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ROBUST ASYMPTOTIC TESTS OF STATISTICAL HYPOTHESES
INVOLVING NUISANCE PARAMETERS'

By PauL C. C. WaNG
University of Calgary

A robust version of Neyman’s optimal C(a) test is proposed for contam-
ination neighborhoods. The proposed robust test is shown to be asymptotically
locally maximin among all asymptotic level a tests. Asymptotic efficiency of
the test procedure at the ideal model is investigated. An outlier resistant

- version of Student’s ¢-test is proposed.

1. Introduction. Huber (1965) obtained a robust version of the probability ratio test
by explicitly exhibiting a pair of least favorable distributions. Subsequently Huber-Carol
(1970) and Rieder (1978) studied the corresponding asymptotic robust testing problem
when the ideal model is completely specified by the parameter ¢ tested. The purpose of
this paper is to extend the asymptotic robust testing theory to the situation where the
ideal model involves nuisance parameters. The problem considered is a robust analogue of
the composite parametric testing problem considered by Neyman (1958), and the test
procedure derived herein is a robust extension of the optimal C(a) test. For another robust
extension, see Beran (1980).

Specifically let X;, X,, - - -, X, be independent random variables each assuming values
in Z C R™ for some m. Let 2= {P;:0 € ©} be a family of probability measures on the
sample space, and suppose the parameter space 0 is an open product set = X .4 where =
C R and 4" C R*. A generic element of © is denoted by 8 = (£, ) where £ € = and n € A{
For each n, €, € (0, 1) and 8 € O let ¥ (e,; #) denote the contamination neighborhood of P,
with size ¢,, i.e., the set of probability measures of the form

Q=(1—-¢€)Ps+ e.R

for some probability measure R. Let " “(¢,; 8) denote the product of n-copies of ¥{ex;
4).

Based on the sample X, X, ---, X,, we are interested in testing the hypothesis that ¢
= £, while allowing €, contamination. To state the problem formally for a one-sided test,
we wish to test

H,: %X, Xs, -+, Xz) € ¥ en; &0, 1)
against the alternative
Kn:g(Xl, XZ, ctty Xn) €y (n)(fn; gn, TI) for gn = $n1(77) > 50,

where £,1(n) is a specified function of the unspecified vector of nuisance parameters 5, and
L(X,, X, - -+, X,) denotes the law of X, X;, - - -, X,.. The indifference region {(%, &:.1(n)):
1 € A} is required because otherwise H, and K, are indistinguishable (see Remark 4 in
Rieder, 1978). A precise criterion for choosing £.:(n) in a local framework will be given
later (cf. (2.1) and (3.1)).
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ROBUST TESTS 1097

ExaMPLE. A particular example of the above testing problem concerns the testing of
the mean of a normal population in the presence of possible outliers. The problem is to
test

Huo: Z2(X1) = (1 — €)®{(x — o) /0} + € Rno
with alternative
H.: Z(X) = (1 —&)P{(x — pn)/0} + €xRu1, for p, = pini(o) > po,

with unknown ¢. Here @ is the cdf of the standard normal variable and R,,’s are arbitrary
distribution functions which in principle may depend upon the parameters ; and ¢°. We
shall show that the robust procedure appropriate for this testing problem is to reject H,o
for large values of

a2 3 min(V, max((X, — wo)/6x, — V),

where V > 0 satisfies a certain equation and 6, is any n'/*-consistent and resistant estimate
of o such as the normalized interquantile range or the symmetrized interquartile range.
For a discussion of the lack of robustness of Student’s ¢-test against outliers, see Millar
(1980).

OUTLINE. As in Huber-Carol (1970) and Rieder (1978) we shall employ a local
approach and allow the neighborhoods in H, and K, to shrink at the same rate as &,
approaches .

By fixing the nuisance parameter 7, a necessary and sufficient condition is derived for
a truncated likelihood ratio test to be an asymptotic level-a test free of the local nuisance
parameters (Theorem 2.1). The condition requires the nuisance score functions to be
uncorrelated with a certain truncated test function.

