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Abstract

We study the problem of recovering an underlying 3D shape from a set of images. Existing learning based approaches usually

resort to recurrent neural nets, e.g., GRU, or intuitive pooling operations, e.g., max/mean poolings, to fuse multiple deep

features encoded from input images. However, GRU based approaches are unable to consistently estimate 3D shapes given

different permutations of the same set of input images as the recurrent unit is permutation variant. It is also unlikely to

refine the 3D shape given more images due to the long-term memory loss of GRU. Commonly used pooling approaches are

limited to capturing partial information, e.g., max/mean values, ignoring other valuable features. In this paper, we present a

new feed-forward neural module, named AttSets, together with a dedicated training algorithm, named FASet, to attentively

aggregate an arbitrarily sized deep feature set for multi-view 3D reconstruction. The AttSets module is permutation invariant,

computationally efficient and flexible to implement, while the FASet algorithm enables the AttSets based network to be

remarkably robust and generalize to an arbitrary number of input images. We thoroughly evaluate FASet and the properties of

AttSets on multiple large public datasets. Extensive experiments show that AttSets together with FASet algorithm significantly

outperforms existing aggregation approaches.

Keywords Robust attention model · Deep learning on sets · Multi-view 3D reconstruction

1 Introduction

The problem of recovering a geometric representation of

the 3D world given a set of images is classically defined as

multi-view 3D reconstruction in computer vision. Traditional

pipelines such as Structure from Motion (SfM) (Ozyesil et al.

2017) and visual Simultaneous Localization and Mapping

(vSLAM) (Cadena et al. 2016) typically rely on hand-crafted
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feature extraction and matching across multiple views to

reconstruct the underlying 3D model. However, if the mul-

tiple viewpoints are separated by large baselines, it can be

extremely challenging for the feature matching approach due

to significant changes of appearance or self occlusions (Lowe

2004). Furthermore, the reconstructed 3D shape is usually a

sparse point cloud without geometric details.

Recently, a number of deep learning approaches, such as

3D-R2N2 (Choy et al. 2016), LSM (Kar et al. 2017), Deep-

MVS (Huang et al. 2018) and RayNet (Paschalidou et al.

2018) have been proposed to estimate the 3D dense shape

from multiple images and have shown encouraging results.

Both 3D-R2N2 (Choy et al. 2016) and LSM (Kar et al. 2017)

formulate multi-view reconstruction as a sequence learning

problem, and leverage recurrent neural networks (RNNs),

particularly GRU, to fuse the multiple deep features extracted

by a shared encoder from input images. However, there are

three limitations. First, the recurrent network is permuta-

tion variant, i.e., different permutations of the input image

sequence give different reconstruction results (Vinyals et al.

2015). Therefore, inconsistent 3D shapes are estimated from

the same image set with different permutations. Second, it is
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Fig. 1 Overview of our attentional aggregation module for multi-view 3D reconstruction. A set of N images is passed through a common encoder

to be a set of deep features, one element for each image. The network is trained with our FASet algorithm

difficult to capture long-term dependencies in the sequence

because of the gradient vanishing or exploding (Bengio et al.

1994; Hochreiter et al. 2001), so the estimated 3D shapes

are unlikely to be refined even if more images are given dur-

ing training and testing. Third, the RNN unit is inefficient

as each element of the input sequence must be sequentially

processed without parallelization (Martin and Cundy 2018),

so is time-consuming to generate the final 3D shape given a

sequence of images.

The recent DeepMVS (Huang et al. 2018) applies max

pooling to aggregate deep features across a set of unordered

images for multi-view stereo reconstruction, while RayNet

(Paschalidou et al. 2018) adopts average pooling to aggregate

the deep features corresponding to the same voxel from mul-

tiple images to recover a dense 3D model. The very recent

GQN (Eslami et al. 2018) uses sum pooling to aggregate an

arbitrary number of orderless images for 3D scene represen-

tation. Although max, average and summation poolings do

not suffer from the above limitations of RNN, they tend to be

‘hard attentive’, since they only capture the max/mean values

or the summation without learning to attentively preserve the

useful information. In addition, the above pooling based neu-

ral nets are usually optimized with a specific number of input

images during training, therefore being not robust and gen-

eral to a dynamic number of input images during testing. This

critical issue is also observed in GQN (Eslami et al. 2018).

In this paper, we introduce a simple yet efficient atten-

tional aggregation module, named AttSets.1 It can be easily

included in an existing multi-view 3D reconstruction network

to aggregate an arbitrary number of elements of a deep feature

set. Inspired by the attention mechanism which shows great

success in natural language processing (Bahdanau et al. 2015;

Raffel and Ellis 2016), image captioning (Xu et al. 2015),

etc., we design a feed-forward neural module that can auto-

matically learn to aggregate each element of the input deep

feature set. In particular, as shown in Fig. 1, given a variable

sized deep feature set, which are usually learnt view-invariant

visual representations from a shared encoder (Paschalidou

et al. 2018), our AttSets module firstly learns an attention

activation for each latent feature through a standard neural

1 Code is available at https:// github.com/ Yang7879/ AttSets.

layer (e.g., a fully connected layer, a 2D or 3D convolutional

layer), after which an attention score is computed for the

corresponding feature. Subsequently, the attention scores are

simply multiplied by the original elements of the deep fea-

ture set, generating a set of weighted features. At last, the

weighted features are summed across different elements of

the deep feature set, producing a fixed size of aggregated

features which are then fed into a decoder to estimate 3D

shapes. Basically, this AttSets module can be seen as a natu-

ral extension of sum pooling into a “weighted” sum pooling

with learnt feature-specific weights. AttSets shares similar

concepts with the concurrent work (Ilse et al. 2018), but it

does not require the additional gating mechanism in Ilse et al.

(2018). Notably, our simple feed-forward design allows the

attention module to be separately trainable according to the

property of its gradients.

In addition, we propose a new Feature-Attention Sep-

arate training (FASet) algorithm that elegantly decouples

the base encoder–decoder (to learn deep features) from the

AttSets module (to learn attention scores for features). This

allows the AttSets module to learn desired attention scores

for deep feature sets and guarantees the AttSets based neural

networks to be robust and general to dynamic sized deep fea-

ture sets. Basically, in the proposed training algorithm, the

base encoder–decoder neural layers are only optimized when

the number of input images is 1, while the AttSets module

is only optimized where there are more than 1 input images.

