adapted and study-specific. Expensive hand-labeling steps of ICs are marked
with red arrows, cheap channel reduction and classifier training steps in green and black. Note that any self-application of classifiers in the
study-specific strategy was performed exclusively in a leave-one-subject-out validation scenario.

re-training yields the adapted classifier CRT−A. All steps can

be performed automatically and do not require user input.

The third strategy, study-specific, requires the effort of experts

every time a novel study is performed. The ICs of at least

some subjects need to be hand-labeled, before a study-specific

classifier (e.g. CCNT or CERP) can be trained and applied to

novel subjects. It’s performance was evaluated by leave-one-

subject-out cross-validation.

To explore the robustness of the artifact classifier against

reduced EEG channel sets, we compared the fixed IC-classifier

CRT with the adapted IC-classifier CRT−A on the RT and

ERP-BCI test data sets with reduced setups (varying from

16 to 104 resp. 61 EEG channels). All electrode setups were

approximately equidistant and covered the whole scalp.

2.4. Effect on BCI performance

This offline re-analysis of three BCI paradigms described in

section 2.2 compares standard BCI performance with and

without a preceding ICA artifact cleaning. In both cases,

artifactual channel and trial rejection based on a variance

criterion was performed prior to BCI training. Training of

the BCI-classifiers is based on the calibration runs only, and

BCI performance tests are performed with the online runs of

the participants.

ICA artifact cleaning is included in a manner that

allows for real-time BCI applications. Prior to TDSEP, we

estimated whether a PCA pre-processing to 99% explained

variance would be useful via cross-validation on the calibration

data. This was the case only for the LRP-MI paradigm. IC

components were then derived by TDSEP and classified with

the adapted classifier CRT−A on the calibration data. The BCI

is set up on the remaining ICs. On the online runs, un-mixing

and component rejection is performed according to the de-

mixing determined on the calibration data. The BCI classifier

is applied to features extracted from the remaining components

of the online runs.

3. Results

3.1. Robustness under novel electrode setups

Figure 2 shows the classification error for the fixed classifier

CRT and the adapted classifier CRT−A for different channel

setups on both the RT and the ERP-BCI test sets. On the RT

test data with the full 104 channel setup, a classifier using

all six features achieves a MSE of 9.3% only, which slightly

outperforms the use of only four pattern-independent features

(12.4% MSE). While CRT generalizes robustly over the range

of 104 to 48 electrodes in the RT test sets, its error increases up

to 31.8% for the smallest set of 16 electrodes. On the ERP-BCI

data set, the use of only four pattern-independent features is

already outperforming the fixed classifier CRT on the full 61

electrode setup. Classification performance of CRT then breaks

down to 50% on the smallest set of 16 electrodes. In both the

RT and the ERP-BCI data set, the drop in overall performance

is due to the bad performance of both pattern-based features

of over 50%.
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(b) ERP-BCI data set

Fixed classifier Adapted classifier

Figure 2. Mean classification error ± standard error estimated on (a) the RT and (b) the ERP-BCI test sets for different channel setups. The
left plot shows the results for a fixed classifier, the right plot for a classifier adapted to each channel setup.

For the adapted strategy (i.e. re-training the classifier on

the patterns cut to the specific electrode setup), the error of

the pattern features (range within pattern and current density

norm) was much less pronounced in both data sets. The overall

error of CRT−A for 16 electrodes remained at 11.3% on the

RT data set (compared with 9.3% on 104 channels) and at

15.9% for the ERP-BCI data set (compared with 13.3% on 61

channels). In both data sets, we slightly gain from using the

pattern features. On the reduced electrode setup, the classifier

weight of the range in pattern dropped, while the weight for

current density norm remained stable.

3.2. Robustness under novel paradigms

The results for the three proposed classification strategies on

the three labeled IC data sets are summarized in table 1. The

adapted classifier CRT−A (trained on the RT data set cut to the

specific electrode montage of the ERP-BCI or CNT data set)

achieves an error of 13.3% on the ERP-BCI data and an error

of 14.0% on the CNT data set.