By making use of the orthogonality condition and Huber’s first basic result on testing
(see Theorem 1 of Huber, 1965), an asymptotic local maximin test at 7 is constructed
(Theorem 2.2). This test, which is based on the likelihood ratio of a pair of asymptotically
least favorable distributions, is not a genuine test since it depends upon 5. By adapting the
original results of LeCam (1969), the question of existence of n'/*-consistent and resistant
estimates of 7 is discussed in Section 2. Upon estimating the known 7, a studentized version
of the fixed-n sequence of tests is shown to satisfy an asymptotic optimality criterion
defined in Section 2 (Theorem 2.3).

Sections 3 and 4 supply assumptions, technical details and proofs of results.

In Section 5 we investigate the performance of the proposed robust test with respect to
the optimal C(a) test at the ideal model 22 We return to the example of the normal mean
in Section 6.

NoraTiOoNs. Throughout this paper the following notations are adopted. E denotes
the expectation taken with respect to P , unless specified otherwise; a* = max(a, 0); a~
= max(—a, 0); I(A) denotes the indicator function of the set A; | - | denotes the usual
Euclidean norm; a € (0, 1) denotes the level of significance and z;_, denotes the (1 — a)
quantile of the standard normal. For notational convenience quantities such as & will be
suppressed in formulae whenever this does not cause confusion. In particular the random
element X in a random function f(X; #) may also be suppressed and we shall write it as

£(8).
2. Framework, optimality and results. Following the usual asymptotic local
approach, upon fixing § € @, we shall consider parameter points of the form
0,.=80+n""h, where h, h€ R*' and h,— h.
Then for each n = 1 and € ./ define
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(2.1) en=n""% and &.(n) =& +n (),

where 71(n) is some positive function to be specified later. For now let us assume 71(7) has
been chosen such that {H,} and {K,} are asymptotically disjoint.
For each sequence {y,} of tests and each 8§ € © denote

(s 0) = SUp{E (¢ | @n): Q@ E ¥ (en; )},
and
Bu(n; 6) = inf{E(Yn | Qn):@n € V"™ (en; 6)}.
Also, for n € 4, t € R* and M < = denote
Balins £ 1, M) = inf{Ba(s & + 0727, + n728)imaln) < 7 < M),
A sequence {,} of tests is called an asymptotic level « test for {H,} iff
(2.2) supr lim sup, .. supjej=7 an(Yn; o, 1 + n %) = forall ne A

Let ¥, denote the set of asymptotic level a tests for {H,}. A sequence of tests {{,} is
called an asymptotic local maximin (for short, ALM) test for {H,} against {K,} iff {7 }
€ ¥, and

(2.3) supa,r im supa . supp=r (Bnlyn; t |7, M) — Ba(5 t |9, M)) =0
for all n € A and {»} € V..

FURTHER NOTATIONS. Let ¢ (8) = ($1(8), - -+ dr+1(8))’ denote the derivative in quad-
ratic mean of the parametric family 2; cf. LeCam (1960), Roussas (1972). For the moment
just think of ¢ as the vector of pointwise partial derivatives of the log of the ideal density
multiplied by a half—i.e., the Fisher score functions. Denote A;(n) =2q§, (éo,m) forj=1, 2,
-+« kB + 1 and set A(p) = (As(7), -+ Ars1(n))’. For each a € R* and 5 € .4 define the
random function A(a, n) by

(2.4) Ala, ) = Ai(n) + Th=1 ().
On R x R* X ./ define numerical functions A, and A; by
(2.5) holw, a,1) = E(Ala, ) —w)™ and hi(w, a, n) = he(w, a, 1) + w.

Some properties of hy are given in Lemma 4.1 and others can be found in Huber-Carol
(1970); Quang (1974) and Rieder (1978). From these functions, define another pair of
numerical functions V(a, ) and U (a, n) implicitly by

(2.6) ho(Via, 1), a,n) == = h(Ula, 1), a,n).
7'1(7])

Denote the Huberized function of A(a, 3) by H(a, 3), i.e.,

2.7) H(a,n) = min(V(a, 1), max(A(q, n), U(a,7))).

Under the hypothesized ideal model the mean of H (a, n) is zero and the variance is strictly
positive.

Now let n € .4 be fixed and adopt the following nomenclature. A “test” y;(n) is called
an asymptotic level « test at 5 iff it satisfies (2.2) at the point 5. Let ¥,(n) denote such a
class of tests at n. A sequence {y; (1)} of tests is called an asymptotic local maximin test
at n iff {Y¥(n)} € ¥.(n) and satisfies (2.3) at the point 7.

