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Abstract

ARX models is a common class of models of dynamical systems. Here,
we consider the case when the innovation process is not well described by
Gaussian noise and instead propose to model the driving noise as Student'’s
t distributed. The ¢ distribution is more heavy tailed than the Gaussian
distribution, which provides an increased robustness to data anomalies, such
as outliers and missing observations. We use a Bayesian setting and design
the models to also include an automatic order determination. Basically, this
means that we infer knowledge about the posterior distribution of the model
order from data. We consider two related models, one with a parametric
model order and one with a sparseness prior on the ARX coefficients. We
derive Markov chain Monte Carlo samplers to perform inference in these
models. Finally, we provide three numerical illustrations with both simulated
data and real EEG data to evaluate the proposed methods.

Keywords: ARX models, Robust estimation, Bayesian methods, Markov
chain Monte Carlo
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the case when the innovation process is not well described by Gaussian noise and instead propose
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as outliers and missing observations. We use a Bayesian setting and design the models to also
include an automatic order determination. Basically, this means that we infer knowledge about
the posterior distribution of the model order from data. We consider two related models, one
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derive Markov chain Monte Carlo samplers to perform inference in these models. Finally, we
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1. INTRODUCTION

An autoregressive exogenous (ARX) model of orders n =
{na,mp}, is given by

Ng np
yet Y Aty = blui+ e, (1)
i=1 i—1

where a' and b} are model coefficients, u; is a known
input signal and e; is white excitation noise. In many
applications, the excitation noise is assumed to be Gaus-
sian. Then, for known model orders n, the maximum
likelihood estimate of the unknown ARX coefficients 8™ =
(af ---ap Y ---by ) is given by least squares (LS). How-
ever, two problems that are often encountered in practice
are,

(1) The appropriate order for the model is unknown. It
might even be the case that there is no single “best”
model order.

(2) The observed data is non-Gaussian in nature. This
can for instance be due to the presence of outliers in
the observations.

In this work, we propose two Bayesian ARX models
and inference algorithms, which address both of these
issues. The proposed models differs from a “standard”
ARX model on two accounts. First, instead of assuming
Gaussian innovations, we model the excitation noise as
Student’s t distributed. The t distribution is more heavy
tailed than the Gaussian distribution, which means that
the proposed ARX model can capture “jumps” in the
internal state of the system (as an effect of occasional large
innovations). Furthermore, we believe that by assuming
Student’s t distributed innovations in the model, the
proposed inference method will be more robust to model

* This work was supported by: the project Calibrating Nonlinear
Dynamical Models (Contract number: 621-2010-5876) funded by
the Swedish Research Council and CADICS, a Linneaus Center
also funded by the Swedish Research Council; and the Australian
Research Council through their Discovery Project Program.

errors and outliers in the observations, a property which
we illustrate in this work.

Second, to deal with the fact that the “true” model order
is unknown, we wish to build some form of automatic
order selection into the model. Here, we consider two
different alternative models. In the first alternative, we
let the model order n be a parameter of the model, which
we infer alongside the other unknown parameters. This is
done in a Bayesian context, which results in a posterior
probability distribution over model orders. In the second
model, we instead use a sparseness prior over the ARX
coefficients, known as automatic relevance determination

(ARD) [MacKey, 1994, Neal, 1996].

Based on the models introduced above, the resulting iden-
tification problem amounts to finding the posterior distri-
bution p(n | D), where n denotes the unknown model pa-

rameters and DT £ {yl:Ta'UJl:T} (here Y117 £ {yl, . yT})
denotes the observed sequence of inputs and outputs. In or-
der to do this we will employ a Markov chain Monte Carlo
(MCMC) sampler (see e.g. Robert and Casella [2004]). The
idea behind MCMC is to generate a Markov chain which
admits the target distribution, i.e. p(n | D), as stationary
distribution. Hence, these methods allow us to “indirectly”
sample from the target distribution, even when direct sam-
pling is impossible. We can then use the samples from the
Markov chain to compute estimates under the posterior
parameter distribution.