The classification performance can be improved by a re-

training on labeled data from the same study, but the effect is

small. We observe an error of 9.3% on the RT data set, an error

of 9.6% on the ERP-BCI data set and an error of 13.1% on the

CNT data set. This improved performance is due to two effects:

first, adjusting feature thresholds for the specific study may

improve the performance of each feature. For example, a re-

training of the 8–13 Hz feature of the CNT data set decreased

its error from 33.3% to 18.0%. Second, feature weights adjust

such that more discriminative features obtain a higher weight.

Interestingly, after re-training both CERP and CCNT primarily

use one of the two pattern features—CERP focuses mostly on

the current density norm feature, while CCNT is strongly based

on the range within pattern feature.

3.3. Effect on BCI performance

The upper plots of figure 3 show scatter plots of BCI

performance with and without preceding ICA artifact cleaning

for the three analyzed BCI paradigms. For ERP-BCI, BCI

performance decreased slightly from 69.4% to 68.3% (t(20) =

−2.43, p = 0.03, d = 0.21). On average, 44 components were

retained and 16 artifactual components were removed. There

was no significant change in overall MI-CSP performance
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Figure 3. Upper plots: effect of artifact correction for three BCI paradigms. Dots over the diagonal indicate participants, whose data
improved in classification performance (in per cent correct trials), dots below indicate participants whose performance decreased by the
correction. Changes are strongest for the paradigm MI-LRP, which is most sensitive to eye artifacts. For this paradigm, participants (A) and
(B) are highlighted, which undergo relatively strong changes. Lower plots: effect of artifact cleaning for participants (A) and (B). Top row:
average activity of selected channels for left trials (blue) and right trials (green). The four upper scalp plots indicate the spatial distribution
of average activity (in µV ) for one or two time intervals (in columns) and for left and right trials (upper and lower scalp plots). Lowest scalp
plots indicate the spatial distribution of class-discriminative information (as signed r2 values) per interval. For participant A, a dominating
eye artifact could be removed, which lead to an increase in the SNR and of classification performance. For participant B, very little
class-discriminant signal remained after artifact cleaning.

Table 1. Feature weight vectors w and test errors (MSE) for three data sets (RT, ERP-BCI and CNT) and three classification strategies (fixed
classifier CRT, adapted classifier CRT−A and study-specific classifiers CERP, CCNT). Test errors are reported for the 6 single features and for the
combined classification. The fixed classifier is trained on the RT train data set. The adapted classifier is trained on the RT train data set cut to
the specific electrode montage. The study-specific classifiers are trained on data from the same study and evaluated with
leave-one-subject-out CV.

Current density Range within Local
norm pattern skewness λ 8–13 Hz FitError Combined

RT CRT w 0.485 0.511 0.404 0.155 −0.522 −0.210
MSE 0.144 0.151 0.355 0.158 0.171 0.173 0.093

ERP-BCI CRT MSE 0.296 0.289 0.459 0.244 0.154 0.357 0.185

CRT−A w 0.454 0.463 0.384 0.235 −0.563 −0.247
MSE 0.178 0.259 0.459 0.244 0.154 0.357 0.133

CERP w 0.533 0.085 0.363 0.359 −0.650 −0.009
MSE 0.244 0.289 0.376 0.237 0.150 0.298 0.096

CNT CRT MSE 0.421 0.198 0.275 0.190 0.323 0.489 0.167

CRT−A w 0.341 0.498 0.417 0.234 −0.587 −0.251
MSE 0.265 0.214 0.275 0.190 0.323 0.489 0.140

CCNT w 0.035 0.589 0.459 0.259 −0.602 −0.010
MSE 0.234 0.196 0.232 0.163 0.180 0.569 0.131

(t(79) = −0.50, p = 0.62, d = 0.04) which remained constant

at ≈72% after the removal of on average 18 artifactual

components (69 components were kept). In both BCI systems,

the effect per subject was small.