Fort¢,, t, € R* such that t,, — t;(j = 0, 1), denote 8.0 = (£, Nno) and b1 = (£.1(0), 1)
where 1, = n + n™"%,, for j = 0, 1. Let Y, u (%, £ | ) denote Huber’s level a likelihood ratio
test between ¥ ™ (e,; 8.0) and ¥ ™ (e,; 6n1).
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THEOREM 2.1.  The sequence {ynu(t, t1{n)} of tests is an asymptotic level « test at 7
iff the vector a = (t: — to)/11(n) satisfies the condition

2.8) EH(a, A, () =0 for j=2 ... k+1.

Let a*(n) denote a solution of (2.8) (cf. Lemma 3.4) and denote 62 () = EH*(a*(n), 7).
For n € #'let C.(n) = z1-0 + 0,.(9) 'eV(a*(n), n) and define

(2.9 Ta(n) = n 6, ()~ T2 H(X; a*(n), 7).

THEOREM 2.2. The sequence {y} ()}, where ¥ (n) = I(T.(n) = C.(n)), is a ALM
sequence of tests at n. The asymptotic minimum power of 4k (n) at the point 1 is given by

(2.10)  B(r|n) = limne Bu(Wii (); &ny M) = 1 — {210 — [11(M)0, () + (1 — 11 ())S ()]},

where

e(Via*(n),n) — U(a*(n),n))

2.1 =
(2.11) S(n) =o0.(n) + oL

’

whenever n'*(¢, — £) — 1 and {(n*(n, — )} is bounded.

So far the ALM procedure obtained is at the point 7. Since the value of 3 is not specified
by the hypothesis tested, we need to substitute an estimate #, for . From the local set-up
it is desirable to have estimates 1, satisfying the following condition.

Condition C. For every bounded subset B of R**' and every 8 = (¢, 1),
lim, .., im SUpn SUp{Q.(n"? | 7 — 0 | > 6): Q. € ¥ (e 8 + n"2h), h € B} = 0.

Note that, because the alternative test sequence {K.} is not contiguous to {H,} (cf. Quang,
1974; Rieder, 1978), we shall require the sequence {n'*(#, — 1)} to be uniformly bounded
in probability over both the hypothesis and alternative neighborhoods.

THEOREM 2.3. Let {#,} be a sequence of estimates satisfying condition C. Then the
sequence {{.(9,)} of tests is an ALM sequence for testing {H,} against {K,}. Its
asymptotic minimum power function is given by (2.10).

REMARKS.

1. For the case when the data is i.i.d., the existence of n'/*-consistent and resistant
estimates can be immediately obtained from LeCam’s (1969) construction, pages 105-107.
By n'/2-consistent and resistant estimates we meant estimates 8, having the property that
for every 8 > 0 and every compact K C © there is a number & such that for all n

(2.12) sup{Qu(n? |8, — 0| > b):Q. € ¥ P (en; 0), 0 € K} <6.

When the data is non-i.i.d., LeCam’s construction will still work as long as n'/? times the
Kolmogorov distance between the empiric and‘the cdf of the ideal model is bounded in
probability uniformly over shrinking neighborhoods. In particular if we have for every &
> 0 there exists 5(3) such that for every array of df’s Fi, Fs, - - - F, and every n

(2.13) Pr(n'sup, | Fu(x) — Fu(x)| = b)) =6 where F,=n"'3"_, F,

and F, is the empirical df, then the required result will follow. In a discusion with Professor
LeCam, he showed that (2.13) can be obtained by using his Poissonization technique, cf.
Theorem 3 of LeCam (1970). For the case when observations take their values in R or
when the observations are vector valued with continuous df’s, (2.13) can also be obtained
from the results of Van Zuijlen (1978) and Neuhaus (1975) respectively. In any event, if
the observations are independent, ¢, is of the order O(n""?) and if some conditions on the
ideal models are met (such as the first five assumptions listed in Section 3), there always
exist estimates satisfying (2.12).
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2. It can be shown that as € — 0 the test statistic T(y) at 5 tends to the optimal C(a)
test statistic at  and C,(n) tends to z;_.. Therefore the procedure { (4,) can be regarded
as a robust extension of the optimal C(a) test.