The inference problem resulting from the use of an ARD
prior we solve using standard MCMC algorithms. The
case when the model order n is explicitly included in the
parameter vector 7 is more challenging, due to the fact
that we are now dealing with a parameter space of varying
dimension. Hence, we need to build a Markov chain that
moves over spaces of different dimension. This will be done
using a so called reversible jump MCMC (RJ-MCMC)

algorithm introduced by Green [1995].

The use of RJ-MCMC to estimate the model order and
the parameters of an AR model driven by Gaussian noise,



is fairly well studied, see e.g. [Troughton and Godsill,
1998, Godsill, 2001, Brooks et al., 2003]. The present work
differs from these contributions, mainly in the application
of Student’s ¢ distributed innovations, which affect the
posterior distributions used in the MCMC sampling. AR
processes with Student’s ¢ innovations are considered also
by Christmas and Everson [2011], who derive a variational
Bayes algorithm for the inference problem. This approach
is not based on Monte Carlo sampling, but instead makes
use of certain deterministic approximations to overcome
the intractable integrals that appear in the expression for
the posterior distribution.

2. BAYESIAN ARX MODELS

In this section we present the two proposed Bayesian ARX
models. Common to the models is the use of a Student’s
t distributed excitation noise, as described in Section 2.1.
The models differ in how the model order is treated, and
the two alternatives are presented in Sections 2.2 and 2.3,
respectively.

2.1 Student’s t distributed innovations

We model the excitation noise as Student’s t-distributed,
with scale A and v degrees of freedom (DOF)
et ~ St(0, A, v). (2)
Equivalently, we can adopt a latent variable model in
which e; is modelled as zero-mean Gaussian, but with
unknown variance. The precision of this Gaussian is given
by Az, where the latent variable z; follows a gamma
distribution. Hence, a model that is equivalent to (2) is
given by
z~G(v/2,v/2), (3a)
€r ~ N(07 ()\Zt)_l). (3b)
Here, G(«, 8) is a gamma distribution with shape « and
inverse scale 8 and N(m,o?) is a Gaussian distribution

with mean m and variance o2.

We wish to infer the parameters A and v from data
and since we propose Bayesian models, we place prior
probability densities on these parameters. Similarly to
Christmas and Everson [2011], we use (vague) gamma
priors according to,

p(A) =G\ an, Br),
p(”) = g(V;O‘VwBV)'

2.2 Parametric model order

One alternative for automatic order determination is to
consider the model order n as a parameter, which we
estimate alongside the other parameters of the model.
Assume that we can constrain the model order as n, <

Nmax and np < Mpax (for notational simplicity, we use
the same maximum order for both polynomials). We then

consider n2,,  different model hypotheses
My sy =(¢])T0" + ey, (5)
for n ={1,1}, ..., {Nmax, Nmax}, Where
o = (=Yt—1 " ~Yt—m, Ut—1 **" ut—nb)T~ (6)

Each of these hypotheses is given the same a priori

probability. Hence, if we let n be a random variable, its
prior distribution is given by

— 1/nr2nax lf N, T € {17 sy nmax}a

p(n) = {0 otherwise. (7)

Furthermore, we model the ARX coefficients ™ as random
vectors, with prior densities

p(0" | n,6) = N(07:0,6 I, 4, ), (8)

with the same precision § for all n. Finally, we place a
gamma prior on §

p(0) = G(0; as, Bs).- (9)

Put together, the collection of unknowns of the model is
given by

n={0",n,d,z.7,\ v} (10)

The latent variables zi.7, as well as the ARX coefficients

precision ¢, can be seen as nuisance parameters which are
not really of interest, but they will simplify the inference.

2.8 Automatic relevance determination

An alternative approach for order determination is to
use ARD. Consider a high-order ARX model with fixed
orders 7 = {Nmax, Mmax |- Hence, we overparameterise the
model and the ARX coefficients 6 will be a vector of fixed
dimension m = 2nm,ax. 1o avoid overfitting, we place a
sparseness prior, known as ARD, on the ARX coefficients

p(0; | 6;) = N(0;;0,6; 1), (11)
with
p(0:) = G(d:; as, Bs), (12)
for i = 1, ..., m. The difference between the ARD prior
and (8) is that in (11), each coefficient is governed by a
different precision §;, which are i.i.d. according to (12).
If there is not enough evidence in the data that the
1th parameter should be non-zero, this prior will favor a
large value for §; which means that the ith parameter in
effect will be “switched off”. Hence, the ARD prior will
encourage a sparse solution; see e.g. MacKey [1994], Neal
[1996] for further discussion. When using the ARD prior,
the collection of unknowns of the model is given by

n=10,01.m,21.7, \, v} (13)

3. MARKOV CHAIN MONTE CARLO

Assume that we have observed a sequence of input/output
pairs Dr = {yir,ur.r}. We then seek the posterior
distribution of the model parameters, p(n | Dr). This
posterior distribution is not available in closed form, and

we shall make use of an MCMC sampler to address the
inference problem.