The strongest changes were observed for the MI-LRP

paradigm, which is most prone to eye artifacts due to the

focus on low-frequency signal components. Note that as

feedback was provided with a moving cursor, eye activity

7
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Figure 4. Screen shot of the MARA plug-in applied to EEGLAB sample data.

may be correlated with the two classes. On average, nine

components were retained and ten artifactual components were

removed. While the mean BCI accuracy remained constant at

≈60% (t(79) = 0.23, p = 0.82, d = 0.03), the performance

of each participant varied considerably. The lower plots

of figure 3 exemplarily highlight the effect of the artifact

rejection for two participants. Without artifact rejection, both

participants mainly use eye artifacts for BCI control (frontal

class-discriminative activation). The effect of artifact removal

can be twofold. For participant A, eye artifacts obstruct

the underlying neural activity, and the system’s accuracy

improved upon artifact cleaning from 66.3% to 73.6% due to

an improved signal-to-noise level. In participant B, very little

class-discriminant activity remained after the eye activity was

removed. BCI classification dropped considerably from 91.3%

to 64.0%.

4. Discussion

To summarize, we have analyzed the robustness properties

of our recently proposed artifact classification method and

proposed a strategy to handle a wide range of electrode

setups. The proposed adapted strategy fully automates the

time-consuming rating of artifactual ICs and reliably identified

multiple types of artifacts from 35 participants and 3 EEG

paradigms.

IC classification performance of three strategies was

evaluated against expert ratings. We showed that our simplest

automatic fixed strategy (train the classifier once, then apply

to other setups) exhibits sensitivity to drastically reduced

electrode setups. As a solution, we proposed the adapted

strategy which recomputes the training features based on the

specific electrode montage of the test sets. Using this relatively

inexpensive strategy—no hand-labeling is involved—artifact

classification generalizes well even on very reduced electrode

setups.

For comparison reasons, a re-training of the classifier

using labor-intensively gained hand-labeled ICs from every

new study was analyzed (strategy study-specific). While

avoiding some generalization issues in theory, it is

prohibitively expensive in most practical situations and only

achieved a performance gain of a few per cent compared with

the adapted strategy.

We therefore recommend the adapted strategy for artifact

classification. It generalized robustly even to completely novel

EEG paradigms, with its IC classification performance (13.3%

MSE on auditory ERP data and 14.0% MSE on auditory

listening data) staying on a similar level as inter-expert

disagreements (often above 10% [34, 39]). This classification

error is remarkably low given that the studies have been

recorded with half the number of electrodes, used different

ICA methods and contained different proportions of artifactual

components.

We provide the ready-to-use artifact classifier to the

community as an open-source EEGLAB plug-in called MARA

(multiple artifact rejection algorithm). MARA automatically

adapts to novel channel setups and its output is designed

to support the experimenter in his or her decisions:

a semi-automatic mode allows for visual inspection of

components and for changing the classifier’s proposed

ratings. Figure 4 shows an example screen shot of the

visual inspection menu. The plug-in is published under the

8
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General Public License (GPL) and can be downloaded from

www.user.tu-berlin.de/irene.winkler/artifacts/.

BCI practitioners may find the application of MARA on

BCI data sets of particular interest. We used the adapted

strategy to analyze how ICA artifact cleaning impacts on

single-trial BCI performance of three different BCI paradigms.

In all three paradigms, we were able to remove artifactual

activity while maintaining the average BCI performance.

On the single subject level the effect of artifact cleaning

depends on whether artifacts mask the relevant neural activity

or serve as a control signal for BCI. While artifact cleaning had

little influence on an auditory ERP speller and on oscillatory

motor imagery data analyzed with CSP, we observed strong

effects for a paradigm known to be heavily affected by eye

artifacts, the use of slow motor-related potentials. Here our

analysis suggests that artifact removal by MARA or similar

tools may drastically improve the safety and reliability of

results, as they guarantee that rejected artifacts are not utilized

mistakenly to control the BCI system.
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