3. The test procedure at the point 7 can also be obtained by restricting attention to the
class of tests based on sums of the form n™'/* Y, f(X,, n) for some test function £, In this
case a necessary and sufficient condition for a member of this class to be an asymptotic
level « test at 5 is given by

Ef(mA(m) =0forj=2, ... k+ 1.

This condition is also required in the corresponding parametric setup, cf. Theorem 1 of
Neyman (1958). Note that the proposed procedure is a member of the class C(a) of tests.
Hence the relationship between our robust procedure and the optimal C(a) test is further
strengthened.

3. Asymptotic local maximin tests at 4. The following conditions are assumed to
hold throughout the paper unless specified otherwise.

(A.1) Py # P,, whenever §; # 0.

(A.2) Zis a collection of mutually absolutely continuous probabilities.

(A.3) For each 6 € O the random function ¢ (8, ') = [dP,/dPy]"/* is differentiable in
quadratic mean [P;] with respect to  at point 6. Let ¢ () denote the derivative in
quadratic mean.

(A.4) Let E, denote the expectation taken w.r.t. P,. The covariance function I'(d) =
4E,¢ (8)é(8) is finite, positive definite and continuous.

(AB)If 6" — 6, $(8") — ¢ (8) in Ps-probability.

(A.6) The positive function 7,(n) satisfies the condition

(3.1) —-:—) < min {EA*(a, n):a € R*} for everyn € ..
Ti\N
(A.7) For each 7, the matrix I'»(a, 1) = EAM)A (I (Ula, 1) < Ala, 1) < Via, 1)) is
positive definite at a solution of the orthogonality condition (2.8).
(A.8) Let H*(y) = H(a*(n), n). For every n € ./" and every compact set K of R* there
exist a number M, such that

supy | H*(x,n+s) — H*(x,n+ )| =M, |s—¢t| forall s tEK.

REMARKs.

1. The condition (3.1) is the asymptotic disjointness condition of Rieder (1978) modified
for the nuisance parameter case. This condition will guarantee the sequence {H.,} and the
alternative sequence {K,} to be asymptotically disjoint in the local framework. By Fatou’s
lemma EA*(a, n) — o, for each 7, as | a | — «. Hence the right side of (3.1) is positive. This
quantity is also continuous ir: 7. Therefore w.lo.g. we shall henceforth assume 7,(7) is a
continuous function of . ’

2. It will be seen later that assumption (A.7) guarantees the condition (2.8) has only one
solution. This assumption is readily satisfied if € is sufficiently small. Since as € tends to 0
the matrix I'z;, evaluated at a* (), tends to the corresponding £ X k subpartition matrix of
T.

3. Assumption (A.8) is used for the purpose of studentization. If we are to use discretized
estimates 7, obtained from 7, (see LeCam, 1960), (A.8) can be replaced by the following
weaker assumption.

(A.8)" For each 5 € A and every sequence {s,} converging to s € R*, the uniform
difference sup. | H*(x, n + n~'%s,}) — H*(x, n)| converges to zero.

This remark will become clear at the end of Section 4.

To prove the results stated at the point (&, ) let us first collect some useful facts.
Proofs of these facts are omitted. For related results, interested readers may wish to
consult Huber-Carol (1970), Quang (1974) and Rieder (1978).
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Let An(to, t:|m) denote the likelihood ratio statistic associated with y,, z (fo, #; [ 7). It is

given by the sum Y, log 7.(X.; &, t1]|n) where m.(ty, t:|n) = min{C}, max{¢2/¢2,,

C.1}}, C%o and C,, are solutions of certain equations (cf. (3) of [4]) and ¢, =
[dPy, /dP;, 1>,

LEmMMA 3.1. Let a = (t; — to)/m1(n) then

(3.2) n'log ma(to, i | n)/m1i(n) = H(a,n) in Lo[P,]
and
33) EAalto, s | 1) = — en() Via, 1) — 2r: ) 6EH (@, 1)A()

— Yri(m)EHa, 7) + o(l).

