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Abstract

Fast radio transient search algorithms identify signals of interest by iterating and applying a threshold on a set of
matched filters. These filters are defined by properties of the transient such as time and dispersion. A real transient
can trigger hundreds of search trials, each of which has to be post-processed for visualization and classification
tasks. In this paper, we have explored a range of unsupervised clustering algorithms to cluster these redundant
candidate detections. We demonstrate this for REALFAST, the commensal fast-transient search system at the Karl
G. Jansky Very Large Array. We use four features for clustering: sky position (l, m), time, and dispersion measure
(DM). We develop a custom performance metric that makes sure that the candidates are clustered into a small
number of pure clusters, i.e., clusters with either astrophysical or noise candidates. We then use this performance
metric to compare eight different clustering algorithms. We show that using sky location along with DM/time
improves clustering performance by ∼10% as compared to the traditional DM/time-based clustering. Therefore,
positional information should be used during clustering if it can be made available. We conduct several tests to
compare the performance and generalizability of clustering algorithms to other transient data sets and propose a
strategy that can be used to choose an algorithm. Our performance metric and clustering strategy can be easily
extended to different single-pulse search pipelines and other astronomy and non-astronomy-based applications.

Unified Astronomy Thesaurus concepts: Clustering (1908); Random Forests (1935); Radio transient sources
(2008); Radio interferometry (1346); Extragalactic radio sources (508); Radio bursts (1339); Very Large
Array (1766)

1. Introduction

One of the significant difficulties when seeking fast-transient
radio signals is the load of candidates that results from a transient
search: it is common for a search algorithm to return millions to
billions of candidates from a survey, only a few of which end up
being genuine (the rest being thermal noise and radio-frequency
interference (RFI)). Even one bright event, whether astrophysical
or artificial, can generate many hundreds of separate candidates.
This is because search algorithms iterate over a set of matched
filters and identify transients that exceed the detection threshold.
Clustering algorithms to account for this effect are of dire
importance to any radio transient search pipeline. A rigorous study
of an effective clustering algorithm for fast radio transient searches
is the primary purpose of the study reported here.

To understand this paper’s context, it is important to review the
main procedural components of a typical search for fast radio
transients. The term fast here specifically refers to transients for
which the dispersion delay, caused by astrophysical plasma, is
non-negligible and must be accounted for to optimize search
sensitivity. The tenuous plasma that fills the space between stars,
around galaxies, between galaxies, and elsewhere can have a
strong influence on radio signals. The most prominent influence
they have is inducing a frequency-dependent pulse sweep caused
by a frequency-dependent refractive index of cold astrophysical
plasma (Lorimer & Kramer 2004). The magnitude of this
dispersive time delay for a pulse is quantified by the dispersion
measure (DM).

When searching for a radio transient, neither its DM nor width
(i.e., duration) are known. Therefore, one must search over a
range of DMs and widths to carry out a full-sensitivity search.
DM values at which to search are chosen by considering the
expected decline in signal-to-noise ratio (S/N), due to pulse
broadening, at the adjacent DMs (Cordes & McLaughlin 2003;
Levin 2012). To summarize, a standard fast-transient-search
pipeline dedisperses the data at various trial DMs, averaging all
the frequencies to obtain a one-dimensional time series, followed
by convolution using boxcar filters of various widths. Candidate
pulses are identified by searching for peaks above a predecided
threshold, with the S/N of a candidate determined from an
estimate of the signal strength with respect to the standard
deviation within the region defined by the boxcar filter width.
Dedispersing at an incorrect DM, or using a boxcar filter of
incorrect width, would reduce the S/N of the pulse. As previously
noted, any event can lead to multiple candidates being detected by
the search pipeline if the S/N remains above the threshold at the
incorrect DM or boxcar width.
This process can lead to a substantial number of redundant

candidates caused by a single event. Clustering is performed on
these candidates to automatically combine such events at the
end of the search pipeline. Some algorithms that are currently
in common use are friends of friends and Density Based Spatial
Clustering of Applications with Noise (DBSCAN; Ester et al.
1996; Deneva et al. 2009; Barsdell 2012). However, few
clustering algorithms have been rigorously tested.
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Throughout this work, our primary motivation was to identify
the optimal clustering algorithm for single-pulse searches, in
particular in searches for fast radio bursts (FRBs). FRBs are
bright, millisecond-duration bursts of energy of extragalactic
origin (Lorimer et al. 2007). Over 150 such sources have been
seen so far (Petroff et al. 2016), and many radio telescopes
worldwide (both single dish and interferometric) are now or will
soon be outfitted with specialized hardware and software to carry
out FRB searches.

The REALFAST system at the Karl G. Jansky Very Large
Array (VLA) is one such commensal fast-transient search
system (Law et al. 2018). It is currently the only real-time
coherent-imaging interferometric search system, although
because of the importance of precise FRB localization, a
number of similar systems are in operation, commissioning, or
planning phases (Bannister et al. 2019; Kocz et al. 2019;
Michilli et al. 2021; Leung et al. 2021). REALFAST forms
thousands of de-dispersed images every second to search for
pulses in the image plane and can localize every FRB it detects
to arcsecond precision (Law et al. 2018).

The prototype REALFAST system was used for the first
localization of an FRB (Chatterjee et al. 2017). In its first year
of commensal observation at the L (1–2 GHz), S (2–4 GHz),
and C band (4–8 GHz), REALFAST detected five FRBs
(S. Bhandari et al. 2021, in preparation; S. Tendulkar et al.
2021, in preparation; Aggarwal et al. 2020; Law et al. 2020,
2021). The REALFAST pipeline focuses on searching for
transients at multiple DMs and trial widths, each of which is
then post-processed. A total intensity (Stokes I) image is
formed for each trial DM and width. Point sources in these
images with an S/N greater than a preset threshold trigger
the detection pipeline. The data corresponding to each
candidate are then saved to disk and classified using a deep
learning-based classifier (Agarwal et al. 2020). Visualizations
that show the radio image, spectrogram, spectra, and profile of
the candidate are then generated. These visualizations also
consist of other relevant candidate parameters: S/N, DM,
width, relative sky position with respect to the pointing center,
scan number, etc. and are used for follow-up inspection.

