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Abstract 25 

Few tract-based spatial statistics (TBSS) studies have investigated the relations between 26 

intelligence and white matter microstructure in healthy (young) adults, and those have yielded 27 

mixed observations, yet white matter is fundamental for efficient and accurate information 28 

transfer throughout the human brain. We used a multi-center approach to identify white matter 29 

regions that show replicable structure-function associations, employing data from four 30 

independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels 31 

exhibited significant positive associations between g factor scores and fractional anisotropy in 32 

all four data sets. Replicable voxels formed three clusters, located around the left-hemispheric 33 

forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions 34 

into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). 35 

Our results suggested that individual differences in general intelligence are robustly 36 

associated with white matter fractional anisotropy in specific fiber bundles distributed across 37 

the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible 38 

reasons higher FA values might create links with higher g are faster information processing 39 

due to greater myelination, more direct information processing due to parallel, homogenous 40 

fiber orientation distributions, or more parallel information processing due to greater axon 41 

density. 42 

 43 

Keywords: 44 
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People differ in general intelligence, i.e. "[…] their ability to understand complex ideas, to adapt 46 

effectively to the environment, to learn from experience, to engage in various forms of 47 

reasoning, to overcome obstacles by taking thought" (Neisser et al. 1996, p. 77). As 48 

discovered by Spearman (1904), individuals who do well in one cognitive task tend to perform 49 

above average in other cognitive tasks as well. The phenomenon of positively correlated 50 

cognitive test scores, which he termed the ‘positive manifold’, led Spearman to declare the 51 

existence of ‘g’, the general factor of intelligence. Though g is actually just a statistical 52 

observation, it is an important one because it is relevant to many aspects of everyday life. For 53 

example, intelligence is positively correlated with school performance (Neisser et al. 1996; 54 

Roth et al. 2015), job performance (Gottfredson 1997; Schmidt and Hunter 2004), 55 

socioeconomic success (Strenze 2007), income (Zagorsky 2007), and even physical health, 56 

longevity, and ephemerals such as stability of marital relationships (Aspara et al. 2018; Batty 57 

et al. 2007; Calvin et al. 2017; Calvin et al. 2011; Deary et al. 2010b; Hemmingsson et al. 58 

2006; Whalley and Deary 2001). Due to the impacts that intelligence or g seems to have on 59 

life outcomes, it has always been of interest to identify specific structures within the human 60 

brain that are associated with its interindividual differences.   61 

While it is one well-replicated observation that bigger brains are weakly to moderately 62 

associated with higher intelligence (Cox et al. 2019; McDaniel 2005; Pietschnig et al. 2015), 63 

the advent of in vivo neuroimaging techniques has allowed scientists to move from overall 64 

brain size to various properties of single brain regions and beyond. Jung and Haier (2007) 65 

reviewed 37 neuroimaging studies that aimed to identify intelligence-related brain regions 66 

using various intelligence measures and imaging techniques. Based on the commonalities 67 

across findings, they proposed the Parieto-Frontal Integration Theory (P-FIT) of intelligence. 68 

P-FIT nominates a set of distributed brain regions, mainly located in parietal and frontal areas, 69 

whose functional and structural properties are related to interindividual intelligence 70 

differences. Each P-FIT area is believed to be involved in the multiple information processing 71 

stages used in solving abstract reasoning tasks. Hence, more efficient and flawless 72 

information transfer between these regions seems fundamental to intellectual achievements, 73 



which in turn indicates roles of brain white matter (Jung and Haier 2007). The brain’s white 74 

matter mainly consists of myelinated axons that are organized in fiber tracts running from one 75 

brain region to another (Filley 2012), which enables thereby the information transfer. The 76 

hypothesis that the integrity of certain white matter fiber tracts is crucial for intelligence (Jung 77 

and Haier 2007) has been empirically supported by Gläscher et al. (2010) who used voxel-78 

based lesion-symptom mapping in a large sample of patients with focal brain damage. Their 79 

observations indicated that severe damage to fiber tracts linking P-FIT areas (superior 80 

longitudinal fasciculus, arcuate fasciculus, uncinate fasciculus, and inferior fronto-occipital 81 

fasciculus) was significantly associated with lower intelligence (Gläscher et al. 2010). 82 

Subsequent studies using lesion-symptom mapping were consistent with these observations 83 

(Barbey et al. 2014; Barbey et al. 2012; Bowren et al. 2020). Even newer theories based on 84 

graph theory, such as Barbey’s (2018) Network Neuroscience Theory, which proposes that 85 

general intelligence reflects individual differences in whole brain topology’s efficiency and in 86 

the capacity to dynamically reconfigure brain network states, emphasize the importance of the 87 

brain’s structural (and functional) organization since it may facilitate or constrain network 88 

flexibility. The idea that intelligence relies on a dynamic system comprising interacting 89 

subcomponents distributed all over the brain does not contradict previous research reporting 90 

that some brain regions or white matter fiber tracts seem to be more commonly implicated in 91 

successfully accomplishing cognitive tasks than others (Cox et al. 2019; Jung and Haier 92 

2007). It only shifts the focus so that previously reported, focal differences in brain structure 93 

are no longer seen as isolated causes of differences in intelligence, but as traces of employed 94 

functional dynamics and architecture enabling easier transition between functional network 95 

states.  96 

The advent of diffusion-weighted imaging (DWI) led to an exponential growth of white matter 97 

brain imaging studies (Deary et al. 2022). DWI is based on diffusion of water molecules (Le 98 

Bihan 2014; Le Bihan and Breton 1985; Le Bihan et al. 1986) and indicates anisotropic, 99 

directional diffusion patterns within voxels containing coherently oriented white matter fibers 100 

and isotropic, non-directional patterns within voxels containing randomly oriented fibers or 101 



fluid-filled spaces such as ventricles (Le Bihan 2003). The most widely used metric to quantify 102 

water diffusion's degrees of directionality in a summative manner is fractional anisotropy (FA). 103 

Here, higher FA values indicate more parallel diffusion trajectories (Assaf and Pasternak 2008; 104 

Basser and Pierpaoli 1996). Although FA is clearly related to white matter microstructure, it 105 

may be misleading to use it as a marker of microstructural integrity (Jones et al. 2013). FA is 106 

a complex and unspecific measure affected by various physiological factors like axon 107 

diameter, fiber density, myelin concentration, or distribution of fiber orientation (Beaulieu 2002; 108 

Friedrich et al. 2020; Jones et al. 2013; Le Bihan 2003). These factors make it challenging to 109 

disentangle and interpret the actual sources of signal differences (Jones et al. 2013). 110 

Nevertheless, FA is a widely used metric and its association with intelligence has been 111 

investigated extensively. Studies have analyzed white matter properties by averaging across 112 

specific regions of interest (Deary et al. 2006; Power et al. 2019; Tang et al. 2010), extracting 113 

them from whole fiber tracts (Bathelt et al. 2019; Booth et al. 2013; Clayden et al. 2012; Cox 114 

et al. 2019; Cremers et al. 2016; Dubner et al. 2019; Ferrer et al. 2013; Fuhrmann et al. 2020; 115 

Góngora et al. 2020; Holleran et al. 2020; Kennedy et al. 2021; Kievit et al. 2016; Kievit et al. 116 

2014; Kievit et al. 2018; Kontis et al. 2009; Muetzel et al. 2015; Nestor et al. 2015; Ohtani et 117 

al. 2014; Penke et al. 2012; Penke et al. 2010; Simpson-Kent et al. 2020; Suprano et al. 2020; 118 

Urger et al. 2015; Yu et al. 2008), or by a whole-brain voxel-based approach (Allin et al. 2011; 119 

Chiang et al. 2009; Navas-Sanchez et al. 2014; Schmithorst 2009; Schmithorst et al. 2005). 120 

As summarized by Genç and Fraenz (2021), the majority of such studies reported positive 121 

relations between intelligence and average FA values from many major white matter 122 

pathways, mostly representing connections between P-FIT areas. Independent of the specific 123 

methods used, similar patterns emerged among different studies. The four fiber tracts most 124 

commonly associated with intelligence differences are the genu and the splenium of the 125 

corpus callosum, the uncinate fasciculus, and the superior longitudinal fasciculus (Genç and 126 

Fraenz 2021).  127 

Studies investigating pre-selected brain regions or white matter tracts are prone to miss 128 

relevant relations in non-selected areas. Analyses adapting voxel-based methods, such as 129 



voxel-based morphometry (Ashburner and Friston 2000), to analyze FA images also have 130 

various shortcomings such as alignment inaccuracies (Smith et al. 2006). Tract-Based Spatial 131 

Statistics (TBSS) has been introduced as an approach that combines the strengths of 132 

tractography-based and voxel-based analyses to overcome the aforementioned limitations 133 