LEmMA 3.2, Let probability measures P, and P;, be given. Let ¢, € [0, 1) and let ¥ (e,
P3) denote the usual contamination neighborhood of P}, with size €,. Let f, be bounded
real valued measurable functions on . Define T,(f,) = n™? Y%, (X)) and assume

i) {P;™} is contiguous to {P{}.

il) E(fu(X)|Pn) =0, E(fa(X)| Pn) = L.

iii) n'%e, — €; supsx fu(x) — dy; inf, f(x) — do, where di and d- are finite.

iv) n'2E(f.(x)| P,) — c.
Then it holds, uniformly in z € R, that

lim supr .o {@u(Twlfa) > 2): Q. EYV P (e; PR)} =1 —-B(z —c—e di)
and

Lim inf, e {@u(Th(fn) > 2): @Que¥ e P)} =1 —-®(z — ¢ — € db).

ProoF oF THEOREM 2.1. From the definition of the asymptotic level « test at 7 it is
clear that we need to examine the maximum tail behavior of An(to, t1|m) over another
neighborhood ¥ ™ (e,; 8,0), where 6,0 = (&, 1 + 1~ Y*%,0) and .0 converges to some fo €
R k

Denote g, = n'/* log ma(to, t1|1)/71(n), 0% = Eg% — (Eg,)* and o> = EH?(a, 7). For each
n_define the random function f, = (g, — Eg.)/0, and form the sum T,(f,) = n™"?

<1 /»(X.). Hence A, can be written as A, = 0,m1(n) T(f.) + 6,m1(n)n"?Eg,. By Lemma
3.2

limoco SUP{@n(To(fn) > ¥0) :@n € ¥ en; Gno)} =1 — @ (y — ¢ — eV(a, 1) /o)
for every y, — y, where ¢ = lim, ... n'/Ej,, f,. By (3.2) and (A.3) it can be shown that ¢ =
2t,EH (a, 1)A(n)/o. Put these together with (3.3) and the fact that the critical value of the

Y. u-test necessarily tends to zi-ori(n)(EH*(a, 1)) — Yori(n) EH (a, 1) with a = (¢, — t)/
71(n), the required results follows. [0

As proof shows, Theorem 2.1 implies in particular that Huber’s pair (@7, @*%1) of least
favorable distributions between ¥(e,; &, 7 — n Y ri(n)a*(n)) and ¥ (e &i(n), n) is
asymptotically least favorable for testing

U{? “en; &0, n + n7%):| t| = T} versus ¥ ™ (e,; £.:1(0), n).

The next proposition shows that the pair is also asymptotically least favorable for testing
against the following larger nested neighborhood:

UV ew b0+ 72 + 0720 :m(n) s 1< M, | t| = T).
PROPOSITION 3.3. Let U,o and U, denote the hypothesis and the alternative nested

neighborhoods respectively. Let (%) be any probability ratio test between Q*, and Q..
Then

(3.4) Lim supn—... sup{EW* | @.) — E@r | @%0):@Qn € WUno) <0
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and

(3.5) lim inf, .. inf(E (yF | @) — E (Y | @%1):Qn € U1} = 0.
Denote

(3.6) Yan = dna(—1i(n)a*(), 0| 7).

The asymptotic minimum power of Y} ; at the point 7 is given by the expression (2.10).

ProoF. Let r, > 7 = 7/(n) and let {£,} be a bounded sequence in R*. Denote 6, =
(& + n1,, n + n”'2t,). By Lemma 3.2 and the orthogonality condition (2.8) we have

(3.7)  limpe inf{Qn(An(—71(n)a*(n), 0 | 1)
>A) @n €EYV Nen; 0n)) =1 —DB(y — c— e dy)

for every A, — A, where
o (MY — ¢ — e do) = A + %ri(n)oi(n) — rri(n)ai(y)

(3.8)
= e(r —nm)[Vie*(n), n) — Ula*(n), n)].

Now since the last term on the right side of (3.8) is positive, it follows that
oMy — ¢ — e dy) = A — Yerl(n)o’i(n).
By the same argument, with 8, replaced by (£.1(n), 1), we have from (3.7) that
lim e @7 | Q%) = 1= @{(rim)o, () (A — %rim)os ()}

This proves (3.5). The last assertion follows from (3.7) and (3.8). O

This proposition only proves that the sequence {} x} of (3.6) maximizes the minimum
power over %, among all asymptotic level « tests at the point . We will now show the
Y n-test has the ALM property.