Eventually, the whole optimized AttSets based neural net-

work achieves superior performance with a large number of

input images, while simultaneously being extremely robust

and able to generalize to a small number of input images, even

to a single image in the extreme case. Comparing with the

widely used feed-forward attention mechanisms for visual

recognition (Hu et al. 2018; Rodríguez et al. 2018; Liu et al.

2018; Sarafianos et al. 2018; Girdhar and Ramanan 2017),

our FASet algorithm is the first to investigate and improve the

robustness of attention modules to dynamically sized input

feature sets, whilst existing works are only applicable to fixed

sized input data.

Overall, our novel AttSets module and FASet algorithm

are distinguished from all existing aggregation approaches

in three ways. (1) Compared with RNN approaches, AttSets
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is permutation invariant and computationally efficient. (2)

Compared with the widely used pooling operations, AttSets

learns to attentively select and weight important deep fea-

tures, thereby being more effective to aggregate useful

information for better 3D reconstruction. (3) Compared with

existing visual attention mechanisms, our FASet algorithm

enables the whole network to be general to variable sized sets,

being more robust and suitable for realistic multi-view 3D

reconstruction scenarios where the number of input images

usually varies dramatically.

Our key contributions are:

– We propose an efficient feed-forward attention module,

AttSets, to effectively aggregate deep feature sets. Our

design allows the attention module to be separately opti-

mizable according to the property of its gradients.

– We propose a new two-stage training algorithm, FASet,

to decouple the base encoder/decoder and the attention

module, guaranteeing the whole network to be robust and

general to an arbitrary number of input images.

– We conduct extensive experiments on multiple pub-

lic datasets, demonstrating consistent improvement over

existing aggregation approaches for 3D object recon-

struction from either single or multiple views.

2 RelatedWork

(1) Multi-view 3D Reconstruction 3D shapes can be recov-

ered from multiple color images or depth scans. To estimate

the underlying 3D shape from multiple color images, classic

SfM (Ozyesil et al. 2017) and vSLAM (Cadena et al. 2016)

algorithms firstly extract and match hand-crafted geomet-

ric features (Hartley and Zisserman 2004) and then apply

bundle adjustment (Triggs et al. 1999) for both shape and

camera motion estimation. Ji et al. (2017b) use “maxi-

mizing rigidity” for reconstruction, but this requires 2D

point correspondences across images. Recent deep neural net

based approaches tend to recover dense 3D shapes through

learnt features from multiple images and achieve compelling

results. To fuse the deep features from multiple images, both

3D-R2N2 (Choy et al. 2016) and LSM (Kar et al. 2017)

apply the recurrent unit GRU, resulting in the networks

being permutation variant and inefficient for aggregating

long sequence of images. Recent SilNet (Wiles and Zisser-

man 2017, 2018) and DeepMVS (Huang et al. 2018) simply

use max pooling to preserve the first order information of

multiple images, while RayNet (Paschalidou et al. 2018)

applies average pooling to reserve the first moment infor-

mation of multiple deep features. MVSNet (Yao et al. 2018)

proposes a variance-based approach to capture the second

moment information for multiple feature aggregation. These

pooling techniques only capture partial information, ignor-

ing the majority of the deep features. Recent SurfaceNet (Ji

et al. 2017a) and SuperPixel Soup (Kumar et al. 2017) can

reconstruct 3D shapes from two images, but they are unable

to process an arbitrary number of images. As for multi-

ple depth image reconstruction, the traditional volumetric

fusion method (Curless and Levoy 1996; Cao et al. 2018)

integrates multiple viewpoint information by averaging trun-

cated signed distance functions (TSDF). Recent learning

based OctNetFusion (Riegler et al. 2017) also adopts a simi-

lar strategy to integrate multiple depth information. However,

this integration might result in information loss since TSDF

values are averaged (Riegler et al. 2017). PSDF (Dong et al.

2018) is recently proposed to learn a probabilistic distribution

through Bayesian updating in order to fuse multiple depth

images, but it is not straightforward to include the module

into existing encoder–decoder networks.

(2) Deep Learning on Sets In contrast to traditional approaches

operating on fixed dimensional vectors or matrices, deep

learning tasks defined on sets usually require learning func-

tions to be permutation invariant and able to process an

arbitrary number of elements in a set (Zaheer et al. 2017).

Such problems are widespread. Zaheer et al. introduce gen-

eral permutation invariant and equivariant models in Zaheer

et al. (2017), and they end up with a sum pooling for

permutation invariant tasks such as population statistics esti-

mation and point cloud classification. In the very recent GQN

(Eslami et al. 2018), sum pooling is also used to aggregate

an arbitrary number of orderless images for 3D scene rep-

resentation. Gardner et al. (2017) use average pooling to

integrate an unordered deep feature set for classification task.

Su et al. (2015) use max pooling to fuse the deep feature

set of multiple views for 3D shape recognition. Similarly,

PointNet (Qi et al. 2017) also uses max pooling to aggregate

the set of features learnt from point clouds for 3D classifica-

tion and segmentation. In addition, the higher-order statistics

based pooling approaches are widely used for 3D object

recognition from multiple images. Vanilla bilinear pooling

is applied for fine-grained recognition in Lin et al. (2015)

and is further improved in Lin and Maji (2017). Concur-

rently, log-covariance pooling is proposed in Ionescu et al.

(2015), and is recently generalized by harmonized bilinear

pooling in Yu et al. (2018). Bilinear pooling techniques are

further improved in the recent work (Yu and Salzmann 2018;

Lin et al. 2018). However, both first-order and higher-order

pooling operations ignore a majority of the information of

a set. In addition, the first-order poolings do not have train-

able parameters, while the higher-order poolings have only

few parameters available for the network to learn. These

limitations lead to the pooling based neural networks to

be optimized with regards to the specific statistics of data

batches during training, and therefore unable to be robust

and generalize well to variable sized deep feature sets during

testing.
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(3) Attention Mechanism The attention mechanism was orig-

inally proposed for natural language processing (Bahdanau

et al. 2015). Being coupled with RNNs, it achieves com-

pelling results in neural machine translation (Bahdanau et al.