(Smith et al. 2006). Although TBSS has advantages, few studies have investigated the relation 134 

between FA and intelligence in healthy (young) adults using this method. Dunst et al. (2014) 135 

found no significant associations between general intelligence and FA in any white matter 136 

voxel, whereas Malpas et al. (2016) reported significant positive relations in 32% of voxels 137 

constituting the white matter skeleton (right anterior thalamic radiation, left superior 138 

longitudinal fasciculus, left inferior fronto-occipital fasciculus, and left uncinate fasciculus). In 139 

line with Dunst et al. (2014), Hidese et al. (2020) found no significant associations between 140 

general intelligence and regional white matter FA, despite analyzing a larger sample. Tamnes 141 

et al. (2010) employed a sample comprised of 168 participants, aged between 8 and 30 years. 142 

They focused their TBSS analyses on verbal and nonverbal reasoning abilities. While 4.6% of 143 

voxels in the white matter skeleton showed significant positive associations between FA and 144 

verbal abilities (left anterior thalamic radiation, left cingulum-cingulate gyrus, left and right 145 

superior longitudinal fasciculus), 1.6% of skeleton voxels (left superior longitudinal fasciculus, 146 

forceps major) showed significant positive associations between FA and nonverbal reasoning 147 

abilities (Tamnes et al. 2010).  148 

Previous TBSS studies have often had samples small enough that effect size estimates are 149 

likely to be highly variable and inaccurate. Furthermore, inconsistencies such as different 150 

sample sizes or intelligence measures limited their comparability. In short, they do not allow 151 

clear conclusions to be drawn about associations between general intelligence and FA. Some 152 

found significant positive relations while others did not. As proposed by Genç and Fraenz 153 

(2021), such inconsistent observations may be tackled by following a multi-center approach. 154 

To this end, multiple, independent data sets, typically collected by different research groups, 155 

are analyzed in the same way. Importantly, only those results which replicate across the 156 

majority (or all) of samples are considered robust. We followed this approach as 157 



methodologically consistently as possible, searching for replicable observations among four 158 

independent data sets comprising cross-sectional data from more than 2000 healthy 159 

participants. Our group performed whole-brain TBSS analyses to examine the associations 160 

between general intelligence, in the form of g factor scores, and FA separately on each 161 

sample. Besides the aforementioned advantage of multi-center studies, another reason for 162 

choosing this rather conservative approach was that a first-level combination (pooling all) of 163 

our four data sets with not-identical behavioral measures was not possible since sample mean 164 

g levels might differ and because imaging data were obtained on different scanners. However, 165 

as g and FA values were available for all samples and relative values between subjects within 166 

samples should be comparable, we were able to combine the data sets at a second level with 167 

our multi-center approach. Data were collected at Ruhr-University Bochum (RUB) in Germany 168 

with N = 557 (Genç et al. 2021), the Human Connectome Project (HCP) with N = 1061 (van 169 

Essen et al. 2013), the University of Minnesota (UMN) with N = 251 (Grazioplene et al. 2016; 170 

Grazioplene et al. 2015), and the Nathan Kline Institute (NKI) with N = 396 (Nooner et al. 171 

2012). We compared observations to identify white matter areas that exhibited replicable 172 

structure-function associations among data sets. As the overlap among multiple data sets’ 173 

results will be likely to include fewer areas than a single data set’s results, our study might 174 

yield relatively circumscribed but robust associations between white matter and g. This could 175 

give the impression that only focal differences in FA are associated with differences in general 176 

intelligence. However, if some white matter fiber tracts seem more commonly implicated in 177 

successfully accomplishing cognitive tasks this will not mean other brain white matter areas 178 

are irrelevant. Involvement of white matter throughout the brain for information transfer seems 179 

relevant for intellectual performance as intelligence is more likely to emerge from a dynamic 180 

system comprising interacting subcomponents (Barbey 2018). 181 



Materials and Methods 182 

Participants 183 

Data set RUB. 184 

The RUB sample encompassed 557 participants (see Table 1), mainly university students of 185 

different majors, who were either paid for their participation or received course credits. 186 

Although the age range was between 18 and 75 years, the data set was predominantly 187 

comprised of individuals from young adulthood. Individuals were not admitted to the study if 188 

they had insufficient German language skills or reported having undergone any of the 189 

employed intelligence tests within the last five years. They were also excluded if they or any 190 

of their close relatives suffered from neurological and/or mental illnesses, as assessed by a 191 

self-report questionnaire. The study protocol was approved by the local ethics committee of 192 

the Faculty of Psychology at Ruhr University Bochum (vote Nr. 165). All participants gave 193 

written informed consent and were treated according to the Declaration of Helsinki. 194 

Data set HCP. 195 

The HCP sample data were provided by the Human Connectome Project, WU-Minn 196 

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657), 197 

funded by the 16 United States National Institutes of Health (NIH) Institutes, Centers 198 

supporting the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for 199 

Systems Neuroscience at Washington University. We employed the "1200 Subjects Data 200 

Release" (van Essen et al. 2013). It includes behavioral and imaging data from 1206 young 201 

adults. To compute a g factor, all participants with missing values in one or more of the 202 

intelligence measurements listed below had to be excluded, which reduced the sample to N = 203 

1188 (mean age: 28.8 years, SD = 3.7 years, 641 females). Since DWI data were not available 204 

for all participants, the final sample for the TBSS analysis was limited to 1061 participants (see 205 

Table 1). To be included in the data set, participants had to have no significant history of 206 



psychiatric disorder, substance abuse, neurological, or cardiological disease and give valid 207 

informed consent (van Essen et al. 2012). 208 

Data set UMN. 209 

The UMN data set encompassed 335 participants (mean age: 26.3 years, SD = 5.0 years, 164 210 

females) with sufficient data from intelligence testing to compute a general factor g. Since DWI 211 

data were not available for all participants, the final sample for the TBSS analysis was reduced 212 

to 251 participants (see Table 1). Individuals who reported a history of neurologic or severe 213 

psychiatric disorders, current drug or alcohol problems, or current use of psychotropic 214 

medication (antipsychotics, anticonvulsants, and stimulants) were not admitted to the study. 215 

The study protocol was approved by the University of Minnesota Institutional Review Board 216 

and all participants gave written informed consent. 217 

Data set NKI. 218 

Data collection for the NKI sample is still ongoing. It is intended to investigate the neurologies 219 

of psychiatric disorders (Nooner et al. 2012). The “Enhanced Nathan Kline Institute - Rockland 220 

Sample” data set (Nooner et al. 2012) is part of the 1000 Functional Connectomes Project 221 

(http://fcon_1000.projects.nitrc.org) and we downloaded it from its official website 222 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/). Since our study is focused on healthy 223 

participants, we included only individuals who did not report any history of psychiatric illness. 224 

Moreover, they also had to have complete intelligence test data. We used these to calculate 225 

the g factor (N = 417, mean age: 43.5 years, SD = 23.5 years, 273 females). For the final 226 

sample, usable for TBSS analysis, we had to exclude additional participants due to lack of 227 

DWI data (N = 396, see Table 1). Relative to the other data sets, which mostly consisted of 228 

young adults, the NKI sample had a much greater age range and higher mean age (see Table 229 

1). However, since exclusion of all participants outside the 20-40 range would have cost 306 230 

participants, we included all participants with suitable data. The study protocol was approved 231 

by the Institutional Review Boards at the Nathan Kline Institute and Montclair State University. 232 

http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/indi/enhanced/


Written informed consent for the study was obtained from all participants or, for children, 233 

additionally from a legal guardian (Nooner et al., 2012). 234 

Table 1 Sample characteristics  235 

Data set  Male/Female Age range Age Handedness  

RUB 283/274 18 - 75 27.3 ± 9.4 73.1 ± 50.7 

HCP 490/571 22 - 37 28.7 ± 3.7 65.9 ± 44.6 

UMN 129/122 20 - 40 26.2 ± 4.9 100.0 ± 0.0 

NKI 137/259 6 - 85 44.4 ± 22.9 65.4 ± 47.1 

Age and handedness are depicted as mean ± standard deviation.  236 

General intelligence factor, g, computation 237 

Research on the psychometric structure of intelligence has modified and extended 238 

Spearman’s original ideas regarding the existence of g. In recent hierarchically organized 239 

models, g is placed at the apex of a hierarchy with broad cognitive domains at a lower level 240 

and narrow cognitive abilities at the basis (Flanagan and Dixon 2013; Schneider and McGrew 241 

2012). There is considerable evidence for the existence of such structures, but their specifics 242 

depend on the tests and sample properties. Nonetheless, when ranges of tests included are 243 

broad, their g factors correlate for all practical purposes completely, e.g. Johnson et al. (2004); 244 

Johnson et al. (2008). Thus content of g is relatively unaffected by the tests from which it was 245 

generated, though the level of any one person’s factor score certainly could be. Measurement 246 

invariance does not hold across g ranges. For example, arithmetic tests tend to be processing 247 

speed tasks for people with high g levels but reasoning tasks for people with low g levels. 248 

Furthermore, a person with average performance on various intelligence tests may have a 249 

standardized g-value that is below average in a highly intelligent sample and a g-value that is 250 

above average in a less intelligent sample. Since sample mean g levels might differ and 251 

because imaging data were obtained on different scanners (which also affects what is 252 

observed), it was not possible to combine the four data sets employed in our study.  253 