In this work, we use REALFAST data as a test case to explore
and compare candidate-clustering techniques. We also general-
ize our results to apply to single-dish telescopes, which do not
have spatial (sky location) information to use in a clustering
algorithm. This paper is laid out as follows: In Section 2, we
provide a more detailed motivation for the need for clustering
and a discussion of clustering methodologies. Section 3
describes the data used for testing the algorithm, followed by
methods explained in Section 4. The results of the analysis
are presented in Section 5, followed by a discussion and
conclusion in Sections 6 and 7, respectively.

2. Clustering

As mentioned previously, clustering is implemented between
the search and the candidate processing steps of the pipeline. In
the REALFAST system, after clustering, we choose the maximum
S/N candidate from each cluster, and only those are analyzed in
the candidate processing step. We also consider all the unclustered
candidates as individual clusters of size one and pass them onward
for processing.

In this section, we discuss the need to use clustering in the
context of a single-pulse search pipeline. Further, we use the
following terminology throughout this paper:

1. Event: The actual physical occurrence of an astrophysical
transient (e.g., FRB, pulsar) or RFI.

2. Candidate: A single detection reported by a search
pipeline. It typically consists of a set of properties (sky
location, DM, time, etc). Candidates may be random
thermal noise or associated with an event. Multiple
candidates can be associated to a single event.

3. Observation: A set of candidates generated after the
search pipeline is run on some data. It can be real or
simulated and can have candidates associated with FRB
or RFI or both.

4. Data set: A set of observations.
5. Cluster: A group of candidates (or members) with the

same labels assigned by a clustering algorithm.
6. Member: Candidates within a cluster.
7. True labels: Each member of a cluster is associated with

an event. We refer to this event as the true label of that
member.

8. Real/FRB/transient: Event, cluster, or member asso-
ciated with an astrophysical transient.

9. RFI: Event, cluster, or member that is not astrophysical.

2.1. Expected Number of Candidates from a Single
Astrophysical Event

As explained in the previous section, the following search
parameters are reported for each candidate detected by the
REALFAST search pipeline: DM, time of occurrence of the
candidate, relative sky position with respect to the pointing
center (l, m), S/N, and width. Moreover, for each event, the
pipeline can return multiple candidates at nearby (incorrect)
values of DM, width, and time. The observed S/N of a
candidate detected at a trial DM, width, and sky location is
given by (assuming no other losses, etc.)

= F F FS N S N . . . , 1observed optimal widthloss beamloss DMloss ( )

where S Noptimal is the S/N of the candidate when there is no loss.
Fwidthloss is the loss due to incorrect boxcar width (Cordes &
McLaughlin 2003), Fbeamloss is the loss due to position of
candidate within the primary beam of the telescope, and FDMloss is
the loss due to an incorrect DM value (Levin 2012 Section 2.3).
Using this equation, we can calculate the number of candidates

that will trigger a single-pulse search system for an astrophysical
event. For instance, we assume a VLA L-band (1–2GHz)
configuration with 256 frequency channels and a time resolution
of 5ms, and that REALFAST system is used to search for
transients. We then search for DMs from0–3000pccm−3 and set

=F 0.95dmloss , i.e., up to a maximum of a 5% loss in sensitivity
between DM trials. Using this, and assuming an intrinsic pulse
width of 30ms, we can compute the DM array (Levin 2012,
Section 2.3). We also assume =t 0scatt as it is line-of-sight
dependent and is typically small. We set our boxcar search widths
to 5, 10, 20, and 40ms and the S/N detection threshold at 8.
Figure 1 shows the number of candidates detected with respect to
input S/N of the transient for two different values of transient
DMs and widths. Here, we have also assumed that the candidate is
at the center of the beam, therefore the Fbeamloss is 1. This figure
clearly shows that the number of candidates detected by the
pipeline can be large even for one event. This can overwhelm
the real-time systems that are responsible for post-processing these
candidates and writing their data to disk, hence motivating the use
of clustering algorithms.
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2.2. Unsupervised Clustering

In this paper, we have taken the approach of unsupervised
clustering. Here, we briefly discuss unsupervised clustering and
some of its caveats. Unsupervised clustering is the method used
to find meaningful clusters from an unlabeled data set, i.e.,
a priori information about the number of clusters and the true
cluster assigned for each candidate is not known (Jain et al.
1999). This is in contrast to supervised clustering for which this
information is available. In this analysis, we do not know the
clustering information of the candidates, therefore we opted for
unsupervised clustering.

Unsupervised clustering is typically done by estimating the
distance or similarity between different candidates, with the
aim that candidates with low distance might be similar and
belong to the same cluster. The clustering algorithms we
discuss in this paper use standard search pipeline features,
without any expensive preprocessing, and can find reliable
clusters in real time. In some cases, physically meaningful
relations between features could also be computed to enhance
clustering performance, however we do not employ these here
(Pang et al. 2018, Section 3.2).

The caveat to this approach is that unsupervised clustering
techniques can be harder than supervised methods to tune for
specific data sets. Also, due to the lack of true labels, it is
difficult to evaluate the clustering performance. We discuss the
above caveats further in Section 4.

2.3. Clustering RFI

Strong RFI events can also overwhelm the real-time pipelines
by generating a large number of candidates, sometimes at all DM
trials. Even though we use multiple filtration techniques to
mitigate RFI, some signals still reach the pipeline’s clustering
step. Narrow-band RFI can lead to many candidates at all DMs in
the DM grid (and because of the resulting time shift of the peak,
corresponding time bins). In some cases, the RFI appears as a
strong localized source in the radio image and hence is present as
a dense cluster of points in the image plane (for instance, this can
happen with a sufficiently high-altitude satellite). Therefore, we
can leverage the clustering algorithm to cluster those thousands of
triggers into one cluster, reducing the computational load by
orders of magnitude. As it is not feasible to manually label RFI

examples into multiple clusters, we cannot evaluate clustering
algorithms’ performance on identifying separate RFI clusters.
Instead, we only estimate clustering performance on FRB clusters.
This is further discussed in Section 4.3.