PrOOF OF THEOREM 2.2. Let ¢, ¢, € R* such that ¢, — ¢. Let M < w be given and let
{Yr} € ¥.(n). By (3.5), it is enough to show

(39) linlnqoo Sup(ﬁn(\l’n; gnl(n)’ n+ n_l/Qtn) - Bn(ll/:,H; §n1(7l), 7])) =0.

For this, let ¢, = t, — T1(n)a*(n) and consider the testing problem: ¥~ " (e,; £o, 7 + 1™ 2tn0)
versus ¥ ®(e,; &uln), 1 + n7'"’t,). By Theorem 2.1, an argument similar to the one used in
the proof of Proposition 3.3 and Theorem 1 of Huber (1965) it is easily seen that (3.9) is
true. This proves {{ »} is an ALM sequence at the point 7. To complete the proof we
simply verify that the sequence {{.}(n)} is an asymptotic level a test and has the same
asymptotic minimum power as the '} s-test at 7. O

To conclude this section we will show that the system (2.8) has a unique solution. For
the remaining part of this section, dependencies on 7 shall be suppressed.
Forj=2, ...,k + 1let g,(a) = EH(a)A,. By (iii) of Lemma 4.1, g’s are continuous.

LEMMA 3.4. (i) Let {r.} be a sequence of numbers in {1, <) such that r, — . Also let
e,en EE = {e € R*:|e| =1} such that e,, — e. Let y, = (EAsd;, « -+ EAiA,) for j =2,
<o k+1. Then

UM 7 '8 (Tmem) = (e, v,) for j=2,--- k+1.

where (- ,-) is the usual inner product on R *.
(i1) The system (2.8) has a unique solution.
Proor.
(i) Denote a., = rmex then

(3.10) Tm'&(ax) = EA[r'H(a,)]" — EA[r'H(a,)] .
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By assumption (A.4) and since E is compact, A;{r,'H(a.)]* is uniformly integrable. By
definitions of V(a) and U(a) we also have [r,,'H(a.)]" — (e, A)" in Py ,-probability. Hence
it follows that the first term on the right side of (3.10) tends to EA,{(e, A)*. Similarly the
second term tends to EA;(e, A)~. This proves (i).

(ii) For each constant ¢, define a continuous function 4.: R* — R * by h.(a) = a — cg(a),
where g(a) = (g2(a) --- ge+s1(a)). We will show the function A, has fixed points for some
¢ # 0. By Brouwer’s Fixed Point Theorem it is enough to show that there exist § > 0 and
¢ # 0 such that

limy—. sup 7! sup{| Alrme)| ;e € E}<1—-§

for any sequence {r,,} of numbers such that r,, — .
Let e, e,, € E such that e,, — e. Then it follows from (i) that

liMnw 772 | Ae(rmen) |2 < 1+ ¢ (355 EA})? — 2cinf.cr e’ Tae,

where I'y; = EAA’. This proves the system (2.8) has solutions.
Let d be another solution. By Theorem 2.2 one can show that

H(a*) = H(G) a.s. [Py,,], Ul@*) = U(@) and V(a*) = V(d).

Hence 0 = E(H(a*) — H(@)* = (a* — @)'T'w(a*)(a* — d). By assumption (A.7) the
uniqueness part follows. [,

4. Studentized robust tests. In this section we shall show that the studentized
sequence {y» (1,)} of tests is an asymptotic local maximin sequence. Relevant results on
the continuities of various quantities as functions of 7 are summarized below.

LeEMMa 4.1.

(i) ho(w, a, n) of (2.5) is continuous on R X R* X .

(ii) The implicit functions Ula, 1) and Vi(a, n) of (2.6) are continuous in (a, n).

(ili) The mapping g:R* X #/'— R* defined by g(a, n) = EH(a, 1)A(n) is continuous in
(a, n).

(iv) a*(x), Via*(y), 3), Ula*(), n) and oi(n) are all continuous in 7.

The proof of this lemma is omitted since it follows readily from the assumptions and
such basic techniques as the Dominated Convergence Theorem, Scheffe’s Theorem, and
Vitali’s Theorem.