2015), image captioning (Xu et al. 2015), image question

answering (Yang et al. 2016), etc. However, all these coupled

attention approaches are permutation variant and computa-

tionally time-consuming. Dispensing with recurrence and

convolutions entirely and solely relying on attention mech-

anism, Transformer (Vaswani et al. 2017) achieves superior

performance in machine translation tasks. Similarly, being

decoupled with RNNs, attention mechanisms are also applied

for visual recognition (Hu et al. 2018; Rodríguez et al. 2018;

Liu et al. 2018; Sarafianos et al. 2018; Zhu et al. 2018; Nakka

and Salzmann 2018; Girdhar and Ramanan 2017), semantic

segmentation (Li et al. 2018), long sequence learning (Raffel

and Ellis 2016), and image generation (Zhang et al. 2018).

Although the above decoupled attention modules can be used

to aggregate variable sized deep feature sets, they are literally

designed to operate on fixed sized features for tasks such as

image recognition and generation. The robustness of atten-

tion modules regarding dynamic deep feature sets has not

been investigated yet.

Compared with the original attention mechanism, our

AttSets does not couple with RNNs. Instead, AttSets is a

simplified feed-forward module which shares similar con-

cepts with the concurrent work (Ilse et al. 2018). However,

our AttSets is much simpler, without requiring the additional

gating mechanism in Ilse et al. (2018). Besides, we further

propose a dedicated FASet algorithm, enabling the AttSets

based network to be remarkably robust and general to arbi-

trarily sized deep sets. This algorithm is the first to investigate

and improve the robustness of feed-forward attention mech-

anisms.

3 AttSets

3.1 Problem Definition

This paper considers the problem of aggregating an arbitrary

number of elements of a set A into a fixed single output y.

Each element of set A is a feature vector extracted from a

shared encoder, and the fixed dimension output y is fed into a

subsequent decoder, such that the whole network can process

an arbitrary number of input elements.

Given N elements in the input deep feature set A =

{x1, x2, . . . , xN }, xn ∈ R
1×D , where N is an arbitrary

value, while D is fixed for a specific encoder, and the output

y ∈ R
1×D , which is then fed into the subsequent decoder,

our task is to design an aggregation function f with learn-

able weights W: y = f (A, W), which should be permutation

invariant, i.e., for any permutation π :

f ({x1, . . . , xN }, W) = f ({xπ(1), . . . , xπ(N )}, W) (1)

The common pooling operations, e.g., max/mean/sum, are

the simplest instantiations of function f where W ∈ ∅.

However, these pooling operations are predefined to capture

partial information.

3.2 AttSets Module

The basic idea of our AttSets module is to learn an attention

score for each latent feature of the whole deep feature set. In

this paper, each latent feature refers to each entry of an indi-

vidual element of the feature set, with an individual element

usually represented by a latent vector, i.e., xn . The learnt

scores can be regarded as a mask that automatically selects

useful latent features across the set. The selected features are

then summed across multiple elements of the set.

As shown in Fig. 2, given a set of features A =

{x1, x2, . . . , xN }, xn ∈ R
1×D , AttSets aims to fuse it into a

fixed dimensional output y, where y ∈ R
1×D .

To build the AttSets module, we first feed each element

of the feature set A into a shared function g which can be

a standard neural layer, i.e., a linear transformation layer

without any non-linear activation functions. Here we use a

fully connected (fc) layer as an example, the bias term is

dropped for simplicity. The output of function g is a set of

learnt attention activations C = {c1, c2, . . . , cN }, where

cn = g(xn, W) = xn W ,

(xn ∈ R
1×D, W ∈ R

D×D, cn ∈ R
1×D) (2)

Fig. 2 Attentional aggregation module on sets. This module learns an attention score for each individual deep feature
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Secondly, the learnt attention activations are normalized

across the N elements of the set, computing a set of attention

scores S = {s1, s2, . . . , sN }. We choose so f tmax as the

normalization operation, so the attention scores for the nth

feature element are

sn = [s1
n , s2

n , . . . , sd
n , . . . , s D

n ],

sd
n =

ecd
n

∑N
j=1 e

cd
j

, cd
n , cd

j are the dth entry of cn, c j . (3)

Thirdly, the computed attention scores S are multiplied

by their corresponding original feature set A, generating a

new set of deep features, denoted as weighted features O =

{o1, o2, . . . , oN }, where

on = xn ∗ sn (4)

Lastly, the set of weighted features O are summed up

across the total N elements to get a fixed size feature vector,

denoted as y, where

y = [y1, y2, . . . , yd , . . . , yD],

yd =

N
∑

n=1

od
n , od

n is the dth entry of on . (5)

In the above formulation, we show how AttSets gradually

aggregates a set of N feature vectors A into a single vector

y, where y ∈ R
1×D .

3.3 Permutation Invariance

The output of AttSets module y is permutation invariant with

regard to the input deep feature set A. Here is the simple

proof.

[y1, . . . yd . . . , yD] = f ({x1, . . . xn . . . , xN }, W) (6)

In Eq. 6, the dth entry of the output y is computed as

follows:

yd =

N
∑

n=1

od
n =

N
∑

n=1

(xd
n ∗ sd

n )

=

N
∑

n=1

⎛

⎝xd
n ∗

ecd
n

∑N
j=1 e

cd
j

⎞

⎠

=

N
∑

n=1

(

xd
n ∗

e(xnw
d )

∑N
j=1 e(x j w

d
)

)

=

∑N
n=1

(

xd
n ∗ e(xnw

d )
)

∑N
j=1 e(x j w

d )
, (7)

where w
d is the dth column of the weights W . In above Eq. 7,

both the denominator and numerator are a summation of a

permutation equivariant term. Therefore the value yd , and

also the full vector y, is invariant to different permutations of

the deep feature set A = {x1, x2, . . . , xn, . . . , xN } (Zaheer

et al. 2017).

3.4 Implementation

In Sect. 3.2, we described how our AttSets aggregates an arbi-

trary number of vector features into a single vector, where

the attention activation learning function g embeds fully con-

nected layer. AttSets can also be easily implemented with

both 2D and 3D convolutional neural layers to aggregate both

2D and 3D deep feature sets, thus being flexible to be included

into a 2D encoder/decoder or 3D encoder/decoder. Particu-

larly, as shown in Fig. 3, to aggregate a set of 2D features, i.e.,

a tensor of (width ×height ×channels), the attention acti-

vation learning function g embeds a standard conv2d layer

with a stride of (1×1). Similarly, to fuse a set of 3D features,

i.e., a tensor of (width × height × depth × channels), the

function g embeds a standard conv3d layer with a stride of

(1 × 1 × 1). For the above conv2d/conv3d layer, the filter

size can be 1, 3 or many. The larger the filter size, the learnt

attention score is considered to be correlated with the larger

local spatial area.