The most fundamental MCMC sampler is known as the
Metropolis-Hastings (MH) algorithm. In this method, we
propose a new value for the state of the Markov chain
from some arbitrary proposal kernel. The proposed value
is then accepted with a certain probability, otherwise the
previous state of the chain is kept. A special case of the MH
algorithm is the Gibbs sampler. In this method, we loop
over the different variables of our model, sampling each
variable conditioned on the remaining ones. By using the
posterior distributions as proposals, the MH acceptance
probability will be exactly 1. Hence, the Gibbs sampler
will always accept its proposed values. As pointed out
by Tierney [1994], it is possible to mix different types of
proposals. This will be done in the sampling strategies
employed in this work, where we use Gibbs moves for some
variables and random walk MH moves for other variables.

A generalisation of the MH sampler is the reversible jump
MCMC (RJ-MCMC) sampler [Green, 1995], which allows
for moves between parameter spaces of different dimen-
sionality. This approach will be used in this work, for the
model presented in Section 2.2. The reason is that when



the model order n is seen as a parameter, the dimension
of the vector " will change between iterations. An RJ-
MCMC sampler can be seen as employing standard MH
moves, but all variables that are affected by the changed
dimensionality must either be accepted or rejected as a
group. That is, in our case, we propose new values for

{n,0™} as a pair, and either accept or reject both of them
(see step (I-1a) below).

For the ARX model with parametric model order, we
employ an RJ-MCMC sampler using the following sweep ! ,

(I-1) Order and ARX coefficients:
(a) Draw {9”*,7&*} | zs41.75 A, 6, D
(b) Draw 6* | 6™ ,n*.

(I-2) Innovation parameters:
(a) Draw 2y | 0"*,71*,)\,1/, Dr.
(b) Draw A\* | 0", n*, 2%, 1.7, Dr.
(c) Draw v* | 2} .7

If we instead consider the ARX model with an ARD prior
we use the following sweep, denoted ARD-MCMC,

(II-1) ARX coefficients:
(a) Draw 6* | Zs4+1:T, )‘7 51:m»DT~
(b) Draw 6%, | 6*.

(I1-2) Innovation parameters:
(a) Draw 2}, .1 | 0%, \,v, Dr.
(b) Draw \* | 0*, 2} .7, Dr.
(c) Draw v* | 27 .7

The difference between the two methods lies in steps (I-1)
and (II-1), where the parameters related to the ARX
coefficients are sampled. In steps (I-2) and (II-2), we

sample the parameters of the excitation noise distribution,
and these steps are essentially the same for both samplers.

4. POSTERIORS AND PROPOSAL DISTRIBUTIONS

In this section, we present the posterior and proposal
distributions for the model order and other parameters
used by the proposed MCMC methods.

4.1 Model order

Sampling the model order and the ARX coefficients in
step (I-1a) is done via a reversible jump MH step. We
start by proposing a new model order n’, according to
some proposal kernel g(n’ | n). In this work, we follow the
suggestion by Troughton and Godsill [1998] and use a con-
strained random walk with discretised Laplace increments
with scale parameter /, i.e.

a(nl, | n) o exp(—lnt, — nal), i1 <7 < s (14)

and analogously for m,. This proposal will favor small
changes in the model order, but allows for occasional
large jumps. The proposal kernel can of course be chosen
differently, if we so wish.

Once we have sampled the proposed model order n’/, we
generate a set of ARX coefficients from the posterior
distribution
0" ~ p(en ‘ n/7 Zs+1:T> A, 0, DT) = N(en s Hgn' Een’ )
(15)
The mean and covariance of this Gaussian distribution are
provided in the subsequent section.