3. Data

Here, we describe the details of our data set and the features
we used for clustering. We used REALFAST data to generate a
data set containing representative RFI and used simulated
FRBs to generate a data set with representative candidates. We
then combined the two data sets and applied four different
preprocessing techniques (downsampling and normalization)
on the features of the candidates to simulate 250 observations,
consisting of candidates from both real and RFI events.

3.1. Feature Selection for Clustering

As mentioned in Section 1, the pipeline reports a set of
measured parameters for each candidate that satisfies the S/N
threshold criterion. For our clustering analysis, we cluster
based on DM, time (as is the standard with most past FRB
searches), and sky position (with relative direction cosines
represented by l and m as angular distances from the
observation’s pointing center) of the candidates.
Candidates associated with an FRB event are expected to be

densely located in l and m, as the FRB originates from a
specific location in the sky. They would also show an expected
S/N decrease in adjacent DM and time values (see Section 2.1)
and would be closer for those parameters. On the other hand,
RFI is randomly spread across this parameter space, but strong
RFI can show a trend in DM and time if detected at
multiple DMs.

3.2. RFI Database

In this analysis, we used data from various commensal and
commissioning observations of the REALFAST system (project
codes: 19A-242, 20A-330, and 19B-223, 20A-163), in which
the standard REALFAST pipeline detected only RFI candidates.
This data spans a range of array configurations and other
observing and search parameters (frequency, bandwidth, image
pixel size, etc.). To create candidates representative of the real-
time pipeline, we reran the REALFAST transient search on this
data with the pipeline using default search parameters (Law
et al. 2018, 2020). As clustering performance is expected to be
sensitive to the RFI environment, we selectively chose data sets
with a variety of RFI types. These data sets are representative
of the broad range of RFI we have seen at VLA and therefore
form a robust sample of RFI for our analysis. This procedure
was used to generate RFI candidates from 13 observations,
with a few to ∼6000 candidates each. We manually verified
that all these candidates were RFI and saved parameters
relevant for clustering for each candidate (Section 3.1). We will
refer to this as the RFI data set.

3.3. Simulating and Injecting FRBs

We also generated a data set of real candidates, representing
our signals of interest. This was done by generating simulated
data (with standard radiometer noise for different array
configurations, observing, and search parameters) and injecting
simulated transients. The distribution of parameters used for
injecting transients is given in Table 1. We searched this

Figure 1. The number of candidates generated by a single-pulse search pipeline
for events with varying S/N. Different colors represent different intrinsic
widths of the transient, and different line styles show different DMs. Observing
and search configuration similar to that of REALFAST at the L band was chosen
(sampling time: 5 ms, number of frequency channels: 256, bandwidth: 1 GHz,
DM range: 0–3,000 pccm−3, boxcar widths: [5, 10, 20, and 40 ms], S/N
threshold: 8). See Section 2.1 for more details.
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simulated data using the REALFAST system with a real-time
search configuration to generate candidates. We saved the
relevant parameters of all the candidates, and manually verified
them to make sure that each candidate corresponds to the
injected transient. We discarded any observation with less than
four candidates. This procedure was used to generate real
candidates from 114 simulated observations (with one transient
injected in each observation). We will refer to this as the FRB
data set.

3.4. Test Data Set

To evaluate the performance of various clustering methods
(described in Section 4.1), we generated a test data set. We
used this data set to compare the performance of different
preprocessing techniques and also during hyperparameter
tuning (see Section 4.2).

The test data set consists of multiple observations, each
containing some RFI candidates and some FRB candidates. We
enforce that each observation has one transient event, and so all
FRB candidates in an observation would be associated to that
single event. Therefore, a perfect clustering algorithm should
form only one FRB cluster per observation. To generate such
an observation, we randomly chose one observation each from
the RFI and FRB data set pool. We then randomly select X% of
RFI candidates (where X is sampled from a uniform
distribution between 20 and 100) from the RFI observation,
all the FRB candidates from the FRB observation, and
concatenate their features. We then randomize the order of
the examples. This creates a set consisting of both RFI and
FRB candidates. All observations with less than 10 total
number of candidates were discarded. Using this process, we
created 250 observations containing RFI and FRB candidates,
which formed our test data set.

3.5. Preprocessing

Preprocessing is the procedure that takes the event features
and converts them into indexed parameter ranges such that all
the parameters will be equally weighted in terms of their
importance in the clustering.

As explained in Section 3.1, we use DM, time, l, and m as
features for clustering. Therefore, for each candidate in each
observation of our database, we save these four parameters
along with the imaged S/N of the candidate. After clustering,
we use the S/N to decide the representative candidate from

each cluster. We convert the absolute value of DM to an index
based on its index in the DM array for each candidate.
Similarly, we also convert the time value (in seconds) to an
index based on the sample number corresponding to that time
from the start of that processing segment. We also convert l and
m (which is the offset of the candidate from primary beam
center) to corresponding pixel values, using the synthesized
beam size. Therefore, we convert all the features to corresp-
onding indices. This is necessary as otherwise, different scales
of different features might bias the distance estimates required
in clustering.
The transient events we are interested in appear as a point

source in the sky. Therefore, all the candidates from that
transient should constitute a small range of l and m index
values. We downsampled the l and m values of all the
candidates to increase the sky density of candidates, which
might enhance the clustering performance. We tried down-
sampling factors of 1, 2, and 4 (henceforth referred to as DS1,
DS2, and DS4, respectively). Although we have scaled all the
features to their corresponding indices, we also evaluated
clustering performance on standardized data (i.e., with zero
mean and unit variance, hereafter referred to as Norm).
Throughout the paper, we report the performance of all the
algorithms on all these different preprocessing techniques. We
also try to determine the preprocessing technique that leads to
the best clustering performance.

4. Methods

4.1. Clustering Algorithms

We compare eight algorithms to cluster our test data set:
K-Means, Mean Shift, Affinity Propagation, Agglomerative
Clustering, DBSCAN, Ordering Points To Identify the Clustering
Structure (OPTICS), Hierarchical Density Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN), and Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH). For
all except HDBSCAN, we use the implementation of these
algorithms in scikit-learn (Pedregosa et al. 2011; Buitinck
et al. 2013). We use the Python implementation of HDBSCAN by
McInnes et al. (2017). We briefly discuss the details of these
algorithms and their hyperparameters in Appendix A. We refer the
reader to the respective papers and scikit-learn documenta-
tion for more details.