We used the intelligence test scores of each data set (see section “Description of intelligence 254 

tests”) to compute g factor scores for every participant. To do this, we regressed age, sex, 255 

age*sex, age2, and age2*sex from the test scores. We added age2 because we wanted to be 256 

sure there were no quadratic relations with age (McGue and Bouchard 1984). We then 257 

developed a hierarchical factor model separately for each data set based on the standardized 258 

residuals by first using exploratory factor analysis to develop the optimal factor model (results 259 

not shown) and then performing confirmatory factor analysis. We assessed model fit using the 260 

chi-square (X2) statistic as well as the fit indices Root Mean Square Error of Approximation 261 

(RMSEA), Standardized Root Mean Square Residual (SRMR), Comparative Fit Index (CFI), 262 

and Tucker-Lewis index (TLI). The chi-square (X2) statistic tests whether the difference 263 

between the model-implied variance-covariance matrix and the empirically observed variance-264 

covariance matrix is zero (Hu and Bentler 1999). Non-significance therefore indicates good 265 

model fit (Bentler and Bonett 1980), but is essentially never attained in samples of any size, 266 

which is why it is important to consider other indices of model fit. Values of RMSEA and SRMR 267 

less than .05 and values of CFI and TLI greater than .97 are considered good (Hu and Bentler 268 

1999). We used these models to calculate regression-based g-factor scores for each 269 

participant, winsorizing outliers, which is the most robust way to address the potential 270 

problems that can create (Wilcox 1997). We examined g factor score distributions separately 271 

for each sample and limited data points far enough above or below where the data begin to 272 

cohere to distort regression lines to those levels. To ensure that we did not alter overall 273 

distribution shape unduly, we examined both skew and kurtosis.  274 

Confirmatory Factor Models. 275 

Figures 1 to 4 show the postulated confirmatory factor models for the data sets, the z-276 

standardized factor loadings, and the covariances between individual subtests. The chi-277 

square (X2) statistics and the fit indices to evaluate model fit are listed in Table 2. The 278 

confirmatory factor analyses of all data sets yielded quite good (RUB and HCP) to excellent 279 

(UMN and NKI) fit. That the chi-square (X2) statistics of the two largest data sets RUB and 280 



HCP were significant, does not itself indicate poor model fit because the chi-square (X2) 281 

statistic is a direct function of sample size, which means that the probability of rejecting any 282 

model is greater with greater sample size (Bentler and Bonett 1980; Jöreskog 1969). As the 283 

RUB data set contained tests intended to tap ‘general knowledge’ (IST_KNO and BOWIT) that 284 

are not commonly part of cognitive test batteries, we also calculated an alternative g factor 285 

without these two tests (factor model not shown). It was not possible anymore to get a 286 

hierarchical factor model with good model fit. Therefore, the new factor was a non-hierarchical 287 

single-factor solution. It correlated at r = .976 with the one shown in Figure 1. Since there was 288 

no substantial difference, we decided to use the hierarchical factor model (see Figure 1) and 289 

include all available intelligence measures. 290 

 291 

Figure 1. Confirmatory factor analytic model of the RUB data set. g = general factor of intelligence, ver 292 

= verbal intelligence as broad cognitive domain, num = numerical intelligence as broad cognitive 293 

domain, fig = figural intelligence as broad cognitive domain, IST_SEN = subtest Sentence Completion 294 

of the I-S-T 2000 R, IST_SIM = subtest Similarities of the I-S-T 2000 R, IST_ANA = subtest Analogies 295 

of the I-S-T 2000 R, BOWIT = Bochumer Wissenstest, IST_KNO = parameter Knowledge of the I-S-T 296 
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2000 R, IST_CAL = subtest Calculations of the I-S-T 2000 R, IST_SER = subtest Number Series of the 297 

I-S-T 2000 R, IST_SIG = subtest Numerical Signs of the I-S-T 2000 R, ZVT = Zahlen-Verbindungs-298 

Test, IST_SEL = subtest Figure Selection of the I-S-T 2000 R, IST_CUB = subtest Cubes of the I-S-T 299 

2000 R, IST_MAT = subtest Matrices of the I-S-T 2000 R, IST_RET = parameter Retentiveness of the 300 

I-S-T 2000 R, BOMAT = Bochumer Matrizentest. 301 

 302 

Figure 2. Confirmatory factor analytic model of the HCP data set. g = general factor of intelligence, attn 303 

= attention as broad cognitive domain, proc = processing as broad cognitive domain, spd/acc = 304 

speed/accuracy as broad cognitive domain, PicSeq = subtest Picture Sequence Memory Test of the 305 

NIH Toolbox, ListSort = subtest List Sorting Working Memory Test of the NIH Toolbox, SCPT = subtest 306 

Short Penn Continuous Performance Test of the Penn CNB, PMAT = subtest Penn Matrix Reasoning 307 

Task of the Penn CNB, IWRD = subtest Penn Word Memory Test of the Penn CNB, VSPLOT = subtest 308 

Variable Short Penn Line Orientation Test of the Penn CNB, ReadEng = subtest Oral Reading 309 

Recognition Test of the NIH Toolbox, PicVocab = subtest Picture Vocabulary Test of the NIH Toolbox, 310 

CardSort = subtest Dimensional Change Card Sort Test of the NIH Toolbox, Flanker = subtest Flanker 311 

Inhibitory Control and Attention Test of the NIH Toolbox, ProcSpeed = subtest Pattern Comparison 312 

Processing Speed Test of the NIH Toolbox. 313 



 314 

Figure 3. Confirmatory factor analytic model of the UMN data set. g = general factor of intelligence, ver 315 

= verbal intelligence as broad cognitive domain, proc = processing as broad cognitive domain, 316 

WAIS_SIM = subtest Similarities of the WAIS-IV, WAIS_VC = subtest Vocabulary of the WAIS-IV, 317 

WAIS_BD = subtest Block Design of the WAIS-IV, WAIS_MR = subtest Matrix Reasoning of the WAIS-318 

IV, WAIS_CD = subtest Coding of the WAIS-IV. 319 

 320 

Figure 4. Confirmatory factor analytic model of the NKI data set. g = general factor of intelligence, ver 321 

= verbal intelligence as broad cognitive domain, proc = processing as broad cognitive domain, 322 

WASI_SIM = subtest Similarities of the WASI-II, WASI_VC = subtest Vocabulary of the WASI-II, 323 

WASI_BD = subtest Block Design of the WASI-II, WASI_MR = subtest Matrix Reasoning of the WASI-324 

II. 325 

Table 2 Fit indices of the confirmatory factor analyses 326 



Model  Χ2 df RMSEA SRMR CFI TLI R2 

Data set RUB 127.97*** 64 .042 .033 .979 .969 .39 

Data set HCP 118.35*** 40 .041 .028 .973 .963 .32 

Data set UMN 2.51 4 .000 .013 1.000 1.012 .47 

Data set NKI 0.13 1 .000 .002 1.000 1.009 .65 

RMSEA = Root Mean Square Error of Approximation. SRMR = Standardized Root Mean Square 327 

Residual. CFI = Comparative Fit Index. TLI = Tucker-Lewis-Index. R2 = amount of variance of the data 328 

sets’ subtests explained by g (calculated via an one-factor-model). *** p < .001. 329 

Description of intelligence tests 330 

Data set RUB. 331 

I-S-T 2000 R. 332 

The Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R; Liepmann et al. 2007) is a broadly 333 

applicable, well-established German intelligence test battery that takes about 2.5 hours to 334 

complete. It measures multiple intelligence facets as well as general intelligence (see Table 335 

3). Most included cognitive tasks are presented in multiple-choice format. Reliability estimates 336 

(Cronbach’s ) are between .88 and .96 for subtests and composite scores (Liepmann et al. 337 

2007).  338 

BOMAT-Advanced Short. 339 

The Bochumer Matrizentest (BOMAT; Hossiep et al. 2001) is a non-verbal German 340 

intelligence test (see Table 3) whose structure is comparable to the well-established Raven’s 341 

Advanced Progressive Matrices (Raven et al. 1990). For the study at hand, we used the 342 

advanced short version, which is widely used in neuroscientific research and known to have 343 

high discriminatory power in samples with generally high intellectual abilities, thus avoiding 344 



possible ceiling effects (Fraenz et al. 2021; Genç et al. 2018; Genç et al. 2019; Hossiep et al. 345 

2001; Jaeggi et al. 2008; Oelhafen et al. 2013). Split-half reliability of the BOMAT is .89 and 346 

Cronbach’s  is .92 (Hossiep et al. 2001).  347 

BOWIT. 348 

The Bochumer Wissenstest (BOWIT; Hossiep and Schulte 2008) is a German ‘general 349 

knowledge’ questionnaire. It is available in two parallel test forms, in which each knowledge 350 

facet is represented by 14 multiple-choice questions (see Table 3). All participants completed 351 

both test forms, resulting in 308 items. In the BOWIT’s manual split-half reliability is reported 352 

as .96, Cronbach’s α .95, test-retest reliability .96, and parallel-form reliability .91 (Hossiep 353 

and Schulte 2008).  354 

ZVT. 355 

The Zahlenverbindungstest (ZVT; Oswald and Roth 1987) is a trail-making test to assess 356 

cognitive processing speed in both children and adults. The test consists of two short sample 357 

tasks and four assessed tasks (see Table 3). The reliability across the four tasks is reported 358 

as .95 in adults. The six-month retest-reliability is reported to be between .84 and .90 (Oswald 359 

and Roth 1987).  360 

Table 3 Cognitive tests used to estimate g in the RUB sample 361 

Intelligence 

test 

Task description No. 