1 The reason for why we condition on some variables from time
s+ 1 to T, instead of from time 1 to T, is to deal with the unknown
initial state of the system. This will be explained in more detail in
Section 4.2.

Now, since the proposed coefficients 6™ are directly con-
nected to the model order n’, we apply an MH ac-

cept/reject decision to the pair {6, n'}. The MH accep-
tance probability is given by
P’ A 1A p(nlaenl | Zs+1:T7>‘757 DT) Q(naen ‘ nlven,)
n p(n> on | Zs+1:T, )‘a 67 DT) Q(nl7 971’ | n, 977,)
! S H b) A? 67 D !
—1A p(n' | zsy1er ) Q(n/| n )7 (16)
p(n | ZS+1ZT3)\767 DT) q(n ‘ n)
where a A b := min(a,b). Furthermore, since
p(n | Zs+1:T )\, 57 DT) X p(yl:T ‘ Ny Zs41:T, )‘7 57 ul:T)p(n)a
(17)
where the prior over model orders is flat according to (7),

the acceptance probability can be simplified to [Troughton
and Godsill, 1998]

n’ 1 —
0% |Sgnr |2 exp (58,050 prgnr ) q(n | )

6% |Sgn |2 exp (pd. Sl pen) aln’ | n)
Note that the acceptance probability does not depend on

the actual value of #™ . Hence, we do not have to carry out
the sampling according to (15) unless the proposed sample
is accepted.

P = 1A

4.2 ARX coefficients

The ARX coefficients are sampled in step (I-1a) and step
(II-1a) of the two proposed MCMC samplers, respectively.
In both cases, we sample from the posterior distribution
over the parameters; see (15). In this section, we adopt the
notation used in the RJ-MCMC sampler, but the sampling
is completely analogous for the ARD-MCMC sampler. A
“stacked” version of the linear regression model (5) is
Ys+1:T = (I)nen + €s+1:T, (18)
where the regression matrix ®” is given by
—Ys Us—1 "

—Ys—n, Us—my,

" = (19)

—Yr—-1 - —YT-n, UT-1 " UT—n,

Here, we have take into account that the initial state of the
system is not known, and only use observations from time
s+ 1 to T in the vector of observations on the left hand
side of (18). For the RJ-MCMC sampler s = max(ng,n/,)
and for the ARD-MCMC sampler s = nyax.

Let A be the precision matrix for the parameter prior,
either according to (8) or according to (11), i.e.

L, n, for RJ-MCMC,
~ ldiag(dy, ..., dr) for ARD-MCMC.

Since we condition on the latent variables z;i1.r (and
the precision parameter \), the noise term in (18) can be
viewed as Gaussian according to (3b). It follows that the
posterior parameter distribution is Gaussian, as already
stated in (15), with mean and covariance given by

(20)

Horn = Egn (q)n)T()\ZsJ,-l:T o ys—i-l:T)a (213)
Son = (@) diag(Azas1, .., Azr)@" + A) ", (21b)
respectively. Here, o denotes elementwise multiplication.

4.8 ARX coefficients precision

We now derive the posterior distributions for the ARX co-
efficients precision(s), sampled in steps (I-1b) and (II-1b)
for the two models, respectively. Consider first the model



described with parametric model order. The ARX coeffi-
cients precision § is a priori gamma distributed according
to (9). The likelihood is given by (8) and it follows (see
e.g. Bishop [2006, p. 100]) that

p(6 10" n) = G(6: a5, 55, (22)
with
a os 1
aépost = a5+ Ng + nb’ and ﬂ(}; t 55 + 5(an)TGn

(23)
Similarly, for the ARD model, we get from the prior (12)

and the likelihood (11), that the posterior distributions for
the ARX coefficients precisions are given by

p(d; | 0;) = G(di; Oéngta 30“), (24)
with
‘ 1
E?St =as+=, and f;)iOSt =05+ 591‘27 (25)
fori=1,..., m.