Fig. 3 Implementation of AttSets with fully connected layer, 2D ConvNet, and 3D ConvNet. These three variants of AttSets can be flexibly plugged

into different locations of an existing encoder–decoder network
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Instead of embedding a single neural layer, the function

g is also flexible to include multiple layers, but the tensor

shape of the output of function g is required to be consistent

with the input element xn . This guarantees each individual

feature of the input set A will be associated with a learnt and

unique weight. For example, a standard 2-layer or 3-layer

ResNet module (He et al. 2016) could be a candidate of the

function g. The more layers that g embeds, the capability of

AttSets module is expected to increase accordingly.

Compared with f c enabled AttSets, the conv2d or

conv3d based AttSets variants tend to have fewer learnable

parameters. Note that both the conv2d and conv3d based

AttSets are still permutation invariant, as the function g is

shared across all elements of the deep feature set and it does

not depend on the order of the elements (Zaheer et al. 2017).

4 FASet

4.1 Motivation

Our AttSets module can be included in an existing encoder–

decoder multi-view 3D reconstruction network, replacing the

RNN units or pooling operations. Basically, in an AttSets

enabled encoder–decoder net, the encoder–decoder serves as

the base architecture to learn visual features for shape esti-

mation, while the AttSets module learns to assign different

attention scores to combine those features. As such, the base

Algorithm 1 Feature-Attention Separate training of an AttSets

enabled network. M is batch size, N is image number.

Stage 1:

for number of training iterations do

• Sample M sets of images {I1, . . . , Im , . . . , IM } and sample N

images for each set, i.e., Im = {i1
m , . . . , in

m , . . . , i N
m }. Sample M 3D

shape labels {v1, . . . , vm , . . . , vM }.

• Update the base network by ascending its stochastic gradient:

∇Θbase

1

M N

M
∑

m=1

N
∑

n=1

[

ℓ(v̂
n
m , vm)

]

, where v̂
n
m is the estimated

3D shape of single image {in
m}.

Stage 2:

for number of training iterations do

• Sample M sets of images {I1, . . . , Im , . . . , IM } and sample N

images for each set, i.e., Im = {i1
m , . . . , in

m , . . . , i N
m }. Sample M 3D

shape labels {v1, . . . , vm , . . . , vM }.

• Update the AttSets module by ascending its stochastic gradient:

∇Θatt

1

M

M
∑

m=1

[

ℓ(v̂m , vm)
]

, where v̂m is the estimated

3D shape of the image set Im .

The gradient-based updates can use any gradient optimization algo-

rithm.

network tends to have robustness and generality with regard

to different input image content, while the AttSets module

tends to be general regarding an arbitrary number of input

images.

However, to achieve this robustness is not straightfor-

ward. The standard end-to-end joint optimization approach

is unable to guarantee that the base encoder–decoder and

AttSets are able to learn visual features and the correspond-

ing scores separately, because there are no explicit feature

score labels available to directly supervise the AttSets mod-

ule.

Let us revisit the previous Eq. 7 as follows and draw

insights from it.

yd =

∑N
n=1

(

xd
n ∗ e(xnw

d )
)

∑N
j=1 e(x j w

d )
(8)

where N is the size of an arbitrary input set and w
d are

the AttSets parameters to be optimized. If N is 1, then the

equation can be simplified as

yd = xd
n (9)

∂ yd

∂xd
n

= 1,
∂ yd

∂wd
= 0, N = 1 (10)

This shows that all parameters, i.e., wd , of the AttSets module

are not going to be optimized when the size of the input

feature set is 1.

However, if N > 1, Eq. 8 is unable to be simplified to

Eq. 9. Therefore,

∂ yd

∂xd
n

�= 1,
∂ yd

∂wd
�= 0, N > 1 (11)

This shows that both the parameters of AttSets and the base

encoder–decoder layers will be optimized simultaneously,

if the whole network is trained in the standard end-to-end

fashion.

Here arises the critical issue. When N > 1, all deriva-

tives of the parameters in the encoder are different from the

derivatives when N = 1 due to the chain rule of differentia-

tion applied backwards from
∂ yd

∂xd
n

. Put simply, the derivatives

of encoder are N -dependent. As a consequence, the encoded

visual features and the learnt attention scores would be N -

biased if the whole network is jointly trained. This biased

network is unable to generalize to an arbitrary value of N

during testing.

To illustrate the above issue, assuming the base encoder–

decoder and the AttSets module are jointly trained given 5

images to reconstruct every object, the base encoder will be

eventually optimized towards 5-view object reconstruction

during training. The trained network can indeed perform well
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given 5 views during testing, but it is unable to predict a

satisfactory object shape given only 1 image.

To alleviate the above problem, a naive approach is to enu-

merate various values of N during the jointly training, such

that the final optimized network can be somehow robust and

general to arbitrary N during testing. However, this approach

would inevitably optimize the encoder to learn the mean fea-

tures of input data for varying N . The overall performance

will hence not be optimal. In addition, it is impractical and

also time-consuming to enumerate all values of N during

training.

4.2 Algorithm

To resolve the critical issue discussed in Sect. 4.1, we propose

a Feature-Attention Separate training (FASet) algorithm

that decouples the base encoder–decoder and the AttSets

module, enabling the base encoder–decoder to learn robust

deep features and the AttSets module to learn the desired

attention scores for the feature sets.

In particular, the base encoder–decoder neural layers are

only optimized when the number of input images is 1, while

the AttSets module is only optimized where there are more

than 1 input images. In this regard, the parameters of the

base encoding layers would have consistent derivatives in

the whole training stage, thus being optimized steadily. In

the meantime, the AttSets module would be optimized solely

based on multiple elements of learnt visual features from the

shared encoder.