of 

items 

Construct 

measured 

I-S-T 2000 R 

1. IST_SEN Complete sentences  20 Verbal 

intelligence 2. IST_ANA Find analogies  20 

3. IST_SIM Recognize similarities  20 

4. IST_ CAL Solve arithmetic calculations  20 Numerical 

intelligence 5. IST_SER Complete number series  20 



I-S-T 2000 R = Intelligenz-Struktur-Test 2000 R. IST_SEN = subtest Sentence Completion of the I-S-T 362 

2000 R. IST_ANA = subtest Analogies of the I-S-T 2000 R. IST_SIM = subtest Similarities of the I-S-T 363 

2000 R. IST_CAL = subtest Calculations of the I-S-T 2000 R. IST_SER = subtest Number Series of the 364 

I-S-T 2000 R. IST_SIG = subtest Numerical Signs of the I-S-T 2000 R. IST_SEL = subtest Figure 365 

Selection of the I-S-T 2000 R. IST_CUB = subtest Cubes of the I-S-T 2000 R. IST_MAT = subtest 366 

Matrices of the I-S-T 2000 R. IST_RET = subtest Retentiveness of the I-S-T 2000 R. IST_KNO = subtest 367 

Knowledge of the I-S-T 2000 R. BOMAT = Bochumer Matrizentest. BOWIT = Bochumer Wissenstest. 368 

ZVT = Zahlenverbindungstest. 369 

6. IST_SIG Add arithmetic signs to mathematical equations  20 

7. IST_SEL Select and reassemble parts of a cut-up figure  20 Figural 

intelligence 8. IST_CUB Mentally rotate and match three-dimensional objects  20 

9. IST_MAT Solve matrix-reasoning problems 20 

10. IST_RET Memorize series of words or figure pairs  23 Retention 

11. IST_KNO Multiple-choice questions on 6 knowledge facets: 

art/literature, economy, geography/history, 

mathematics, science, and daily life 

84 General 

knowledge 

BOMAT Solve matrix-reasoning problems (5-by-3 matrices)  29 Non-verbal 

reasoning 

BOWIT Multiple-choice questions on 11 different knowledge 

facets: biology/chemistry, mathematics/physics, 

nutrition/exercise/health, technology/electronics, 

arts/architecture, civics/politics, economics/laws, 

geography/logistics, history/archeology, 

language/literature, and philosophy/religion 

308 General 

knowledge 

ZVT Connect numbers from 1 to 90 based on a specific 

rule as fast as possible  

4 Processing 

speed 



Data set HCP. 370 

 Penn CNB. 371 

Four subtests from the University of Pennsylvania Computerized Neurocognitive Battery 372 

(PennCNB; Gur et al. 2001; Gur et al. 2010; Moore et al. 2015) were used to assess 373 

intelligence (see Table 4). These included the Penn Matrix Reasoning Task (PMAT), the Short 374 

Penn Continuous Performance Test (SCPT), the Variable Short Penn Line Orientation Test 375 

(VSPLOT), and the Penn Word Memory Test (IWRD). The reliability estimates (Cronbach’s ) 376 

for all subtests of the Penn CNB are reported to be between .55 and .98 (Gur et al. 2010). 377 

Internal consistency was reported in a Dutch study to have a median Cronbach’s  of .86 378 

across all Penn CNB subtests (Swagerman et al. 2016). 379 

NIH Toolbox. 380 

Seven subtests from the NIH Toolbox for the Assessment of Neurological and Behavioral 381 

Function (http://www.nihtoolbox.org; Gershon et al. 2013; Heaton et al. 2014; Weintraub et al. 382 

2013) were selected to assess intelligence (see Table 4). These were the Flanker Inhibitory 383 

Control and Attention Test (Flanker), the Dimensional Change Card Sort Test (CardSort), the 384 

List Sorting Working Memory Test (ListSort), the Picture Sequence Memory Test (PicSeq), 385 

the Oral Reading Recognition Test (ReadEng), the Picture Vocabulary Test (PicVocab), and 386 

the Pattern Comparison Processing Speed Test (ProcSpeed). The NIH Toolbox has been 387 

validated with several American samples (Heaton et al. 2014; Weintraub et al. 2013). For the 388 

subtests, Weintraub et al. (2013) reported test-retest reliabilities (intraclass correlation 389 

coefficients) between r = .78 and .99. Heaton et al. (2014) built and analyzed composite scores 390 

and found acceptable internal consistency (Cronbach’s α between .77 and .84) as well as 391 

excellent test-retest reliabilities between r = .86 and .92. 392 

Table 4 Cognitive tests used to estimate g in the HCP sample 393 

Intelligence 

test 

Task description No. of items Construct 

measured 



PennCNB    

1. PMAT Solve matrix-reasoning problems (2-

by-2, 3-by-3, or 1-by-5 matrices) 

24 Non-verbal 

reasoning 

2. SCPT Indicate when lines (presented for 

300 milliseconds) form a number or a 

letter  

180 Visual 

attention 

3. VSPLOT Rotate one line on a computer screen 

so that it is parallel to another line  

24 Visual-spatial 

processing 

4. IWRD  Memorize 20 words and recognize 

them afterwards within 40 words 

including 20 distractors matched for 

length, imageability, and 

concreteness 

Form A Verbal 

episodic 

memory 

NIH Toolbox    

1. Flanker Indicate the direction of a central 

arrow, flanked by arrows pointing in 

the same or the opposite direction as 

the target  

40 Executive 

function 

(attention) 

2. CardSort Assign pictures that vary along two 

dimensions (e.g., shape and color) to 

one of two target pictures so that the 

pictures match either in shape or in 

color (the criterion is displayed and 

varies without a predictable pattern) 

40 Executive 

function 

(cognitive 

flexibility) 

3. ListSort Repeat stimuli, beforehand presented 

as a series, in order of size (first 

condition: all stimuli come from the 

Stop criterion: 

failure in two 

Working 

memory 

capacity 



same category; second condition: 

stimuli belong to two categories and 

must be repeated in order of size as 

well as category-specific) 

trials of the 

same length 

4. PicSeq Arrange pictures according to a 

previously seen spatial arrangement 

3 Episodic 

memory 

5. ReadEng Pronounce letters and words as 

correctly as possible  

30-40 depending 

on performance 

Reading 

decoding skill 

6. PicVocab Choose out of four images the one 

that matches to a spoken word 

25 Vocabulary 

knowledge 

7. ProcSpeed Identify as many image pairs as 

possible, displayed side-by-side, as 

identical or not 

130 image pairs 

(time limit: 90 

seconds) 

Processing 

speed 

PennCNB = University of Pennsylvania Computerized Neurocognitive Battery. PMAT = subtest Penn 394 

Matrix Reasoning Task of the PennCNB. SCPT = subtest Short Penn Continuous Performance Test of 395 

the PennCNB. VSPLOT = subtest Variable Short Penn Line Orientation Test of the PennCNB. IWRD = 396 

subtest Penn Word Memory Test of the PennCNB. NIH Toolbox = NIH Toolbox for the Assessment of 397 

Neurological and Behavioral Function. Flanker = subtest Flanker Inhibitory Control and Attention Test 398 

of the NIH Toolbox. CardSort = subtest Dimensional Change Card Sort Test of the NIH Toolbox. ListSort 399 

= subtest List Sorting Working Memory Test of the NIH Toolbox. PicSeq = subtest Picture Sequence 400 

Memory Test of the NIH Toolbox. ReadEng = subtest Oral Reading Recognition Test of the NIH 401 

Toolbox. PicVocab = subtest Picture Vocabulary Test of the NIH Toolbox. ProcSpeed = subtest Pattern 402 

Comparison Processing Speed Test of the NIH Toolbox. 403 

Data set UMN. 404 

WAIS-IV. 405 

Intelligence was assessed using five subtests (see Table 5) of the Wechsler Adult Intelligence 406 

Scale, fourth edition (WAIS-IV; Wechsler 2008): Block Design (WAIS_BD), Matrix Reasoning 407 



(WAIS_MR), Similarities (WAIS_SIM), Vocabulary (WAIS_VC), and Coding (WAIS_CD). The 408 

WAIS-IV subtests’ Cronbach's s have been reported to be between .84 and .94 and test-409 

retest reliabilities to range between r = .69 and .91 (Wechsler 2008). 410 

Table 5 Cognitive tests used to estimate g in the UMN sample 411 

Intelligence 

test 

Task description No. of 

items 

Construct 

measured 

WAIS-IV    

1. WAIS_BD Reproduce a shown two-dimensional 

pattern with several three-dimensional 

building blocks 

14 Perceptual 

reasoning 

2. WAIS_MR Solve matrix-reasoning problems 26 

3. WAIS_SIM Describe the qualitative similarity between 

two words 

18 Verbal 

comprehension 

4. WAIS_VC Define or describe words or concepts 30 

5. WAIS_CD Add corresponding abstract symbols to as 

many numbers of a given sequence as 

possible within a time limit 

135  Processing 

speed 

WAIS-IV = Wechsler Adult Intelligence Scale, fourth edition. WAIS_BD = subtest Block Design of the 412 