4.2. Hyperparameter Tuning

Each clustering algorithm has several input parameters that can
be used to control the algorithm’s clustering process and speed.
These input parameters are called hyperparameters. Some
algorithms are very sensitive to the choice of these hyperpara-
meters, while others are robust to a range of hyperparameters. Our
aim is to find the hyperparameters for each algorithm that lead to
the best clustering performance (called optimal hyperparameters).
The following three techniques are typically used to obtain the
optimal hyperparameters: brute force grid search, random
sampling, and Bayesian optimization. Grid search involves
generating a grid of points covering the whole parameter space
uniformly. The performance metric is then calculated on all the
grid points, and the hyperparameter combination with the
maximum value of the metric is chosen. In random sampling,
the hyperparameter combinations are randomly chosen from a
distribution of parameters. Bayesian optimization uses Bayesian

Table 1
Parameter Distributions of Simulated FRBs

Parameter Distribution Range/Values

S/N Uniform 10, 40
DM (pccm−3) Uniform 10, max_search_dma

Width (ms) Uniform 1, 40 (ms)
Frequency Uniform L, S, C, X
Array configuration Uniform A, B, C, Db

Sky position (l, m) Uniform −fov/2, fov/2c

Notes.
a max_search_dm is the maximum DM searched for a given configuration.
b Maximum baseline lengths for the four configurations (A, B, C, and D) are
36.4, 11.1, 3.4, and 1.03 km.
c fov is the field of view at the randomly chosen frequency.
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techniques to parse the parameter space and obtain the optimal
hyperparameter combination.

Random sampling has been shown to be better than brute
force grid search (Bergstra & Bengio 2012). This is because, in
most cases, only a few hyperparameters really matter, the
importance of which changes with different data sets. This
makes grid search a poor choice for searching for hyperpara-
meters for different data sets. Therefore, we opted to use
random sampling. Also, because our parameter space is not
very large, we decided not to use Bayesian optimization.
Table 3 in Appendix B shows the ranges and various possible
values of different hyperparameters that were tried for each
algorithm. Wherever necessary, we used a random state of
1996 in the algorithms for reproducibility.

4.3. Performance Metric

The general idea of using a performance metric is to have a
common reference point to rank the effectiveness of clustering
algorithms (and their hyperparameters). The one with the
maximum value of the metric has the best general performance.

Critical to this idea is a clear statement of our goals. Our
primary measurable goals with clustering are the following:

1. Avoid missing a genuine event due to clustering. This can
happen due to overaggressive clustering that identifies FRB
candidates as false members of an RFI cluster. As only the
highest S/N member from each cluster is processed further,
assigning FRB members to RFI clusters will lead to an FRB
candidate not passing further in the pipeline. This can
happen if there are RFI candidates with an S/N higher than
that of the FRB candidates.

2. Each event of interest should be singly identified. All
candidates from one FRB event should be clustered into
one cluster, rather than many small separate clusters
representing a single event of interest. This is to minimize
the number of candidates that are passed to the pipeline
for post-processing and classification.

To represent these goals, we have developed the following
metric. A higher value of the metric is favorable. We use
homogeneity, completeness, v measure, and recall to calculate
the metric (hereafter referred to as score). In the following, an
FRB cluster is defined as a cluster containing one or more FRB
candidates, obtained after clustering. In the following discus-
sion, we follow the terminology defined in Section 2.

4.3.1. Homogeneity

Homogeneity is the measure of purity of the clusters with
respect to true labels, i.e., it estimates if each cluster contains
only members of a single class (i.e., either FRB or RFI). We
calculate homogeneity for each observation in the test data set.
As we are primarily interested in performance on FRB
candidates, and as RFI can be clustered into multiple clusters
(for which we do not have true information), we define
homogeneity only for FRB clusters in the observation. For each
FRB cluster, we calculate the ratio of the number of FRB
candidates in that cluster to total number of candidates in that
cluster. Homogeneity (h) is the weighted average of all these
ratios, weighing them by the number of candidates in the

cluster. Hence,

= å
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where i represents the ith FRB cluster, and the sum is over all
the FRB clusters. n i

FRB is the number of FRBs in the ith FRB
cluster, and n i

T is the total number of candidates in that cluster.
= åN nT i T

i is the total number of candidates in all FRB
clusters. h can be between 0 (when all FRB candidates are left
unclustered) and 1 (when all FRB clusters contain only FRB
candidates).

4.3.2. Completeness

Completeness is used to estimate if all members of a given
class are assigned to the same cluster. We calculate complete-
ness for each observation in the test data set. We define
completeness for FRB clusters, and a high completeness score
will minimize the number of clusters the FRB candidates are
clustered to. For each FRB cluster, we calculate the ratio of the
number of FRB candidates in that cluster to the total number of
FRB candidates. Completeness (c) is equal to the weighted
average of all these ratios, weighing them by the number of
candidates in the cluster.8 Hence,
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where i represents the ith FRB cluster, and the sum is over all
the FRB clusters. n i

FRB is the number of FRBs in the ith FRB
cluster, and NFRB is the total number of FRB candidates in that
observation. = åN nT i T

i is the total number of candidates in all
FRB clusters. c will be very small if all FRB candidates are
assigned different clusters and 1 when all FRB candidates are
clustered into one cluster.

4.3.3. V measure

V measure is the harmonic mean between homogeneity and
completeness. This is used as we want all the clusters to be pure
and favor the minimum number of clusters. Therefore, we want
to maximize both homogeneity and completeness. V measure
(v) will be 1 when both h and c are 1 and will be 0 if either of
those is 0. Hence,

=
+

v
hc

h c

2
. 4( )

We calculate h, c, and v for each observation in the test data
set and take a weighted average of all vʼs (weighting by the
total number of candidates in that observation) to get an
estimate of V measure for the whole data set (V ).