The trainable parameters of the base encoder–decoder are

denoted as Θbase, and the trainable parameters of AttSets

module are denoted as Θatt , and the loss function of the

whole network is represented by ℓ which is determined by the

specific supervision signal of the base network. Our FASet

is shown in Algorithm 1. It can be seen that Θbase and Θatt

are completely decoupled from one another, thus being sepa-

rately optimized in two stages. In stage 1, the Θbase is firstly

well optimized until convergence, which guarantees the base

encoder–decoder is able to learn robust and general visual

features. In stage 2, the Θatt is optimized to learn attention

scores for individual visual features. Basically, this module

learns to select and weight important deep features automat-

ically.

In FASet algorithm, once the Θbase is well optimized in

stage 1, it is not necessary to train it again, since the two-

stage algorithm guarantees that optimizing Θbase is agnostic

to the attention module. The FASet algorithm is a crucial

component to maintain the superior robustness of the AttSets

module, as shown in Sect. 5.9. Without it, the feed-forward

attention mechanism is ineffective with respect to dynamic

input sets.

5 Evaluation

Base Networks To evaluate the performance and various

properties of AttSets, we choose the encoder–decoders of

3D-R2N2 (Choy et al. 2016) and SilNet (Wiles and Zisser-

man 2017) as two base networks.

– Encoder–decoder of 3D-R2N2. The original 3D-R2N2

consists of (1) a shared ResNet-based 2D encoder which

encodes a size of 127 × 127 × 3 images into 1024

dimensional latent vectors, (2) a GRU module which

fuses N 1024 dimensional latent vectors into a single

4×4×4×128 tensor, and (3) a ResNet-based 3D decoder

which decodes the single tensor into a 32 × 32 × 32

voxel grid representing the 3D shape. Figure 4 shows the

architecture of AttSets based multi-view 3D reconstruc-

tion network where the only difference is that the original

GRU module is replaced by AttSets in the middle. This

network is called Baser2n2-AttSets.

– Encoder–decoder of SilNet. The original SilNet consists

of (1) a shared 2D encoder which encodes a size of

127×127×3 images together with image viewing angles

into 160 dimensional latent vectors, (2) a max pooling

module which aggregates N latent vectors into a single

vector, and (3) a 2D decoder which estimates an object

silhouette (57 × 57) from the single latent vector and a

new viewing angle. Instead of being explicitly supervised

by 3D shape labels, SilNet aims to implicitly learn a 3D

shape representation from multiple images via the super-

vision of 2D silhouettes. Figure 5 shows the architecture

of AttSets based SilNet where the only difference is that

the original max pooling is replaced by AttSets in the

middle. This network is called Basesilnet-AttSets.

Competing Approaches We compare our AttSets and

FASet with three groups of competing approaches. Note that

all the following competing approaches are connected at the

same location of the base encoder–decoder shown in the pink

Fig. 4 The architecture of Baser2n2-AttSets for multi-view 3D recon-

struction network. The base encoder–decoder is the same as 3D-R2N2

Fig. 5 The architecture of Basesilnet-AttSets for multi-view 3D shape

learning. The base encoder–decoder is the same as SilNet
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block of Figs. 4 and 5, with the same network configurations

and training/testing settings.

– RNNs. The original 3D-R2N2 makes use of the GRU

(Choy et al. 2016; Kar et al. 2017) unit for feature aggre-

gation and serves as a solid baseline.

– First-order poolings. The widely used max/mean/ sum

pooling operations (Huang et al. 2018; Paschalidou et al.

2018; Eslami et al. 2018) are all implemented for com-

parison.

– Higher-order poolings. We also compare with the state-

of-the-art higher-order pooling approaches, including

bilinear pooling (BP) (Lin et al. 2015), and the very recent

MHBN (Yu et al. 2018) and SMSO poolings (Yu and

Salzmann 2018).

Datasets All approaches are evaluated on four large open

datasets.

– ShapeNetr2n2 Dataset (Choy et al. 2016). The released

3D-R2N2 dataset consists of 13 categories of 43, 783

common objects with synthesized RGB images from the

large scale ShapeNet 3D repository (Chang et al. 2015).

For each 3D object, 24 images are rendered from different

viewing angles circling around each object. The train/test

dataset split is 0.8 : 0.2.

– ShapeNetlsm Dataset (Kar et al. 2017). Both LSM and

3D-R2N2 datasets are generated from the same 3D

ShapeNet repository (Chang et al. 2015), i.e., they have

the same ground truth labels regarding the same object.

However, the ShapeNetlsm dataset has totally different

camera viewing angles and lighting sources for the ren-

dered RGB images. Therefore, we use the ShapeNetlsm

dataset to evaluate the robustness and generality of

all approaches. All images of ShapeNetlsm dataset are

resized from 224×224 to 127×127 through linear inter-

polation.

– ModelNet40 Dataset. ModelNet40 (Wu et al. 2015) con-

sists of 12, 311 objects belonging to 40 categories. The

3D models are split into 9, 843 training samples and

2, 468 testing samples. For each 3D model, it is voxelized

into a 30×30×30 shape in (Qi et al. 2016), and 12 RGB

images are rendered from different viewing angles. All

3D shapes are zero-padded to be 32 × 32 × 32, and the

images are linearly resized from 224 × 224 to 127 × 127

for training and testing.

– Blobby Dataset (Wiles and Zisserman 2017). It contains

11, 706 blobby objects. Each object has 5 RGB images

paired with viewing angles and the corresponding silhou-

ettes, which are generated from Cycles in Blender under

different lighting sources and texture models.

Metrics The explicit 3D voxel reconstruction perfor-

mance of Baser2n2-AttSets and the competing approaches

is evaluated on three datasets: ShapeNetr2n2, ShapeNetlsm

and ModelNet40. We use the mean Intersection-over-Union

(IoU) (Choy et al. 2016) between predicted 3D voxel grids

and their ground truth as the metric. The IoU for an individual

voxel grid is formally defined as follows:

I oU =

∑L
i=1

[

I (hi > p) ∗ I (h̄i )
]

∑L
i=1

[

I
(

I (hi > p) + I (h̄i )
)]

where I (·) is an indicator function, hi is the predicted value

for the i th voxel, h̄i is the corresponding ground truth, p is the

threshold for voxelization, L is the total number of voxels in

a whole voxel grid. As there is no validation split in the above

three datasets, to calculate the IoU scores, we independently

search the optimal binarization threshold value from 0.2 to

0.8 with a step 0.05 for all approaches for fair comparison.