WAIS-IV. WAIS_MR = subtest Matrix Reasoning of the WAIS-IV. WAIS_SIM = subtest Similarities of 413 

the WAIS-IV. WAIS_VC = subtest Vocabulary of the WAIS-IV. WAIS_CD = subtest Coding of the WAIS-414 

IV. 415 

Data set NKI. 416 

The Wechsler Abbreviated Scale of Intelligence, second edition (WASI-II; Wechsler 2011), 417 

measured intelligence. The inventory has four subtests, Block Design (WASI_BD, 13 items), 418 

Matrix Reasoning (WASI_MR, 30 items), Similarities (WASI_SIM, 24 items), and Vocabulary 419 

(WASI_VC, 31 items), which are comparable to the subtests from the WAIS-IV (see Table 5). 420 

The WASI-II can be administered in about 30 minutes and is considered to be the measure of 421 



choice for brief intelligence assessments. Split-half reliabilities of the subtests varied between 422 

r = .87 and .91 in the child norming sample (6-16 years) and between r = .90 and .92 in the 423 

adult norming sample (17-90 years). Test-retest reliability was r = .79 in the child sample and 424 

.94 in the adult sample. The interrater reliabilities of the four subtests were between r = .94 425 

and .99, considered exceptionally high (McCrimmon and Smith 2012).  426 

Distribution of intelligence scores 427 

As outlined above, average g levels in the samples might vary, indicating different degrees of 428 

population representation, cohort differences and/or test coverage. Because tests differed, we 429 

could not compare intelligence levels among our samples or link g to the intelligence quotient 430 

(IQ) scale. Nevertheless, we tried to estimate the ranges of intelligence the various samples 431 

covered.  For the RUB data set, we used the norming data of the 11 subtests of the I-S-T 2000 432 

R to estimate IQ scores. The sample’s mean IQ was 115 (SD = 13.0), one standard deviation 433 

above average. The range of intelligence scores in the HCP data set also seemed to lie at the 434 

higher end of the distribution. Dubois et al. (2018) used published norming data from the NIH 435 

toolbox subtests, reporting that the sample’s means on all tests were significantly higher than 436 

the means in the full population. We could generate IQ scores in the UMN and NKI datasets 437 

by applying the standard Wechsler formulae. While the mean (114,1; SD = 15.0) was almost 438 

one standard deviation above average in the UMN data set, it was about average (101.9; SD 439 

= 13.1) in the NKI data set. So, three of our four samples leaned heavily towards the higher 440 

end of the distribution. This may have impacted which brain region associations we observed. 441 

For example, basic arithmetic tests are basically speed and accuracy tests for well-educated, 442 

high-IQ people (who access automatized information to do them), but are reasoning tests for 443 

less educated, lower-IQ people (who must think them through). 444 



Acquisition of diffusion-weighted imaging data 445 

Data set RUB.  446 

All images were collected on a Philips 3T Achieva scanner at Bergmannsheil Hospital in 447 

Bochum, Germany, using a 32-channel head coil. Diffusion-weighted images were acquired 448 

using echo planar imaging (see Table 6). Diffusion weighting was uniformly distributed along 449 

60 directions using a b-value of 1000 s/mm2. Additionally, six volumes with no diffusion 450 

weighting (b = 0 s/mm2) were acquired as an anatomical reference for motion correction. To 451 

increase the signal-to-noise ratio of diffusion-weighted images, we acquired three consecutive 452 

scans that were subsequently averaged (Genç et al. 2011a; Genç et al. 2011b). The total 453 

acquisition time was 30 minutes. 454 

Data set HCP. 455 

All images were collected on a customized Siemens 3T Connectome Skyra scanner housed 456 

at Washington University in St. Louis, using a standard 32-channel Siemens head coil. 457 

Diffusion-weighted images were acquired using echo planar imaging (see Table 6; Feinberg 458 

et al. 2010; Moeller et al. 2010; Setsompop et al. 2012; Xu et al. 2012). The complete diffusion-459 

weighted imaging session was divided into six runs, each lasting approximately nine minutes 460 

and 50 seconds (total acquisition time of about one hour). The six runs represented three 461 

different gradient tables, once acquired in the right-to-left and in the left-to-right phase-462 

encoding direction. Each gradient table comprised 90 diffusion weighting directions as well as 463 

six acquisitions with b = 0 s/mm2 interspersed throughout each run. Diffusion weighting was 464 

based on a multi-shell scheme consisting of equally distributed diffusion-weighted images for 465 

b-values of 1000, 2000, and 3000 s/mm2. 466 

Data set UMN. 467 

All images were collected on a 3T Siemens Trio scanner at the Center for Magnetic 468 

Resonance Research (CMRR) at the University of Minnesota in Minneapolis, using a 12-469 

channel head coil.  Diffusion-weighted images were acquired using echo planar imaging (see 470 



Table 6). Diffusion weighting was uniformly distributed along 71 directions. Nine 471 

measurements with a b-value of 1000 s/mm2 were conducted. The total acquisition time was 472 

12 minutes, 34 seconds. 473 

Data set NKI. 474 

All images were collected on a Siemens Magnetom TrioTim syngo MR B17 scanner at the 475 

Nathan Kline Institute in Orangeburg, New York. Diffusion-weighted images were acquired 476 

using echo planar imaging (see Table 6). Diffusion weighting was uniformly distributed along 477 

128 directions using a b-value of 1500 s/mm2. In addition, nine volumes without diffusion 478 

weighting (b = 0 s/mm2) were obtained. The total acquisition time was five minutes, 58 479 

seconds. 480 

Table 6 Imaging parameters 481 

Data set  TR  

(in 

ms) 

TE  

(in 

ms) 

Flip 

angle 

Number of 

slices 

Matrix 

size 

Voxel size  

(in mm) 

RUB 7652  87 90° 60 112 x 112 2 x 2 x 2  

HCP 5520  89.5 78° 111 145 x 174 1.25 x 1.25 x 

1.25 

UMN 7900  86 90° 64 128 x 128  2 x 2 x 2  

NKI 2400  85 90° 64 106 x 90 2 x 2 x 2 

Image processing and analysis 482 

We processed and analyzed all data sets in the same manner. Since FA is one of the most 483 

commonly derived measures from diffusion data (Smith et al. 2006) and has been observed 484 

to be associated with intelligence in many studies (Genç and Fraenz 2021), we focused on 485 

FA. We used voxel-based statistical analysis of the FA data based on TBSS (Smith et al. 486 

2006), which is part of Oxford Centre for Functional Magnetic Resonance Imaging of the 487 

Brain’s (FMRIB) Software Library (FSL), version 5.0.9 (Smith et al. 2004). First, DWI images 488 



were subjected to brain extraction using Brain Extraction Tool (BET; Smith 2002). Then, FA 489 

images were created by fitting tensor models to the raw diffusion data using FMRIB’s Diffusion 490 

Toolbox (FDT). We transformed the resulting FA images into a common space via FMRIB’s 491 

Nonlinear Image Registration Tool (FNIRT; Andersson et al. 2007a; 2007b), which uses b-492 

spline representations of the registration warp fields (Rueckert et al. 1999). For this purpose, 493 

we chose the DTI template FSL_HCP1065_FA_1mm within FSL, which is based on 1065 494 

participants from the Human Connectome Project and is available in Montreal Neurologic 495 

Institute (MNI) 152 standard space (1 x 1 x 1 mm). Next, we created and thinned mean FA 496 

images to generate mean FA skeletons representing the centers of all tracts common to the 497 

sample. We set the FA threshold at 0.20 to include only major white matter tracts and exclude 498 

peripheral tracts which are more vulnerable to intra- and inter-subject variability. Each 499 

participant’s aligned FA image was projected onto the skeleton by filling each skeleton voxel 500 

with the FA value of the nearest tract center. We used the resulting data to compute voxel-501 

based statistics. 502 

Statistical analysis 503 

We used permutation-based inference (Nichols and Holmes 2002) to analyze voxel-based 504 

statistics. To this end, we used the FSL tool "randomise" (Winkler et al. 2014) with 5,000 505 

permutations for each analysis. Within the white matter skeleton of each data set, we used a 506 

general linear model (GLM) to identify positive and negative associations between g and FA 507 

while controlling age, sex, age*sex, age2, and age2*sex. We treated them as nuisance 508 

variables since they explain relatively little (~10%) of the total variance in whole-brain average 509 