4.3.4. Recall

Recall is the fraction of FRBs that are recovered after
clustering. After clustering, only the candidates with maximum
S/N in each cluster are processed further in the pipeline.
Therefore, if the clustering algorithm clusters FRB candidates

8 We include unclustered candidates as a single cluster in this case, while
unclustered candidates were ignored while calculating homogeneity.
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together with high S/N RFI candidates, then the FRB will not
be recovered from that cluster and might be missed. Therefore,
recall (R) is defined as the ratio of the number of observations
in the data set for which FRB was recovered to the total number
of observations in the data set.

4.3.5. Score

Score is defined as the product of recall (R) and total V
measure (V ).

= ´R VScore . 5( )

We use this score to compare the clustering performance of
different algorithms and find the optimal hyperparameters for
each clustering algorithm.

4.4. Advantages of This Metric

We have defined the above metric with respect to FRB and
RFI clusters, but it can be easily generalized to any application
with goals generally similar to those laid out in Section 4.3.
This metric ensures that the information in relevant clusters is
not missed by overaggressive clustering while still minimizing
the number of clusters formed. There are some advantages of
this metric over other clustering metrics available in the
literature (for a detailed comparison using a similar metric see
Rosenberg & Hirschberg 2007): (1) It is independent of the
clustering algorithm, size of the data set, number of classes, and
clusters. (2) It can appropriately use one (or more) base class
(here FRB) to evaluate the clustering performance with respect
to true labels, considering all data points of the relevant class.
(3) Using homogeneity and completeness, V measure gives
importance to both pure clusters and the minimum number of
clusters. (4) By adequately weighting individual metrics, it is
possible to concisely evaluate the clustering performance
across multiple examples, in the form of a simple number
(score).

5. Results

5.1. Optimal Hyperparameters

We show the maximum score obtained for each algorithm
after hyperparameter search in Figure 2. Henceforth in this
paper, we will refer to these hyperparameters as optimal
hyperparameters. This figure shows that Mean Shift has the
maximum score, out of all the eight algorithms. Table 2 shows
these optimal hyperparameters for each algorithm.

Figure 3 shows the distributions of scores at various
hyperparameter values for each combination of algorithm and
preprocessing. Although not crucial to hyperparameter selec-
tion, the distribution of scores gives an insight into the
robustness of the algorithm to the choice of input hyperpara-
meters. In some cases, the scores vary between the full range of
0 and 1, while in others, the distribution is very narrow around
high scores. The algorithms for which the score distributions
peak around a high value should be more robust to the input
hyperparameters than those for which the peak is at a middle or
even low value of score. In the latter case, only a small range of
hyperparameters would lead to a high score.

5.2. Effect of Data Processing

As mentioned in Section 3.5, we also repeated the above
experiment after preprocessing the data in two ways:

downsampling the l and m indices and data normalization.
We show the results for this in Figures 2 and 3. As can be seen
from Figure 2, there is no clear trend of clustering performance
for different preprocessing cases. We also note that the shape of
the score distribution remains the same across different
downsampling factors for a given algorithm. This indicates
that downsampling does not make a significant contribution to
the clustering performance.

5.3. Evaluating Performance on Clean Data

So far, we have evaluated the performance of clustering
algorithms on data with real RFI candidates along with
simulated FRB candidates. This, as stated earlier, was a
reasonable approximation of the candidates from real observa-
tions. Usually, in the case of a real transient, the pipeline only
gets triggered at candidates from real transient, and no RFI is
seen (either because of the amplitude of real transient or
because low-level RFI is flagged). Therefore, here we report
the performance of these clustering algorithms (at the optimal
hyperparameters) on a data set containing candidates only from
a real event and no RFI. This is done to test the generalizability
of these clustering algorithms on data without RFI. This would
also serve as an independent test on unseen data sets for which
the hyperparameters of the algorithms were not tuned.

5.3.1. Completeness on Clean Data

We use the same procedure as described in Section 3.3 to
generate a data set of 100 observations with candidates from one
simulated FRB each. We randomly chose the parameters of the
simulated FRBs and observing configurations, as explained earlier,
and discarded any observation with less than 10 candidates.
We use completeness (see Section 4.3) to report the clustering

performance on this data set. As there is no RFI candidate in this

Figure 2. Maximum score obtained after random hyperparameter search (at the
optimal hyperparameters) for each algorithm and preprocessing combination.
Optimal hyperparameters for each case are given in Table 2. DS refers to
downsampling applied to the l and m indices. Norm refers to normalization of
the four features (see Section 3.5).
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data set, homogeneity would always be one and therefore is not a
useful metric in this case. Here, a perfect clustering algorithm
should generate just one cluster per observation for which
completeness would be maximum, declining as the number of
clusters increase. The overall completeness for a data set is the
average of all the completeness values from 100 observations,
each weighted by the number of candidates in the observation.

Figure 4 shows the overall completeness score of each
algorithm. DBSCAN, HDBSCAN, Mean Shift, and OPTICS
have the highest completeness score. It is to be noted that the
completeness score of these four algorithms was worse when
the data was preprocessed to zero mean and unit standard
deviation (i.e., Norm). On the contrary, downsampling the
image features did not show any significant effect (with a
notable exception of DS4 for HDBSCAN).

5.4. Benchmarking

We evaluated the clustering speed of all clustering
algorithms at their optimal hyperparameters. To do this, we
generated an observation with a varying number of candidates
consisting of random values for the four features. We then ran

all the clustering algorithms on those observations and recorded
the time taken for just the clustering step. We did this test with
optimal hyperparameters obtained for all four preprocessing
cases. As the clustering speed is primarily dependent on the
number of candidates to be clustered, we did not use real data
for this test. We show the result of this test in Figure 5. The
time taken did not vary significantly with parameters from
different preprocessing cases, so we only show results using
optimal hyperparameters for DS1 in this figure. DBSCAN and
HDBSCAN are the fastest of these algorithms, while Affinity
Propagation, Mean Shift, and OPTICS are the slowest, by at
least an order of magnitude.