In our experiments, we found that all optimal thresholds of

different approaches end up with 0.3 or 0.35.

The implicit 3D shape learning performance of Basesilnet-

AttSets and the competing approaches is evaluated on the

Blobby dataset. The mean IoU between predicted 2D silhou-

ettes and the ground truth is used as the metric (Wiles and

Zisserman 2017).

5.1 Evaluation on ShapeNetr2n2 Dataset

To fully evaluate the aggregation performance and robust-

ness, we train the Baser2n2-AttSets and its competing

approaches on ShapeNetr2n2 dataset. For fair comparison, all

networks (the pooling/GRU/AttSets based approaches) are

trained according to the proposed two-stage training algo-

rithm.

Training Stage 1 All networks are trained given only 1

image for each object, i.e., N = 1 in all training iterations,

until convergence. Basically, this is to guarantee all networks

are well optimized for the extreme case where there is only

one input image.

Training Stage 2 To enable these networks to be more

robust for multiple input images, all networks are fur-

ther trained given more images per object. Particularly, we

conduct the following five parallel groups of training exper-

iments.

– Group 1. All networks are further trained given only 2

images for each object, i.e., N = 2 in all iterations. As to

our Baser2n2-AttSets, the well-trained encoder–decoder

in previous stage 1 is frozen, and we only optimize the

AttSets module according to our FASet algorithm 1. As

to the competing approaches, e.g., GRU and all poolings,

we turn to fine-tune the whole networks because they do
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Table 1 Group 1: mean IoU for multi-view reconstruction of all 13

categories in ShapeNetr2n2 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module is

further trained given 2 images per object in Stage 2, while other com-

peting approaches are fine-tuned given 2 images per object in Stage

2

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-GRU 0.574 0.608 0.622 0.629 0.633 0.639 0.642 0.642 0.641 0.640

Baser2n2-max pooling 0.620 0.651 0.660 0.665 0.666 0.671 0.672 0.674 0.673 0.673

Baser2n2-mean pooling 0.632 0.654 0.661 0.666 0.667 0.674 0.676 0.680 0.680 0.681

Baser2n2-sum pooling 0.633 0.657 0.665 0.669 0.669 0.670 0.666 0.667 0.666 0.665

Baser2n2-BP pooling 0.588 0.608 0.615 0.620 0.621 0.627 0.628 0.632 0.633 0.633

Baser2n2-MHBN pooling 0.578 0.599 0.606 0.611 0.612 0.618 0.620 0.623 0.624 0.624

Baser2n2-SMSO pooling 0.623 0.654 0.664 0.670 0.672 0.679 0.679 0.682 0.680 0.678

Baser2n2-AttSets (Ours) 0.642 0.665 0.672 0.677 0.678 0.684 0.686 0.690 0.690 0.690

The highest values are given in bold

Table 2 Group 2: mean IoU for multi-view reconstruction of all 13

categories in ShapeNetr2n2 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module is

further trained given 8 images per object in Stage 2, while other com-

peting approaches are fine-tuned given 8 images per object in Stage

2

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-GRU 0.580 0.616 0.629 0.637 0.641 0.649 0.652 0.652 0.652 0.652

Baser2n2-max pooling 0.524 0.615 0.641 0.655 0.661 0.674 0.678 0.683 0.684 0.684

Baser2n2-mean pooling 0.632 0.657 0.665 0.670 0.672 0.679 0.681 0.685 0.686 0.686

Baser2n2-sum pooling 0.580 0.628 0.644 0.656 0.660 0.672 0.677 0.682 0.684 0.685

Baser2n2-BP pooling 0.544 0.599 0.618 0.628 0.632 0.644 0.648 0.654 0.655 0.656

Baser2n2-MHBN pooling 0.570 0.596 0.606 0.612 0.614 0.621 0.624 0.628 0.629 0.629

Baser2n2-SMSO pooling 0.570 0.621 0.641 0.652 0.656 0.668 0.673 0.679 0.680 0.681

Baser2n2-AttSets (Ours) 0.642 0.662 0.671 0.676 0.678 0.686 0.688 0.693 0.694 0.694

The highest values are given in bold

Table 3 Group 3: mean IoU for multi-view reconstruction of all 13

categories in ShapeNetr2n2 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module is

further trained given 16 images per object in Stage 2, while other com-

peting approaches are fine-tuned given 16 images per object in Stage

2

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-GRU 0.579 0.614 0.628 0.636 0.640 0.647 0.651 0.652 0.653 0.653

Baser2n2-max pooling 0.511 0.604 0.633 0.649 0.656 0.671 0.678 0.684 0.686 0.686

Baser2n2-mean pooling 0.594 0.637 0.652 0.662 0.667 0.677 0.682 0.687 0.688 0.689

Baser2n2-sum pooling 0.570 0.629 0.647 0.657 0.664 0.678 0.684 0.690 0.692 0.692

Baser2n2-BP pooling 0.545 0.593 0.611 0.621 0.627 0.637 0.642 0.647 0.648 0.649

Baser2n2-MHBN pooling 0.570 0.596 0.606 0.612 0.614 0.621 0.624 0.627 0.628 0.629

Baser2n2-SMSO pooling 0.580 0.627 0.643 0.652 0.656 0.668 0.673 0.679 0.680 0.681

Baser2n2-AttSets (Ours) 0.642 0.660 0.668 0.673 0.676 0.683 0.687 0.691 0.692 0.693

The highest values are given in bold

not have separate parameters suitable for special train-

ing. To be specific, we use smaller learning rate (1e−5)

to carefully train these networks to achieve better perfor-

mance where N = 2 until convergence.

– Group 2/3/4. Similarly, in these three groups of second-

stage training experiments, N is set to be 8, 16, 24

separately.