FA (Kochunov et al. 2015), to be consistent (same control variables as for computing the g 510 

factors), and we were not interested in possible age and sex differences.  511 

We used threshold-free clustering enhancement (Smith and Nichols 2009) to avoid arbitrarily 512 

specifying a cluster-forming threshold a priori. We adjusted the resulting statistical parametric 513 

maps for multiple comparisons by the family-wise error rate thresholded at p < .05. We 514 

binarized them via the FSL tool "fslmaths", so that voxels exhibiting a significant relation 515 



between g and FA were assigned 1 and all remaining voxels 0. We carried out each step 516 

separately in each data set.  517 

As the focal final step, we compared our observations from the individual data sets to identify 518 

white matter areas exhibiting replicable structure-function associations. For this purpose, we 519 

used the FSL tool "fslmaths" to compute the sums of the four binarized maps depicting positive 520 

contrasts and the four binarized maps depicting negative contrasts (see Figure 5). This 521 

resulted in two statistical parametric maps with values between 0 (no positive/negative 522 

associations between g und FA in any data set) and 4 (positive/negative associations in all 523 

data sets). We thresholded these maps once again to generate conservative maps only 524 

showing those voxels that exhibited significant associations across all four data sets (100% 525 

consensus). We multiplied those conservative maps with thresholded (value 10) fiber tracts of 526 

the Johns Hopkins University White Matter Tractography Atlas, implemented in FSL, to 527 

determine the anatomical location of the voxels (Hua et al. 2008; Mori et al. 2005; Wakana et 528 

al. 2007). We averaged the FA values of all significant voxels within a voxel cluster for each 529 

participant. These mean FA values were related to g by calculating partial correlation with age, 530 

sex, age*sex, age2, and age2*sex as controls. We did this separately for each data set and 531 

results were visualized using scatter plots. 532 



 533 



Figure 5. Methodological sequence depicting the different steps of the image analysis and statistical 534 

analysis. The TBSS approach was carried out for each data set separately. We used nonlinear 535 

registration to transform individual FA images to a common stereotactic space. By averaging all aligned 536 

images, we obtained mean FA maps (not shown). Next, we thinned these to generate white matter 537 

skeletons only including voxels at the center of fiber tracts common to all participants. We projected 538 

each participant’s aligned FA map onto a skeleton by filling the skeleton voxels with FA values from the 539 

nearest relevant tract center (not shown). We used the skeletonized FA maps to compute voxel-based 540 

cross-subject statistical comparisons. The second last column depicts statistical maps showing voxels 541 

that exhibited a significant positive relation between g and FA (controlled for age, sex, age*sex, age2, 542 

and age2*sex). The last image on the right shows voxels that matched across all four data sets. 543 

Additional exploratory analyses 544 

We also took an exploratory and more liberal approach by creating brain maps including all 545 

voxels that exhibited significant associations in three out of four data sets (75% consensus). 546 

Beyond that, we conducted further explorative analyses. These were based on previous 547 

studies’ reports that made different observations for broad, first-order intelligence factors such 548 

as verbal and nonverbal reasoning abilities (Tamnes et al. 2010). First, we used each of the 549 

first-order intelligence factors from each data set (see Figures 1 to 4) as regressors on FA 550 

while adding age sex, age*sex, age2, age2*sex, and the remaining first-order intelligence 551 

factors for each data set as nuisance factors. For example, the association between verbal 552 

intelligence and FA in the RUB data set was analyzed with age, sex, age*sex, age2, age2*sex, 553 

numerical intelligence, and figural intelligence serving as nuisance factors. Second, we 554 

removed the effects of g from all first-order intelligence factors and used these variables as 555 

regressors on FA, along with age, sex, age*sex, age2, and age2*sex as nuisance variables.  556 

We also tried to compare the first-order intelligence factors by binarizing, adding, and 557 

thresholding their statistical parametric maps as described above for g to test whether there 558 

were robust observations among our four data sets below g. Since the factor models of our 559 

data sets had different first-order factors, it was not possible to compare them directly in all 560 

data sets. One example is the HCP data set which does not have a first-order intelligence 561 



factor related to only verbal abilities (see Figure 2). Nonetheless, we still tried to include this 562 

sample in our comparison of first-order intelligence factors. Hereby, we tested whether there 563 

was a robust relation between FA and verbal abilities by combining the results of the first-564 

order intelligence factors ver (RUB, UMN, and NKI) and proc (HCP) (see Figures 1 to 4). For 565 

processing abilities, we combined the first-order intelligence factors fig (RUB) and proc (HCP, 566 

UMN, and NKI).  567 

568 



Results 569 

Relations between g and FA 570 

Main analysis with 100% consensus. 571 

No voxels exhibited significant negative associations between g and FA in any of the four data 572 

sets. In total 188 individual voxels, 0.12% of the white matter skeleton, exhibited significant 573 

positive associations between g and FA in all four data sets, controlling age, sex, age*sex, 574 

age2, and age2*sex (for the results of the single data sets, see Supplemental Figure 1). These 575 

voxels could be pooled into three contiguous clusters. Cluster "Forceps minor" was the largest 576 

and comprised 97 voxels. It overlapped completely with parts of the forceps minor as well as 577 

with crossing extensions of the anterior thalamic radiation, the cingulum-cingulate gyrus, and 578 

the inferior fronto-occipital fasciculus in the left hemisphere. Scatter plots illustrating the 579 

associations between this cluster's mean FA and g are shown in Figure 6 (RUB: r = .15; HCP: 580 

r = .14; UMN: r = .13; NKI: r = .16). The second cluster "SLF" comprised 79 voxels and was 581 

located around the superior longitudinal fasciculus in the left hemisphere. Figure 7 shows the 582 

four scatter plots illustrating the associations between this cluster's mean FA and g (RUB: r = 583 

.18; HCP: r = .14; UMN: r = .22; NKI: r = .12). The third cluster “Cingulum” was rather small 584 

and comprised 12 voxels. Since this cluster did not overlap with any of the thresholded fiber 585 

tracts, we used their unthresholded versions to assign the voxels to the fiber tracts. We 586 

observed matching voxels with fading extensions of the cingulum-cingulate gyrus, the inferior 587 

fronto-occipital fasciculus, and the anterior thalamic radiation in the left hemisphere. The four 588 

scatter plots illustrating the associations between this cluster’s mean FA and g are shown in 589 

Figure 8 (RUB: r = .14; HCP: r = .12; UMN: r = .13; NKI: r = .13).  590 



 591 

Figure 6. Associations between g and mean FA values from the cluster “Forceps minor”. The image on 592 

the left side shows the voxel cluster named "Forceps minor" (encircled). The FA values of these voxels 593 

were significantly positively associated with g in all four data sets (independent of effects of age, sex, 594 

age*sex, age2, and age2*sex). The voxels completely overlapped with parts of the forceps minor as well 595 



as with crossing extensions of the anterior thalamic radiation, the cingulum-cingulate gyrus, and the 596 

inferior fronto-occipital fasciculus in the left hemisphere. The right side of the figure shows four scatter 597 

plots, one for each data set. Here, mean FA values from cluster “Forceps minor” are plotted against 598 

standardized g values. Age, sex, age*sex, age2, and age2*sex were used as controlling variables. 599 

Reporting partial correlation coefficients is not common. We did so only to convey a general sense of 600 

the correlation levels. 601 



 602 

Figure 7. Associations between g and mean FA values from the cluster "SLF". The image on the left 603 

side shows the voxel cluster named "SLF" (encircled). The FA values of these voxels were significantly 604 

positively associated with g in all four data sets (independent of the effects of age, sex, age*sex, age2, 605 

and age2*sex). The voxels were located around the superior longitudinal fasciculus in the left 606 



hemisphere. The right side of the figure shows four scatter plots, one for each data set. Here, mean FA 607 

values from cluster “SLF” are plotted against standardized g values. Age, sex, age*sex, age2, and 608 

age2*sex were used as controlling variables. Reporting partial correlation coefficients is not common. 609 

We did so only to convey a general sense of the correlation levels. 610 

 611 



Figure 8. Associations between g and mean FA values from the cluster "Cingulum". The image on the 612 

left side shows the voxel cluster named "Cingulum" (encircled). The FA values of these voxels were 613 

significantly positively associated with g in all four data sets (independent of the effects of age, sex, 614 

age*sex, age2, and age2*sex). The voxels overlapped with fading extensions of the unthresholded fiber 615 

tracts cingulum-cingulate gyrus, inferior fronto-occipital fasciculus, and anterior thalamic radiation in the 616 

left hemisphere. The right side of the figure shows four scatter plots, one for each data set. Here, mean 617 

FA values from cluster “Cingulum” are plotted against standardized g values. Age, sex, age*sex, age2, 618 

and age2*sex were used as controlling variables. Reporting partial correlation coefficients is not 619 

common. We did so only to convey a general sense of the correlation levels. 620 

Exploratory approach with 75% consensus. 621 

The more liberal approach, requiring results to replicate in three of the four data sets, yielded 622 

8364 voxels, 5.5% of the white matter skeleton, with significant positive associations between 623 

g and FA, controlling age, sex, age*sex, age2, and age2*sex. As depicted in Supplemental 624 

Figure 2, these voxels were widely scattered across the skeleton. Table S1 shows the 625 

distribution of significant voxels in relation to various major white matter fiber tracts.  626 