6. Discussion

6.1. Feature Importance

It is worth understanding the impact of feature selection on our
outcome, as some features are expected to be more important than
the others (Dash & Liu 2000; Guyon et al. 2005). We use a
random forest classifier (Breiman 2001), implemented in
scikit-learn, to estimate the relative feature importance of

Table 2
Optimal Hyperparameters Obtained for Different Algorithm and Preprocessing Combinations

Algorithm Hyperparameter DS1 DS2 DS4 Norm

Affinity Propagation affinity euclidean euclidean euclidean euclidean
random_state 1996 1996 1996 1996
damping 0.974 0.965 0.985 0.881
preference −884 −222 −219 −202

Agglomerative Clustering n_clusters 5 7 6 3
affinity euclidean manhattan euclidean euclidean

compute_full_tree auto auto auto auto
linkage ward average ward ward

BIRCH n_clusters 5.000 7.000 6.000 10.000
threshold 0.341 0.876 0.676 0.957

branching_factor 13.000 56.000 85.000 77.000

DBSCAN min_samples 2 2 2 2
eps 14.163 14.726 14.615 1.082

metric chebyshev chebyshev chebyshev cityblock
algorithm auto auto auto auto
leaf_size 23 21 35 38

HDBSCAN min_samples 5 5 5 5
metric euclidean euclidean euclidean cityblock

min_cluster_size 2 3 2 9
cluster_selection_method eom eom eom eom
allow_single_cluster True True False True

K-Means algorithm full elkan full auto
n_clusters 5 6 6 3
n_init 13 15 28 26

random_state 1996 1996 1996 1996

Mean Shift bandwidth 16.416 32.750 19.350 1.229
bin_seeding True False True True
cluster_all True True True True

OPTICS min_samples 2 2 2 2
eps 14.782 14.376 14.551 1.095

metric minkowski chebyshev minkowski cityblock
min_cluster_size 8 6 6 8

p 14.672 L 11.009 L
cluster_method dbscan dbscan dbscan dbscan

xi L L L L
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Figure 3. Violin plots of score vs. preprocessing for different clustering algorithms. Each violin plot shows the distribution of scores obtained at various
hyperparameters evaluated during the random hyperparameter search. Different subfigures represent different algorithms (Sections 4.2 and 5.1). DS refers to
downsampling applied to the l and m indices. Norm refers to normalization of the four features (see Section 3.5).

Figure 4. Completeness of different algorithms on clean data, i.e., without any
RFI candidate (Section 5.3). A high completeness score is better and would
imply that the FRB candidates are clustered in a minimum number of clusters
for each of the 100 observations. Each algorithm was evaluated at its optimal
hyperparameters (Table 2). DS refers to downsampling applied to the l and m
indices. Norm refers to normalization of the four features (see Section 3.5).

Figure 5. Time taken to cluster (in seconds) for each algorithm at their optimal
hyperparameters. Different colors represent input data with a different number
of candidates. Results are shown only at optimal hyperparameters for DS1.
DBSCAN and HDBSCAN are much faster than algorithms like Mean Shift and
Affinity Propagation (Section 5.4).
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the four features, (DM, time, l, and m), in determining accurate
clusters.

We used the test data set (see Section 3.4) without any
preprocessing, containing candidates from 250 observations
(hereafter we refer to this data as DS1). We knew the true
labels (RFI and FRB) for each candidate in those 250
observations. For each observation, we trained a random forest
classifier (at the default input parameters) using all the
candidates in that observation. From the trained classifier,
we then used feature_importances_ to obtain the
relative feature importance of each of the four features. This
attribute of the random forest classifier calculates Gini importance
(Breiman 2001) for each feature, which is representative of the
importance of feature during classification. We repeated this for
all the observations in our test data set. To estimate the total
feature importance, we averaged all the importance for each
feature weighing each by the number of candidates in that
observation. The total importance obtained is shown in Figure 6.
As can be seen from this figure, l and m (sky position indices of
the candidate) contribute much more toward classification than the
DM and time indices of the candidates.

A caveat to this simplistic analysis is that classification of all
candidates into two classes, FRB and RFI, is not the same as
clustering them into multiple clusters. The two cases would
have been similar if all the RFI candidates could be assigned to
a single cluster, which is not true. Therefore, even though this
analysis shows that sky position contributes much more to
classification, we suspect that the relative contribution of DM
and time for the clustering task would be higher than what is
obtained here.

6.2. What if I Only Use DM and Time for Clustering?

In the REALFAST system, we search for transients on the
radio image. Therefore, for each candidate we get DM, time, l,
and m information. But in many experiments, typically the ones
using a single-dish telescope or the ones not performing an
image-based transient search, only DM and time information is
available for each detected candidate. Therefore, in those cases,
only DM and time can be used to cluster the candidates
together.

We tested the clustering performance using only DM and
time to cluster the observations in our test data set. We used the
optimal hyperparameters (listed in Table 2) on the test data set
to evaluate this for all preprocessing cases. We also tested the
clustering performance using only the l and m indices to cluster
our test data set. As discussed in the previous section, the
relative importance of sky positions is much higher than that of
DM and time for a classification task. Therefore, clustering
using only sky positions should give better scores than using
just DM and time.
We show the results of these two tests in Figure 7 along with

the scores when all four features are used for clustering. We
only show scores for one preprocessing case (DS1), as results
with other preprocessing techniques were also similar. As can
be seen from this figure, scores obtained using just sky
positions (red curve) or DM and time (blue curve) follow each
other closely. Using sky positions shows minor improvement in
score for most of the algorithms. Using all four features, as
expected, gives the highest score, which is ∼10% better than
the other two cases.
This test highlights the importance of using sky positions

along with the standard DM-time features to identify clusters of
candidates originating from the same event. Therefore, if the
sky position information is available for a candidate, it should
also be used while clustering in the pipeline. With more and
more interferometers (like Australian Square Kilometre Array
Pathfinder (ASKAP) and Deep Synoptic Array (DSA)-110)
implementing a REALFAST-like search for transients on radio
images in the future, it would be useful for them to incorporate
sky position information to cluster candidates in their
respective pipelines.
As careful readers would have noticed, a caveat to this test is

that in clustering with two parameters, we did not do a
hyperparameter search to obtain the optimal hyperparameters
that maximize the score using those two features. Instead, we
used the hyperparameters that were optimal when four features

Figure 6. Importance of each feature, determined by training a random forest
classifier to classify each observation into RFI and FRB. We trained the
classifier individually on all observations in the test data set and took a
weighted average of the individual feature importance to obtain the above plot.
l and m contribute much more toward classification than DM and time
(Section 6.1).