4.4 Latent precision variables

Let us now turn to the parameters defining the excitation
noise distribution. We start with the latent precision
variables z;11.7. These variables are sampled analogously
in steps (I-2a) and (II-2a). The latent variables are a priori
gamma distributed according to (3a) and since they are
i.i.d., we focus on one of them, say z;. The likelihood model
for z is given by (5), where the model order now is fixed
since we condition on n (in the ARD model, the order is
always fixed)

p(ye | 26,0™ A\ v, 7)) = N(yt7 (@?)Tenﬂ ()‘Zt)_l)' (26)
It follows that the posterior is given by
p(Zt | enana)‘>y7 DT) = g(zt;a508t7ﬂgt08t)a (27>
with
(o) 1 [o1) v )\
aPost = — 3 and BPost = 5 + 563 (28)
Here, the prediction error €; is given by
€ = Yt — (<P?)T‘9n- (29)

We can thus generate 27, ;. by sampling independently
from (27) fort =s+1, ..., T.

4.5 Innovation scale parameter

The innovation scale parameter \ is sampled in steps (I-2b)
and (II-2b). This variable follows a model that is very
similar to z;. The difference is that, whereas the individual
z; variables are i.i.d. and only enter the likelihood model
(5) for a single t each, we have the same A for all time
points. The posterior distribution of A is thus given by

p()‘ | 9717 Ny Zs4+1:T, DT) - g(>\a a§05t, EOSt)v (30)
with
T —
B = ay + 5 S, (31a)
post __ 1 T
A = ﬁ/\ + §€s+1;T(25+1:T o 6erlzT); (31b)

where the prediction errors €5 1.7 are given by (29).
4.6 Innovation DOF

The DOF v, sampled in steps (I-2¢) and (1I-2¢), is a priori
gamma distributed according to (4b). The likelihood for

this variable is given by (3a). It follows that the posterior
of v is given by

p(V | Zs+1:T) X p(ZS+1:T | l/)p(l/)

T
— I 9Guv/zv/20wianb,). (32
t=s+1
Unfortunately, this does not correspond to any standard
distribution. To circumvent this, we apply an MH ac-
cept/reject step to sample the DOF. Hence, we propose
a value according to some proposal kernel v/ ~ ¢q(v' | v).
Here, the proposal is taken as a Gaussian random walk,
constrained to the positive real line. The proposed sample
is accepted with probability
R (CA N YT
v zsnr) (v | v)
which can be computed using (32).

(33)

5. NUMERICAL ILLUSTRATIONS

We now give some numerical results to illustrate the
performance of the proposed methods. First, we compare
the average performance of the MCMC samplers with least
squares (LS) in Section 5.1. We then illustrate how the
proposed methods are affected by outliers and missing
data in Section 5.2. As a final example, in Section 7?7 we
i&lustrate the performance of the RJ-MCMC on real EEG
ata.

5.1 Average model performance

We evaluate the proposed methods by analysing the aver-
age identification performance for 25000 randomly gen-
erated ARX systems. These systems are generated by
sampling a uniform number of poles and zeros (so that the
resulting system is strictly proper) up to some maximum
order, here taken as 30. The poles and zeros are then
generated uniformly over a disc with radius 0.95.

For each system, we generate T = 450 observations?.
The input signal u; is generated as Gaussian white noise
with standard deviation 0.1. The innovations are simulated
from a Student’s t distribution, e; ~ St(0,1,2). The
hyperparameters of the model are chosen as a) = 8y = a,,
= V:Oz(;:ﬂg:().l.

The data is split into three parts with 150 observations
each. The first two parts are used for model estimation,
and the last part is used for validation. For the LS method,
we employ cross validation by first estimating models for
all possible combinations of model orders n, and n;, such
that both are less than or equal to nga.x = 30, on the
first batch of data. We then pick the model corresponding
to the largest model fit [Ljung, 1999, p. 500]. We then
use the full estimation data set (300 observations) to re-
estimate the model parameters. For the MCMC methods,
we use all the estimation data at once, since these methods
comprise automatic order determination and no explicit
order selection is made.

The average model fit for the validation data, for the
25000 ARX systems are given in Table 1. We note a
slight statistically significant improvement by using the
RJ-MCMC method in comparison with the standard LS
technique. Also, the RJ-MCMC appear to perform better
than the simpler ARD-MCMC method (for this model
class). Therefore, we will focus primarily on the former
method in the remainder of the numerical illustrations.

2 When simulating the systems, we run the simulations for 900 time
steps out of which the first 450 observations are discarded, to remove
the effect of transients.