Exploratory approach for first-order intelligent factors below g 627 

As mentioned above, we also tested whether there were robust associations below the level 628 

of g. The different analyses focused on first-order intelligence factors did not yield consistent 629 

results for 100% consensus, 75% consensus, or 50% consensus. Hence, we do not present 630 

our observations of single data sets. 631 

Discussion 632 

Previous research focused on the relations between general intelligence and white matter 633 

microstructure in healthy participants has yielded mixed results. Hence, the primary goal of 634 

this study was to find replicable structure-function associations between general intelligence 635 

and white matter FA. Indeed, our analyses, involving a TBSS approach across four 636 

independent, cross-sectional samples, led to the conclusion that such replicable associations 637 

exist. We were able to identify a total of 188 voxels, 0.12% of the white matter skeleton, that 638 



exhibited significant positive relations between g and FA across all four data sets, controlling 639 

age, sex, age*sex, age2, and age2*sex. These voxels formed three contiguous clusters. The 640 

first was located around the forceps minor, crossing with extensions of the anterior thalamic 641 

radiation, the cingulum-cingulate gyrus, and the inferior fronto-occipital fasciculus in the left 642 

hemisphere. The second was located around the left-hemispheric superior longitudinal 643 

fasciculus. The third was located around the left-hemispheric cingulum-cingulate gyrus, 644 

crossing with extensions of the anterior thalamic radiation and the inferior fronto-occipital 645 

fasciculus.  646 

There were no voxels exhibiting significant negative associations between g and FA in any of 647 

the four data sets. This was consistent with previous research. Multiple studies have examined 648 

the associations between various measures of intelligence and FA using various approaches 649 

including ROI-based, tract-based, whole-brain-based, and TBSS-based analyses. Despite 650 

these differences in design, these studies almost exclusively reported positive associations 651 

(Genç and Fraenz 2021). This suggests that individuals with higher intelligence scores tend 652 

to have white matter with stronger anisotropic diffusion patterns. However, as FA is a metric 653 

aggregating many tissue properties (Beaulieu 2002; Friedrich et al. 2020; Jones et al. 2013; 654 

Le Bihan 2003), the exact neurobiological underpinnings driving FA signal differences remain 655 

unclear. We can thus only speculate about how higher FA values link to higher g. Causal 656 

implications could not be drawn from our analyses. Previous studies examining healthy older 657 

people suggested that information processing efficiency might mediate the association 658 

between FA values and g (Deary et al. 2006; Penke et al. 2010). Whether this finding extends 659 

to other age groups remains to be seen, but it provides first indications that higher g values 660 

might emerge from faster, more direct, or more parallel information processing. As 661 

summarized by Friedrich et al. (2020), myelination and fiber density have been considered 662 

two likely neurobiological contributors to FA. Higher FA values might create links with higher 663 

mental speed via greater underlying myelination enabling faster conduction velocity (Nave 664 

2010). More direct information transfer throughout the brain might rely on higher FA values 665 

that emerge from more parallel, homogeneous fiber orientation distributions. Voxels without 666 



complex fiber architectures such as multiple fiber populations, bending fibers, or crossing 667 

fibers run directly from one brain region to another, thereby enabling efficient and direct 668 

network communication. Greater axon density underlying higher FA might also lead to higher 669 

intelligence by providing more pathways to think through various solutions to given problems 670 

relatively simultaneously. Future studies are needed to examine intelligence-related 671 

differences in such factors (axon diameter, fiber density, myelin concentration, and distribution 672 

of fiber orientation) affecting FA values.  673 

Not only were our observations generally consistent with previous research in direction of 674 

correlations, but the loci of voxels we identified were similarly consistent. Relevant voxels were 675 

situated in regions of the forceps minor, anterior thalamic radiation, cingulum-cingulate gyrus, 676 

inferior fronto-occipital fasciculus, and superior longitudinal fasciculus in the left hemisphere. 677 

All these fiber tracts have been reported in previous TBSS-studies (Dunst et al. 2014; Malpas 678 

et al. 2016; Tamnes et al. 2010). 679 

Fibers running through the genu, i.e. the anterior part of the corpus callosum, form the forceps 680 

minor (Catani and Thiebaut de Schotten 2008). As summarized by Genç and Fraenz (2021), 681 

the genu of the corpus callosum is the brain region in which FA is most often associated with 682 

interindividual differences in intelligence. The corpus callosum is the largest commissural fiber 683 

bundle in the brain and consists of approximately 200 million axons (Aboitiz et al. 1992). It 684 

connects the left and the right hemispheres and is thus crucial for interhemispheric transfer 685 

and integration (van der Knaap and van der Ham 2011). As functional lateralization is a 686 

prominent feature of the human (and other mammalian) brain(s) (Karolis et al. 2019; Kolb and 687 

Whishaw 2015) and the two hemispheres play different roles in inferential reasoning in 688 

particular (Marinsek et al. 2014), it seems essential to have recourse to both hemispheres’ 689 

specializations for intelligent behavior. Fibers of the genu especially link the two hemispheres’ 690 

prefrontal cortices across the hemispheres (Catani and Thiebaut de Schotten 2008). 691 

Macrostructural and functional properties of the prefrontal cortex have been repeatedly 692 

associated with intelligence (Basten et al. 2015; Deary et al. 2010a; Jung and Haier 2007). In 693 

general, the prefrontal cortex is highly relevant for higher cognitive skills such as abstract 694 



reasoning, problem solving, memory retrieval, attention, working memory, social interactions, 695 

language, and planning (Cabeza and Nyberg 2000; Wood and Grafman 2003).  696 

The anterior thalamic radiation is a projection tract that connects the thalamus to the frontal 697 

lobe (Mori et al. 2002; Mori et al. 2005). Of all subcortical structures, thalamus volume seems 698 

to be most strongly associated with interindividual differences in intelligence (Bohlken et al. 699 

2014; Cox et al. 2019). In addition, the thalamus has a complex connectivity profile, and its 700 

various nuclei establish connections to many areas of the brain (Aggleton et al. 2010; Behrens 701 

et al. 2003). Although the thalamus has traditionally been considered to serve merely as a 702 

relay station for cortical inputs, more recent observations suggest that its role in cognition 703 

could be much broader. It is conceivable that the thalamus also performs dynamic 704 

computations that take contextual information into account and reconfigure cortical 705 

representations (Dehghani and Wimmer 2019; Rikhye et al. 2018). 706 

The cingulum is a medial associative fiber bundle that runs within the cingulated gyrus from 707 

the orbital frontal regions along the dorsal surface of the corpus callosum down towards the 708 

temporal lobe (Bubb et al. 2018; Catani and Thiebaut de Schotten 2008). Its fibers form 709 

intracortical connections between the medial frontal, parietal, occipital, and temporal lobes as 710 

well as different portions of the cingulated cortex. The fiber bundle is also part of the limbic 711 

system and one component of the Papez circuit (Papez 1937) constituting connections among 712 

the anterior thalamic nuclei, the parahippocampal region, and the cingulate cortex (Buyanova 713 

and Arsalidou 2021; Catani and Thiebaut de Schotten 2008). The cingulum appears to be 714 

involved in various cognitive domains such as cognitive control, attention, executive functions, 715 

memory, language, and visual-spatial functions (Bettcher et al. 2016; Bubb et al. 2018; 716 

Buyanova and Arsalidou 2021; Kantarci et al. 2011; Takahashi et al. 2010).  717 

The inferior fronto-occipital fasciculus forms a major association fiber bundle linking the 718 

orbitofrontal cortex with the ventral occipital lobe (Catani and Thiebaut de Schotten 2008). 719 

Studies suggest that the inferior fronto-occipital fasciculus participates in semantic and visual 720 

processing as well as attention (Buyanova and Arsalidou 2021; Catani and Thiebaut de 721 

Schotten 2008; Leng et al. 2016). 722 



The superior longitudinal fasciculus is a major white matter tract that connects frontal and 723 

opercular areas with the temporoparietal junction and parietal regions (Buyanova and 724 

Arsalidou 2021), allowing widespread intracortical information exchange. It is a matter of 725 

debate whether the arcuate fasciculus, which connects brain areas relevant for language 726 

processing (Broca's and Wernicke's area), can be considered part of the superior longitudinal 727 

fasciculus or is merely adjacent to it (Cox et al. 2019; Dick and Tremblay 2012; Kamali et al. 728 

2014). Buyanova and Arsalidou (2021) noted that the right superior longitudinal fasciculus has 729 

been associated with cognitive functions such as attention (Frye et al. 2010) and visuospatial 730 

abilities (Hoeft et al. 2007), whereas the left superior longitudinal fasciculus has been 731 

observed to be crucial for language (Dick and Tremblay 2012) and reading skills (Frye et al. 732 

2010). Buyanova and Arsalidou (2021) further stated that the arcuate fasciculus has been 733 

related to reasoning abilities and language processing (Lebel and Beaulieu 2009; Zemmoura 734 

et al. 2015). Therefore, both fiber tracts seem to be crucial for higher-order language functions 735 