To perform the studentization it now suffices to show that for every b < « and n € 4"
the quantity defined by

Z} =supy=s | nTV2 Y H*(n + n7%) —n™2 Y H*(n)],

tends to zero in probability uniformly over the hypothesis and the alternative nested
neighborhoods. In what follows we shall only check the convergence under the hypothesis.
The other case can be checked in a similar way. Denote %.(n, T) = U{¥ "(ex; &, 7 +
n 2t = T).

ProPOSITION 4.2. Let b, T <  and n € A be given. Then for every 8 > 0 the quantity
sup{@Qn(| Z¥| > 8):Q. € %no(n, T')} tends to zero as n tends to infinity.

Proor. For simplicity, let us assume the data is i.i.d. and let @, be the product of n-
copies of (1 ~ €,)Py_+ €.R,, where 8, = (o, 7 + n~?,) with ¢, — ¢t € R* and {R,) is any
sequence of probability measures. For this €, and for s € R* define

pa(s) = EH*(n + n7%s)| @) and Y.(s) =n""2Y [H*( + n~%s) — pn(s)].
It is enough to show

(4.1 supygi<s 1'% | fals) — pa(0)| — 0
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and
4.2) supjs=s | Yn(s) — Y,(0)| = 0 in @,-probability.

Let us first prove (4.1). Let s, s, € R* such that s, — s and denote 7, = 7 + n™"%s,.
Because of (A.8) (or (A.8)') and the fact that EH*(y) = 0, we need only to show
n'?EH*(n,) — 0. Denote ¢, = [dP;,, /dP; ,]"* then by the orthogonality condition (2.8)
we have

n'?EH*(y,) < E | H*(n,)[n*(¢n — 1) — s’A(p)] | + E | s'A@)[H*(.) — H*(@)]|

The required result now follows.

Next, we sketch the proof for (4.2). By the well known technique of decomposing a
bigger cube as the union of bunch smaller cubes with vertices on a certain grid of points
(cf. Bickel, 1975), one can easily demonstrate that the maximum difference between Y,(s)
and Y.(0) on vertices tends to zero in @,-probability for each fixed grid width 8. Because
of the assumption (A.8) the largest absolute difference in between, over any cube of the
partition, i1s bounded by some constant times 8. Hence (4.2) follows. O

The next proposition supplements the last remark made at the beginning of Section 3.

ProrosITION 4.3. Let (A.1) to (A.7) be satisfied. Let T < » and n € 4 be given. For
each s € R” let Z.(s) be the random function defined by: Z,(s) = n™2 Y [H*(y +
n~%s)— H*(y)]. Then

i) For every 8 > 0 and every sequence {s,} converging to s € R the quantity
sup{Q@r(| Zn(sn)| > 8):Qr € Uno(n, T)} tends to zero iff (A.8)' is satisfied.

ii) (A.8) is necessary for the sequence {Z.[n"*(§, — n)]} to converge in probability to
zero for all p.m.s. in U(n, T) and for allw € N

iii) Let 7, be a version of the discretized estimates obtained from 7, (cf. LeCam 1960,
page 92). Then {Y%(7.)} is another ALM sequence for testing {H,} against {K.,}.

Proor. i) Let @, be the same as in the proof of Proposition 4.2. By similar argument
as in the proof of (4.1) and Chebyschev’s inequality

Zol5n) = n*?E[H*(n + n™%s,) — H*(n)| R.] + A,

where A, — 0 in @,-probability. Therefore the necessity of (A.8) follows. Evidently (A.8)’
is also sufficient.

The second assertion follows from the first assertion and Proposition Al and A2 of
LeCam (1960).

The last assertion follows from i), Lemma 4.1 and Proposition A3 of LeCam (1960). O

5. Efficiency at the ideal model. In this section, we investigate the efficiency of the
ALM test procedure y; (i,) with respect to the optimal C(a) test at the ideal model #. The
purpose of this investigation is to have some definite ideas as to how much loss is incurred
if we insist on using the robust test ¢} (#,) when the ideal model is correct.