Method mean CI

LS 77.51 77.21 77.81
RJ-MCMC 78.24 77.95 78.83
ARD-MCMC 77.73 77.47 78.06

Table 1. The average and 95% confidence intervals
(CI) for the model fit (in percent) from experiments
with 25000 random ARX models.
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Fig. 1. Left: The difference in model fit between the R.J-
MCMC and LS methods. Right: One particular ran-
domly generated ARX model with a large innovation
outlier that affects the system output.

In the left part of Figure 1, the differences in model fit
between RJ-MCMC and LS for all 25000 systems are
shown. We note that there are no cases with large negative
values, indicating that the RJ-MCMC method performs at
least as good as, or better than, LS for the vast majority
of these systems. We also note that there are a few cases
in which LS is much worse that RJ-MCMC. Hence, the
average model fit for LS is deteriorated by the fact that the
method completely fails from “time to time”. This is not
the case for the proposed RJ-MCMC sampler (nor for the
ARD-MCMC sampler), which suggests that the proposed
method is more robust to variations in the data.

It is interesting to review a typical case with a large dif-
ference in model fit between the two methods. Data from
such a case is shown in the right part of Figure 1. Here,
we see a large jump in the system state. The ARX model
with Student’s ¢ distributed innovations can, due to the
heavy tails of the noise distribution, accommodate for the
large output values better than the model with Gaussian
noise. The corresponding model fit for this system were
46.15% for the RJ-MCMC method and 14.98% for the LS
methods.

It is important to note that the use of the LS method is
due to its simplicity. For the problem under study the LS
method is the maximum likelihood (ML) solution to an
ARX model with Gaussian noise and a given model order.
The ML problem can of course also be posed for the case
where t distributed noise is assumed. Another alternative
would be to make use of a prediction error method with a
robust norm, such as the Huber norm. However, neither of
these methods would be able to account for the fact that
the model order is unknown.

5.2 Robustness to outliers and missing data

We continue by evaluating the proposed models and infer-
ence algorithms in the presence of missing data or outliers
in the observations. The hypothesis is that, due to the use
of Student’s ¢ innovations in the model, we should be more
robust to such data anomalies than an LS estimate (based

on a Gaussian assumption).

In these experiments, the innovations used in the data
generation are drawn from a Gaussian distribution with
unit variance. We then add outliers or missing observations
to the outputs of the systems (i.e. this can be seen as
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Fig. 2. Predictions vs. observations for data with outliers
(left) and data with missing observations (right). The
model fit values for the outlier data example are
91.6% for the RJI-MCMC (stars) and 40.2% for LS
(dots). The corresponding values for the missing data
example are 94.4% and 75.7%.

an effect of sensor imperfections or measurement noise).
This is done by randomly selecting between 1-3 % of the
observations in the estimation data, which are modified as
described below. In the first set of experiments we add out-
liers to the selected observations. The size of the outliers
are sampled from a uniform distribution U(—5yT,5y™),
with y* = max |y;|. In the second set of experiment, we
instead replace the selected observations by Gaussian noise
with standard deviation 0.1, to represent missing data due
to sensor errors.

For each scenario, we generate 1000 random ARX systems
and simulate T' = 450 observations from each. We then
apply the proposed MCMC samplers and LS with cross
validation, similarly to the previous sections but with the
modifications described above. Table 2 gives the average
results over the 1000 randomly generated models with
added outliers and missing values, respectively. Here, we
have not corrupted the validation data by adding outliers
or missing observations, not to overshadow the results?.
The mean results show statistically certain differences
between the LS approach and the two proposed methods.
We conclude that, in general the proposed MCMC based
methods are more robust to data anomalies such as missing
observations or outliers.

Outliers Missing data
Method mean CI mean CI
LS 39.13 37.86 40.41 75.20 74.00 76.40
RJ-MCMC 70.54 69.03 72.04 80.18 78.74 81.62
ARD-MCMC  72.46 71.02 73.91 81.57 80.24 82.90

Table 2. The mean and 95% ClIs for the model fit (in
percent) from 1000 systems with outliers and missing
data, respectively.