(Friederici 2009). Language, in turn, is viewed as an important cognitive tool for problem 736 

solving since the lexicon symbols encapsulate abstract notions, making them more readily 737 

manipulable (Varley 2007). Grammatical mechanisms have similar roles in articulating 738 

relations among entities. Hence, language in the form of inner speech may allow tasks to be 739 

broken into finite series of sub-steps that guide reasoning processes (Varley 2007). Based on 740 

this inference, it is not surprising that the superior longitudinal fasciculus is one of the four fiber 741 

tracts being most often associated in the kinds of tasks used in intelligence tests (Genç and 742 

Fraenz 2021), especially given the constraints (e.g. many, extremely finite, rigidly structured 743 

items, administration under tight time and space conditions) involved in attempting to measure 744 

intelligence.  745 

Our observations suggest that these brain regions play vital roles in intelligence test 746 

performance via white matter tract integrity and coherently anisotropic organization, which is 747 

supported by previous research. Jung and Haier (2007) also posited these fiber tracts’ 748 

relevance in their P-FIT model. They proposed that working on intelligence test reasoning 749 

tasks involves multiple processing stages and harmonic interplay of the brain regions 750 



constituting their ‘P-FIT’ network. More precisely, they suggested that brain regions in the 751 

temporal and occipital lobes are crucial in successfully recognizing and initially processing 752 

sensory information. Subsequently, they presumed that the parietal cortex is essential for the 753 

interpretation, abstraction, and elaboration of the information’s symbolic content. The parietal 754 

cortex is believed to interact with frontal regions, which are thought to orchestrate generation 755 

and testing of potential solutions to given problems. Once a solution has been selected, it is 756 

thought that the anterior cingulate cortex chooses an appropriate reaction and inhibits 757 

alternative responses.  758 

Based on this, Jung & Haier (2007) proposed that the rapid and error-free transfer of 759 

information from posterior to frontal brain areas depends on underlying white matter integrity. 760 

They also emphasized the importance of information exchange between parietal and frontal 761 

association areas, which would highlight a role for the superior longitudinal fasciculus (Jung 762 

and Haier 2007). Therefore, our observations relating the superior longitudinal fasciculus to 763 

general intelligence supported the P-FIT model. Our cingulum observations fit within the P-764 

FIT network. As noted by Fraenz et al. (2021), the P-FIT network is not organized exclusively 765 

intra-hemispherically. Hence, interhemispheric information transfer between prefrontal areas, 766 

e.g. via the forceps minor, seems to be consistent as well. The P-FIT model does not propose 767 

direct connections between occipital and (orbito-)frontal areas. However, our observations, 768 

highlighting the importance of the inferior fronto-occipital fasciculus, did not necessarily 769 

contradict the model, given that this fiber tract also connects distal cortical regions of the P-770 

FIT network. Instead, additional connections offer the possibility of more parallel flows of 771 

information. Since individuals who score identically in an intelligent test may use different 772 

cognitive strategies as well as different brain structures to reach their performance level 773 

(Deary et al. 2010a), there may be more than one adequate solution path and overall good 774 

brain function may be more important for general intelligence than using any specific parts 775 

well.  776 

Jung and Haier (2007) assumed that brain regions beyond the cerebral cortex, such as 777 

thalamus, hippocampus, and cerebellum, are involved only in rather basic functions. Hence, 778 



they believed that they would not contribute to interindividual intelligence differences 779 

significantly. However, more recent studies indicate that the thalamus and the hippocampus 780 

as well as their connections could play more important roles in reasoning than originally 781 

thought (Bohlken et al. 2014; Cox et al. 2019; Deary et al. 2022; Dehghani and Wimmer 2019; 782 

Rikhye et al. 2018). Our observations, involving the anterior thalamic radiation, supported 783 

these studies in suggesting that the P-FIT model (Jung and Haier 2007) needs some updating, 784 

which is only to be expected after 15 years more research.  785 

We initially took a rather conservative analytical approach. To be considered for discussion, 786 

voxels had to exhibit significant associations between g and FA across all four data sets (100% 787 

consensus). A more liberal threshold (75% consensus) yielded about 44 times more voxels. 788 

This was simply because more datasets inevitably vary in more ways. Moreover, as illustrated 789 

in Supplemental Figure 2, significant voxel clusters were no longer exclusively located in the 790 

left hemisphere. However, Table S1 indicates that more significant voxels could be assigned 791 

to fiber tracts in the left hemisphere (59.3%, out of nine fiber tracts with left-right symmetry 792 

seven had more voxels in the left hemisphere). As the left and the right hemisphere differ in 793 

their specialized functions (Karolis et al. 2019; Kolb and Whishaw 2015; Marinsek et al. 2014), 794 

both hemispheres and their functional interaction are relevant for intelligent behavior. 795 

The additional exploratory analyses of different first-order intelligence factors did not lead to 796 

any overlapping results in even two data sets. Our observations were not consistent with 797 

Tamnes et al. (2010), who reported significant positive associations between FA and 798 

verbal/nonverbal reasoning abilities. This could be because the first-order intelligence factors 799 

differed among samples (see Figures 1-4). As they include much less information than g, 800 

differences in the specific tasks might have impacted these factors’ contents more than they 801 

did g. But our results could also differ from Tamnes et al.’s because our analyses of these 802 

narrower intelligence factors controlled g itself, which theirs did not, so we examined only 803 

factor-specific variance. g explains about 40% of total variance in typical test batteries (Deary 804 

et al. 2010a), in our cases 32-65% (see Table 2). To resolve such inconsistencies, future 805 

studies should also focus on specific intelligence factors, though keeping in mind that no factor 806 



identified in this manner actually ‘carves nature at its joints’. They all vary considerably 807 

depending on specific test battery content and sampling. 808 

Limitations 809 

Making use of multiple samples, as we did is more likely to yield replicable observations. 810 

However, the question arises why particular observations in one sample failed to replicate in 811 

other data sets (see Supplemental Figure S1). This might be because there is no robust 812 

association between g and FA, but it might also be that differences among data sets hindered 813 

cross-sample replication. The four data sets included in our study used different intelligence 814 

tests, had different sample sizes, sex ratios, age distributions, and image acquisition protocols. 815 

As can be seen in Supplemental Figure 1, the RUB data set was the most common exception 816 

to 100% overlap. This data set differed from the other, more similar three in several aspects: 817 

the sample had been collected in Germany and therefore influenced by German pedagogies 818 

(vs. USA), MRI measurements were obtained on a Philips scanner (vs. Siemens scanners), 819 

and its g-factor residuals had greater variance despite the sample’s high indicated mean IQ 820 

(see Figures 6-8). As two other (HCP and UMN) of our four samples leaned heavily towards 821 

the higher end of the intelligence distribution, population-representativeness was limited in 822 

these data sets. This may have heavily impacted which brain region associations we observed 823 

since, for example, basic arithmetic tests are basically speed and accuracy tests for well-824 

educated, high-IQ people but reasoning tests for less educated, lower-IQ people. Outlined at 825 

the discussion’s beginning, two possibilities for why higher FA values might show links with 826 

higher g are faster or more direct information processing due to greater myelination and more 827 

parallel, homogenous distributions of fiber orientation. The RUB data set’s intelligence test 828 

battery included more verbal tasks with no time limit (e.g. BOWIT), whereas all the other data 829 

sets’ g factors did not rely so heavily on such tasks and instead included more non-verbal 830 

tasks. This difference could explain why the latter generated more associations with FA. 831 

Furthermore, the RUB sample mainly consisted of German university students who are not 832 

representative of the European population in age, educational background, or ethnic 833 



composition. As our samples came from different populations, represented to different 834 

degrees, one should not draw conclusions about humans in general based on our results. We 835 

attempted to minimize the effects of these differences by calculating g factor scores, 836 

standardizing data processing for all data sets, and statistically controlling age, sex, age*sex, 837 

age2, and age2*sex. Nevertheless, these differences might have hindered detection of 838 

potential associations and/or distorted those we did observe. In general, use of 839 

complementary methods, including fine-grained cortical parcellation schemes in combination 840 

with diffusion-weighted imaging and graph theory, may lead to new insights and are highly 841 

encouraged. 842 

Conclusion 843 

In conclusion, we reported replicable associations between general intelligence and FA 844 

among four different cross-sectional data sets. By analyzing data from more than 2000 healthy 845 

participants, we were able to observe a total of 188 voxels with significant positive associations 846 

between g and FA in all four data sets, controlling age, sex, age*sex, age2, and age2*sex. 847 

These voxels were located around the forceps minor, crossing with extensions of the anterior 848 

thalamic radiation, the cingulum-cingulate gyrus, and the inferior fronto-occipital fasciculus in 849 

the left hemisphere, around the left-hemispheric superior longitudinal fasciculus, and around 850 

the left-hemispheric cingulum-cingulate gyrus, crossing with extensions of the anterior 851 

thalamic radiation and the inferior fronto-occipital fasciculus. Our observations do not imply 852 

that other brain’s white matter areas not observed are irrelevant for intellectual performance, 853 

but only that the mentioned fiber tracts appear to be more commonly or intensely relevant to 854 

carrying out cognitive tasks than others. For the most part, our observations were consistent 855 

with previous research on the associations between white matter correlates and intelligence 856 

differences. We hope that future studies will make use of multiple samples because it is more 857 

likely to avoid false positive observations and could ultimately yield truly robust findings. 858 
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