– Group 5. All networks are further trained until conver-

gence, but N is uniformly and randomly sampled from

[1, 24] for each object during training. In the above Group

1/2/3/4, N is fixed for each object, while N is dynamic

for each object in this Group 5.
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Table 4 Group 4: mean IoU for multi-view reconstruction of all 13

categories in ShapeNetr2n2 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module is

further trained given 24 images per object in Stage 2, while other com-

peting approaches are fine-tuned given 24 images per object in Stage

2

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-GRU 0.578 0.613 0.627 0.635 0.639 0.647 0.651 0.653 0.653 0.654

Baser2n2-max pooling 0.504 0.600 0.631 0.648 0.655 0.671 0.679 0.685 0.688 0.689

Baser2n2-mean pooling 0.593 0.634 0.649 0.659 0.663 0.673 0.677 0.683 0.684 0.685

Baser2n2-sum pooling 0.580 0.634 0.650 0.658 0.660 0.678 0.682 0.689 0.690 0.691

Baser2n2-BP pooling 0.524 0.585 0.609 0.623 0.630 0.644 0.650 0.656 0.659 0.660

Baser2n2-MHBN pooling 0.566 0.595 0.606 0.613 0.616 0.624 0.627 0.631 0.632 0.632

Baser2n2-SMSO pooling 0.556 0.613 0.635 0.647 0.653 0.668 0.674 0.681 0.682 0.684

Baser2n2-AttSets (Ours) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

The highest values are given in bold

Table 5 Group 5: mean IoU for multi-view reconstruction of all 13

categories in ShapeNetr2n2 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module

is further trained given random number of images per object in Stage

2, i.e., N is uniformly sampled from [1, 24], while other competing

approaches are fine-tuned given random number of views per object in

Stage 2

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-GRU 0.580 0.615 0.629 0.637 0.641 0.648 0.651 0.651 0.651 0.651

Baser2n2-max pooling 0.601 0.638 0.652 0.660 0.663 0.673 0.677 0.682 0.683 0.684

Baser2n2-mean pooling 0.598 0.637 0.652 0.660 0.664 0.675 0.679 0.684 0.685 0.686

Baser2n2-sum pooling 0.587 0.631 0.646 0.656 0.660 0.672 0.678 0.683 0.684 0.685

Baser2n2-BP pooling 0.582 0.610 0.620 0.626 0.628 0.635 0.638 0.641 0.642 0.643

Baser2n2-MHBN pooling 0.575 0.599 0.608 0.613 0.615 0.622 0.624 0.628 0.629 0.629

Baser2n2-SMSO pooling 0.580 0.624 0.641 0.652 0.657 0.669 0.674 0.679 0.681 0.682

Baser2n2-AttSets (Ours) 0.642 0.662 0.670 0.675 0.677 0.685 0.688 0.692 0.693 0.694

The highest values are given in bold
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Fig. 6 IoUs of Group 1

The above experiment Groups 1/2/3/4 are designed to

investigate how all competing approaches would be further

optimized towards the statistics of a fixed N during training,
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Fig. 7 IoUs of Group 2

thus resulting in different level of robustness given an arbi-

trary number of N during testing. By contrast, the paradigm

in Group 5 aims at enumerating all possible N values during
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training. Therefore the overall performance might be more

robust regarding an arbitrary number of input images during

testing, compared with the above Group 1/2/3/4 experiments.

Testing Stage All networks trained in above five groups of

experiments are separately tested given N = {1, 2, 3, 4, 5, 8,

12, 16, 20, 24}. The permutations of input images are the

same for all different approaches for fair comparison. Note

that, we do not test the networks which are only trained in

Stage 1, because the AttSets module is not optimized and

the corresponding Baser2n2-AttSets is unable to generalize to

multiple input images during testing. Therefore, it is mean-

ingless to compare the performance when the network is

solely trained on a single image.
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Fig. 10 IoUs of Group 5

Results Tables 1, 2, 3, 4 and 5 show the mean IoU scores

of all 13 categories for experiments of Group 1–5, while

Figs. 6, 7, 8, 9 and 10 show the trends of mean IoU changes

in different Groups. Figure 11 shows the estimated 3D shapes

in experiment Group 5, with an increasing number of images

from 1 to 5 for different approaches.

We notice that the reported IoU scores of ShapeNet data

repository in original LSM (Kar et al. 2017) are higher than

our scores. However, the experimental settings in LSM (Kar

et al. 2017) are quite different from ours in the following two

aspects. (1) The original LSM requires both RGB images

and the corresponding viewing angles as input, while all our

experiments do not. (2) The original LSM dataset has dif-

ferent styles of rendered color images and different train/test

splits compared with our experimental settings. Therefore

the reported IoU scores in LSM are not directly comparable

with ours and we do not include the results in this paper to

avoid confusion. Note that, the aggregation module of LSM

(Kar et al. 2017), i.e., GRU, is the same as used in 3D-R2N2

(Choy et al. 2016), and is indeed fully evaluated throughout

our experiments.

To highlight the performance of single view 3D recon-

struction, Table 6 shows the optimal per-category IoU scores

for different competing approaches from experiments Group

1–5. In addition, we also compare with the state-of-the-art

dedicated single view reconstruction approaches including

OGN (Tatarchenko et al. 2017), AORM (Yang et al. 2018)

and PointSet (Fan et al. 2017) in Table 6. Overall, our AttSets

based approach outperforms all others by a large margin for

either single view or multi view reconstruction, and generates

much more compelling 3D shapes.

Analysis We investigate the results as follows:
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Fig. 11 Qualitative results of multi-view reconstruction from different approaches in experiment Group 5

Table 6 Per-category mean IoU for single view reconstruction on ShapeNetr2n2 testing split

plane bench cabinet car chair monitor lamp speaker firearm couch table phone watercraft mean

Baser2n2-GRU 0.530 0.449 0.730 0.807 0.487 0.497 0.391 0.671 0.553 0.631 0.515 0.683 0.535 0.580

Baser2n2-max pooling 0.573 0.521 0.755 0.835 0.533 0.544 0.423 0.695 0.587 0.678 0.562 0.710 0.582 0.620

Baser2n2-mean pooling 0.582 0.540 0.773 0.837 0.547 0.550 0.440 0.713 0.595 0.695 0.576 0.718 0.593 0.632

Baser2n2-sum pooling 0.588 0.536 0.771 0.838 0.554 0.547 0.442 0.710 0.598 0.690 0.575 0.728 0.598 0.633

Baser2n2-BP pooling 0.536 0.469 0.747 0.816 0.484 0.499 0.398 0.678 0.556 0.646 0.528 0.681 0.550 0.588

Baser2n2-MHBN pooling 0.528 0.451 0.742 0.812 0.471 0.487 0.386 0.677 0.548 0.637 0.515 0.674 0.546 0.578