Let T.(n) be as defined by (2.9). Let 8, = (£, 1.) where n¥/*(£, — &) — 7 > 0 and
{n'?(n, — )} is bounded. By LeCam’s third lemma (cf. Hajek and Sidak, 1967) and the
orthogonality condition (2.8), it is true that the law of T(n) under P, _tends to the normal
variable with mean 78 (n), and variance 1, where S (1) is given by (2.11). )

Denote 03(n) = EAl(y) — {EA()A()} {EA(M)A’(n)} " {EA(n)A:(n)}. Then the quantity
defined by

(5.1) e = 0,(m) o, (m) — € {1, (n)} " Ula*(n), T,

can be used as a measure of the relative performance of the procedures at the ideal model.
This quantity is easily seen to be the asymptotic ratio of the respective sample sizes needed
for the corresponding test procedures so that they will achieve the same asymptotic
minimum power at the ideal model for test H: £ = & versus K: £ = £.(n), 7 € A This
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measure of efficiency is conservative since the asymptotic size of ' (#,) at the ideal model
is strictly less than a.
The Pitman efficiency of the procedure: Y a(1.) = I(Tn(9) = 21-), is given by

_Sm)
o5(n)’

where S(n) is given by (2.11). It will be demonstrated by the example in Section 6 that
Y a(7,) performs well at the ideal model. However this procedure will not maintain the
nominal rejection rates when the data is contaminated with outliers.

Because of the final remark in Section 2 and the fact that V(a*(y), n) > 0, it is clear that
e < e4 = 1. Tt can be shown that these quantities tend to 1 as € decreases to 0. Therefore
if one believes that the total amount of contamination is small but not zero, it is safe to use
the robust test Y (1.) even if the data is actually generated from the ideal model &
However the penalty is severe if one mistakenly assumes the existence of a large amount
of contamination when there is none.

(52) €a

6. A robust t-test. Consider the example introduced in Section 1 and let the
minimum alternative p,1(c) be of the form p,1(6) = po + pki0. The asymptotic disjointness
condition (3.1) in this example now reduces to

(6.1) i, e €,/p < 1/+27.

Let 4 denote the limit in (6.1) and let [z] denote min(a, max(z, b)) for real numbers a, b
and z. For each §, define V(8) by E(Z — V(8))* = & and let A*(8) = E([Z]"®5)? where Z
is distributed according to the standard normal variable. Then if 5, is any n/?-consistent
and resistant estimate of ¢, our ALM procedure would reject H,, whenever

V()
"A@)

X — 51"
(6.2) AB) 'nTVAYE, [—6-@] = 21, + n'%

—Vi8)

Note that the form of the test statistic is the same as the corresponding one obtained for
the case when ¢? is known; cf. Huber-Carol (1970}, Rieder (1978). This is the case because
the symmetry of the normal variable implies a*(g) = 0.
In the present example the quantities defined by (5.1) and (5.2) become
V)1 vie)
) = + § — =|A —
e(8) [A(S) 8 A(a)} and ea(d) 6) + 28 20 |

respectively. Values of these quantities, V(8) and A(8) are given in the following table.

TABLE 1
V(8), A(8) and'Efficiences
a 0 01 .02 .03 .04 .05 .08 1 2 .3 .36 l/m
V(d) o0 1.94 1.66 1.49 1.36 1.26 1.02 9 49 22 081 0
A(d) 1. 95 92 .88 .85 .82 73 .67 43 .20 079 0
e(d) 1. .95 91 .87 .83 .80 g1 .65 43 .27 20 1/27
ea(d) 1. .99 .98 .96 .95 9 91 .89 .79 71 .66 2/

From the table we see that the procedure (6.2) performs reasonably well at the normal
model for any €, and .} such that their ratio €,/u}; is of an order no larger than 0.5. The
severe loss of efficiency at the normal model as 8 1 1/ V27 illustrates a remark made in
Section 5.

Also note that the procedure which rejects H,, whenever the right side of (6.2) is larger



1106 PAUL C. C. WANG-

than z;_, performs well at the normal model. In the limit, as § tends tol/ V27 it can be
readily shown that this procedure tends to the Sign test. This explains why we get the
efficiency of 2/ in the limit for this procedure. Of course, as already remarked in Section
5, this modified procedure will not maintain the nominal level of significance when the
data might in fact contain outliers or when the data is non-homogeneous.
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