Figure 7. Score vs. algorithms for two feature clustering. Different colors
represent different sets of features used to perform the clustering. We evaluated
the scores on the test data set. Results with DS1 preprocessing are shown here
(Section 6.2).
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were used. A full hyperparameter search using two parameters
might lead to a different set of parameters that might improve
the score further. But even with this simple test, it can be noted
that only using sky positions for clustering gives an improve-
ment in score in almost all cases.

We have demonstrated in this and the previous section that
sky positions are overall more important for clustering than
DM and time. This could be because RFI candidates are more
likely to span a wide range of time and DM values, which
might overlap with those of FRB candidates while they are still
localized in the radio image. Therefore, it is less likely (though
still possible) for RFI to be very close to an FRB in the radio
image. Similarly, RFI may be highly variable in frequency/
time space, whereas in a radio image even unfocused (near-
field) RFI will show up as contiguous streaks or other similarly
structured patterns in images. Regardless of the reason for this,
however, we have demonstrated here that when possible, sky
positions should be used for clustering candidates.

6.3. But Which Algorithm Should I Use?

There are several considerations when deciding what
algorithm to use based on the comparative analysis we have
presented here.

1. Maximum score: As discussed in Section 4.3, we want the
clustering algorithm to meet our application-specific goals
of not missing a genuine event and singly identifying FRB
candidates. Our performance metric (called score) max-
imizes when these goals are met. Therefore, we could
search for a set of optimal hyperparameters for each
clustering algorithm that gives the maximum score. All
algorithms, except Affinity Propagation, have an optimal
score above 0.95 (Figure 2).

2. Generalizable: The clustering algorithm needs to generalize
to various types of data it can encounter in the pipeline. By
testing the algorithms and optimal hyperparameters obtained
in the previous step on an independent data set, one could
quantify the algorithms’ generalizability. To be more
application specific, we tested this on a data set with
observations containing candidates only from a real event,
without any RFI and computed the completeness as the
performance metric. Only four algorithms, DBSCAN,
HDBSCAN, Mean Shift, and OPTICS gave completeness
above 0.9 in this test (Figure 4).

3. Speed: Finally, the clustering algorithm would only have a
limited amount of time to cluster candidates. Therefore,
even for a large number of candidates, it should not exceed
the limited time constraint. In our specific application for
REALFAST, clustering is performed on candidates generated
from small segments of data that are tens of seconds long.
Based on the other pipeline steps, clustering should not take
longer than a few seconds. The number of candidates
detected by the search step typically varies between a few to
thousands of candidates for a segment. Based on these
requirements DBSCAN, HDBSCAN, Agglomerative Clus-
tering, and K-Means can be used (Figure 5).

As an example using the REALFAST system, selecting the
algorithms using the above three steps, we conclude that either
DBSCAN or HDBSCAN can be used for clustering REALFAST
data. Based on the results in Figures 4 and 7, we can further infer
that DBSCAN is better than HDBSCAN. As reported earlier, we
did not notice any improvement by using different preprocessing

techniques, therefore, no preprocessing is favored (Figure 2). A
similar procedure can also be used to choose the clustering
algorithm for any other single-pulse search pipeline or even for a
more general clustering application.

7. Conclusions

In this paper, we have compared eight different unsupervised
algorithms to cluster candidates generated by single-pulse search
pipelines. We have also analyzed the effects of various
preprocessing techniques on the data. We used real RFI from
the REALFAST system and simulated FRB candidates to test
different algorithms. We have developed a performance metric to
quantify clustering performance. This metric makes sure that
FRBs are not missed due to overaggressive clustering while still
minimizing the number of clusters formed. Using a random
hyperparameter search, we obtained optimal hyperparameters,
which maximizes this metric for different algorithms. We test all
the algorithms with optimal hyperparameters on an independent
data set consisting of only FRB candidates to evaluate the
generalizability of different algorithms. We also estimated the
average clustering time for various algorithms on a data set of
varying sizes. Finally, we have proposed a strategy that can be
used to choose a clustering algorithm, using various tests
mentioned earlier. We apply this strategy to obtain a clustering
algorithm appropriate for the REALFAST system. This strategy can
also be used at other single-pulse search systems to obtain the
optimal clustering algorithm. Our strategy is generic enough to be
used for other clustering applications. Our performance metric can
also be used in other clustering applications where clustering
information for only one cluster of interest is available, out of an
unknown number of true clusters. We have also demonstrated that
using spatial features for clustering improves the clustering
performance compared to the traditional approach of just using
DM and time features. All the scripts used in this analysis are
openly available in a Github repository.9
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2007), Pandas (Pandas Development Team 2020; McKinney
2010), scikit-learn (Pedregosa et al. 2011; Buitinck et al. 2013),
HDBSCAN (Campello et al. 2015), rfpipe (Law 2017).

Appendix A
Clustering Algorithms

Here, we give a brief overview of all the clustering algorithms
used in this analysis and some details and potential advantages/
disadvantages of each algorithm for our clustering application.

9 https://github.com/KshitijAggarwal/rfclustering
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A.1. K-Means

The K-Means (Macqueen 1967) algorithm is one of the most
widely used clustering algorithms. Given an input number of
clusters, the algorithm randomly initializes centroids for each
cluster. Each example is then assigned a cluster based on the
distance from that centroid. A new centroid is then computed for
each cluster, and all examples are reassigned to the new centroids.
This process is repeated until a convergence criterion is met. The
main challenges with K-Means are that it is not good at identifying
nonspherical clusters and requires the number of clusters as input,
both of which limit its ability to generalize on different data sets.

A.2. Mean Shift

Mean Shift (Comaniciu & Meer 2002) is a centroid-based
algorithm. The algorithm assumes that the data is drawn from an
underlying probability density function and tries to estimate it
using kernel density estimation. Then, it calculates a centroid for
each data point using the kernel and iteratively updates the
centroid using a mean shift vector. At convergence, the centroid
will be placed at the nearest highest density peak of the density
function. The same process is repeated for each data point, and the
data points which lead to the same high-density peaks are then
assigned to the same cluster. The only hyperparameter here is the
bandwidth of the kernel. Mean Shift is not highly scalable as it
requires multiple nearest neighbor searches.