In Figure 2, the predicted versus observed data points
are shown for the RJ-MCMC method (stars) and the
LS approach (dots), for two of the data batches. It is
clearly visible that the LS method is unable to handle the
problem with outliers, and the predictions are systemati-
cally too small (in absolute value). LS performs better in
the situation with missing data, but the variance of the

prediction errors is still clearly larger than for the RJ-
MCMC method.

3 If an outlier is added to the validation data, the model fit can be
extremely low even if there is a good fit for all time points apart
from the one where the outlier occurs.



5.3 Real EEG data

We now present some results from real world EEG data.
That EEG data often include large outliers (and therefore
deviations from normality) is well-known and therefore
this data serves as a good example for practical applica-
tions of the proposed methods.

The EEG data® shown in Figure 3 is taken from
Keirn [1988] and is clearly non-Gaussian. The RJ-MCMC
method with Student’s ¢ innovations is used to estimate
an AR model for this data set. The resulting estimated
posterior densities for the model order and the degrees-of-
freedom in the innovation distribution are shown in the
lower parts of Figure 3.

This illustrates the advantages of the RJ-MCMC com-
pared with traditional methods, as it allows for weighting
several different models using the estimated posterior den-
sity values. In addition, the estimated posterior density
of the DOF of the innovations, is useful for quantifying
deviations from normality. This as the Gaussian distri-
bution is asymptotically recovered from the Student’s ¢
distribution with infinite DOF. As the maximum posterior
value is attained at approximately 4.1 DOF, we conform
that the innovations are clearly not Gaussian. Finally, we
conclude that the RJ-MCMC method is useful in estimat-
ing AR models with non-Gaussian excitation noise and
also returns other useful information not provided by more
traditional methods, such as LS.

6. CONCLUSIONS AND FUTURE WORK

We have considered a Bayesian approach to ARX modeling
and have proposed two related Bayesian ARX models.
To be able to capture non-Gaussian elements in the data
and to attain an increased robustness to data anomalies
as well as model errors, the innovations are modeled as
Student’s t distributed. Furthermore, both models contain
some mechanism for automatic order selection, based on
a parametric order for the first model and an ARD
sparseness prior for the second model.

4 The data is available online at the homepage: http://www.cs.
colostate.edu/eeg/eegSoftware.html.
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Fig. 3. Upper: the EEG signal collected on one specific
channel and patient. Lower left: The estimated poste-
rior model order density from the RJ-MCMC method.
Lower right: The estimated posterior degrees-of-
freedom density for the Student’s ¢ distributed inno-
vations from the RJ-MCMC method.

To perform inference in these models, we derive two
MCMC samplers. For the model with parametric model
order we consider reversible jump MCMC (RJ-MCMC)
moves, to account for the fact that the dimensionality of
the parameter space is changing over iterations. For the
model with an ARD prior, we use a more standard MCMC
sampler, which we denote ARD-MCMC. Three numerical
examples have been presented, providing evidence that
the proposed models provide increased robustness to data
anomalies, such as outliers and missing data, compared
to LS. Furthermore, by evaluating the proposed methods
on a large number of randomly generated ARX systems,
we have shown that the proposed methods perform on
average as good as (ARD-MCMC) or better (RJ-MCMC)
than LS with cross validation, when the true system
is in the model class. This was done to provide some
confidence in the proposed ideas. The same experiments
suggest that a parametric model order is preferable over
an ARD prior for ARX models. The gain in average
performance for RJ-MCMC over LS, can be traced back to
certain systems/data realisations, for which LS gives bad
model estimates which deteriorate the average fit. The RJ-
MCMC method is more robust against these occasional
drops in performance.

Another benefit with the proposed methods is that they
provide a type of information which is not easily attainable
using more standard techniques. As an example, this can
be the posterior distribution over the model order of an
ARX model, as illustrated in Figure 3.

There are several interesting avenues for future research,
and we view the present work as a stepping stone for
estimating more complex models. The next step is to
generalize the proposed methods to encompass other lin-
ear models, e.g. OE and ARMAX models. A more far
reaching step 1s to generalize the methods to nonlinear
system, possibly starting with nonlinear ARX by using
Particle MCMC methods [Andrieu et al., 2010]. It is also
interesting to further analyse the differences between the
two proposed models and if any other sparseness prior is
a better choice than the ARD.
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