A.3. Affinity Propagation

Affinity Propagation (Frey & Dueck 2007) is based on the
concept of message passing between data points. It tries to find
exemplars, i.e., members that are representative of clusters.

It starts by calculating a similarity matrix, which can be defined
as the negative squared distance between two data points. The
diagonal of this matrix is set to a constant, called preference,
which is an input hyperparameter. Preference determines how
likely a particular data point would be to become an exemplar.
The algorithm then calculates three matrices, called Responsi-
bility, Availability, and Criterion Matrix. These matrices are
updated iteratively until a convergence criterion is met, and then
clusters are assigned based on the information in Criterion Matrix.
The details of the algorithm are given in Frey & Dueck (2007).
Affinity Propagation’s advantage is that it does not require the
number of clusters as input, but the algorithm is computationally
complex and can be slow on large data sets.

A.4. Agglomerative Clustering

Agglomerative Clustering (Franti et al. 2006) is a type of
hierarchical clustering. Hierarchical clustering algorithms start with
each example being a different cluster and then merge the ones that
are closer until there is only one cluster. Therefore, they can form a
hierarchy of clusters (at various distances), which is represented as
a tree. A linkage criterion (see Section 5.1 of Jain et al. 1999) is
used to decide the merge strategy. To determine the clusters from
this cluster hierarchy, one has to choose a level or a cut in the tree.
As was the case with K-Means, the main challenge with this
algorithm is to choose the number of clusters.

A.5. DBSCAN

DBSCAN (Ester et al. 1996) is a density-based clustering
algorithm. It assumes that clusters lie in dense regions. It primarily
requires two input hyperparameters: a density threshold (MinPts)

of a core point and a radius (ò) of its neighborhood. A point that
has at least MinPts adjacent points in its ò neighborhood is
considered a core point. Core points and their neighborhood are
considered dense regions that form clusters, and overlapping
dense regions are merged into a single cluster. Any point that is
neither a core point nor falls within the neighborhood of a core
point is classified as noise. It does not require the number of
clusters as input, although the clustering output is very sensitive to
other input parameters.

A.6. OPTICS

OPTICS (Ankerst et al. 1999) is a density-based clustering
algorithm. Similar to DBSCAN, OPTICS requires two
hyperparameters: ò and MinPts, although ò is not necessary.
It uses the following distances: core distance (minimum radius
required to classify a given point as core point) and reachability
distance (calculated by comparing the distance between two
core points and their core distances) to order points. The
reachability distance for points in a cluster would be low. The
OPTICS algorithm builds a reachability graph, which assigns
each sample a reachability distance. A post-processing
procedure is applied to the reachability plot to determine
clusters. This procedure can be very sensitive to the input
parameters. An advantage of OPTICS is that it can find clusters
of varying density. Like other density-based algorithms,
OPTICS does not require the number of clusters as input and
can also find nonspherical clusters.

A.7. HDBSCAN

HDBSCAN (Campello et al. 2015; McInnes et al. 2017;
McInnes & Healy 2017) is very similar to OPTICS, i.e., it takes
the approach of DBSCAN but extends it by varying the values
of ò. It forms a hierarchical tree that shows the clustering
output. By parsing through the tree, going from one large
cluster to many smaller clusters, HDBSCAN constructs a tree
with persistent clusters based on its only hyperparameter:
minimum cluster size. It then uses a stability criterion to extract
the final clusters from the cluster tree. Like OPTICS,
HDBSCAN can also form clusters of varying density and do
not require the number of clusters as input.

A.8. BIRCH

BIRCH (Zhang et al. 1996) is a hierarchical clustering
algorithm used typically on very large data sets. It is local, which
means that the clustering decision is made without scanning all
data points and existing clusters. It uses a clustering feature (or
CF) which consists of summary of statistics for a given sub-
cluster. CF is used to calculate the distance between two sub-
clusters. It creates a CF Tree (CFT) consisting of these CFs. The
BIRCH algorithm has two hyperparameters: branching factor and
threshold; the former limits the number of CFs in a node of CFT,
while the latter limits the distance for a new sample to be a part of
an existing CF. The terminal nodes of a CFT are then clustered
using another clustering algorithm to obtain final clusters.

Appendix B
Parameter Ranges for Hyperparameter Tuning

Table 3 shows the hyperparameter ranges explored for
different clustering algorithms during hyperparameter tuning.
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Table 3
Hyperparameter Ranges Explored for Different Clustering Algorithms Using

Random Sampling

Algorithm Hyperparameter Range/Values

Affinity Propagation affinity euclidean
random_state 1996
damping 0.5, 1
preference −1000, −200

Agglomerative
Clustering

n_clusters 2, 10

affinity euclidean, manhattan,
cosine

compute_full_tree auto
linkage complete, average,

single, warda

BIRCH n_clusters 2, 10
threshold 0.1, 20

branching_factor 10, 100

DBSCAN min_samples 2, 10
eps 0.5, 15

metric euclidean, chebyshev,
cityblock,

manhattan, canberra,
hammingb

algorithm auto
leaf_size 20, 40

HDBSCAN min_samples 2, 5
metric euclidean, chebyshev,

cityblock,
manhattan, canberra,

hamming
min_cluster_size 2, 10

cluster_selection_method eom, leaf
allow_single_cluster True, False

K-Means algorithm auto, full, elkan
n_clusters 2, 10
n_init 10, 30

random_state 1996

Mean Shift bandwidth 10, 40c

bin_seeding True, False
cluster_all True, False

OPTICS min_samples 2, 10
eps 0.5, 15

metric minkowski, euclidean,
chebyshev, canberra,
cityblock, manhattan,

hammingb

min_cluster_size 2, 10
p 1, 15d

cluster_method dbscan, xie

xi 0, 1

Notes. Random uniform sampling was used to sample hyperparameters for all
the parameter ranges/values.
a ward only works with euclidean affinity.
b eps range of 0.1–1 was used with hamming metric, and a range of 0.1–4 was
used with canberra metric.
c Bandwidth of 1–10 was used for normalized preprocessing case.
d p was used only with Minkowski metric.
e Value of eps was used only with DBSCAN method, and value of xi was used
when xi was selected as cluster method.
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