Baser2n2-SMSO pooling 0.572 0.521 0.763 0.833 0.541 0.548 0.433 0.704 0.581 0.682 0.566 0.721 0.581 0.623

OGN 0.587 0.481 0.729 0.816 0.483 0.502 0.398 0.637 0.593 0.646 0.536 0.702 0.632 0.596

AORM 0.605 0.498 0.715 0.757 0.532 0.524 0.415 0.623 0.618 0.679 0.547 0.738 0.552 0.600

PointSet 0.601 0.550 0.771 0.831 0.544 0.552 0.462 0.737 0.604 0.708 0.606 0.749 0.611 0.640

Baser2n2-AttSets (Ours) 0.594 0.552 0.783 0.844 0.559 0.565 0.445 0.721 0.601 0.703 0.590 0.743 0.601 0.642

Bold values indicate the corresponding methods outperform others

– The GRU based approach can generate reasonable 3D

shapes in all experiments Group 1–5 given either few

or multiple images during testing, but the performance

saturates quickly after being given more images, e.g., 8

views, because the recurrent unit is hardly able to capture

features from longer image sequences, as illustrated in

Fig. 9 1 .

– In Group 1–4, all pooling based approaches are able

to estimate satisfactory 3D shapes when given a simi-

lar number of images as given in training, but they are

unlikely to predict reasonable shapes given an arbitrary

number of images. For example, in experiment Group

4, all pooling based approaches have inferior IoU scores

given only few images as shown in Table 4 and Fig. 9 2 ,

because the pooled features from fewer images during

testing are unlikely to be as general and representative as

pooled features from more images during training. There-

fore, those models trained on 24 images fail to generalize

well to only one image during testing.

– In Group 5, as shown in Table 5 and Fig. 10, all pool-

ing based approaches are much more robust compared

with Group 1–4, because the networks are generally opti-

123



International Journal of Computer Vision (2020) 128:53–73 65

Table 7 Mean IoU for multi-view reconstruction of all 13 categories from ShapeNetlsm dataset. All networks are well trained in previous experiment

Group 5 of Sect. 5.1

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views

Baser2n2-GRU 0.390 0.428 0.444 0.454 0.459 0.467 0.470 0.471 0.472

Baser2n2-max pooling 0.276 0.388 0.433 0.459 0.473 0.497 0.510 0.515 0.518

Baser2n2-mean pooling 0.365 0.426 0.452 0.468 0.477 0.493 0.503 0.508 0.511

Baser2n2-sum pooling 0.363 0.421 0.445 0.459 0.466 0.481 0.492 0.499 0.503

Baser2n2-BP pooling 0.359 0.407 0.426 0.436 0.442 0.453 0.459 0.462 0.463

Baser2n2-MHBN pooling 0.365 0.403 0.418 0.427 0.431 0.441 0.446 0.449 0.450

Baser2n2-SMSO pooling 0.364 0.419 0.445 0.460 0.469 0.488 0.500 0.506 0.510

Baser2n2-AttSets (Ours) 0.404 0.452 0.475 0.490 0.498 0.514 0.522 0.528 0.531

The highest values are given in bold
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Fig. 12 Qualitative results of multi-view reconstruction from different approaches in ShapeNetlsm testing split

mized according to an arbitrary number of images during

training. However, these networks tend to have the per-

formance in the middle. Compared with Group 4, all

approaches in Group 5 tend to have better performance

when N = 1, while being worse when N = 24. Com-

pared with Group 1, all approaches in Group 5 are likely

to be better when N = 24, while being worse when

N = 1. Basically, these networks tend to be optimized

to learn the mean features overall.

– In all experiments Group 1–5, all approaches tend to have

better performance when given enough input images, i.e.,

N = 24, because more images are able to provide enough

information for reconstruction.

– In all experiments Group 1–5, our AttSets based approach

clearly outperforms all others in either single or multiple

view 3D reconstruction and it is more robust to a variable

number of input images. Our FASet algorithm completely

decouples the base network to learn visual features for

accurate single view reconstruction as illustrated in Fig. 9

3 , while the trainable parameters of AttSets module are

separately responsible for learning attention scores for

better multi-view reconstruction as shown in Fig. 9 4 .

Therefore, the whole network does not suffer from lim-

itations of GRU or pooling approaches, and can achieve

better performance for either fewer or more image recon-

struction.
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Table 8 Group 1: mean IoU for

multi-view reconstruction of all

40 categories in ModelNet40

testing split. All networks are

firstly trained given only 1

image for each object in Stage 1.

The AttSets module is further

trained given 12 images per

object in Stage 2, while other

competing approaches are

fine-tuned given 12 images per

object in Stage 2

1 view 2 views 3 views 4 views 5 views 8 views 12 views

Baser2n2-GRU 0.344 0.390 0.414 0.430 0.440 0.454 0.464

Baser2n2-max pooling 0.393 0.468 0.490 0.504 0.511 0.523 0.525

Baser2n2-mean pooling 0.415 0.464 0.481 0.495 0.502 0.515 0.520

Baser2n2-sum pooling 0.332 0.441 0.473 0.492 0.500 0.514 0.520

Baser2n2-BP pooling 0.431 0.466 0.479 0.492 0.497 0.509 0.515

Baser2n2-MHBN pooling 0.423 0.462 0.478 0.491 0.497 0.509 0.515

Baser2n2-SMSO pooling 0.441 0.476 0.490 0.500 0.506 0.517 0.520

Baser2n2-AttSets (Ours) 0.487 0.505 0.511 0.517 0.521 0.527 0.529

The highest values are given in bold

Table 9 Group 2: mean IoU for multi-view reconstruction of all 40

categories in ModelNet40 testing split. All networks are firstly trained

given only 1 image for each object in Stage 1. The AttSets module

is further trained given random number of images per object in Stage

2, i.e., N is uniformly sampled from [1, 12], while other competing

approaches are fine-tuned given random number of views per object in

Stage 2

1 view 2 views 3 views 4 views 5 views 8 views 12 views

Baser2n2-GRU 0.388 0.421 0.434 0.440 0.444 0.449 0.452

Baser2n2-max pooling 0.461 0.489 0.498 0.506 0.509 0.515 0.517

Baser2n2-mean pooling 0.455 0.487 0.498 0.507 0.512 0.520 0.523

Baser2n2-sum pooling 0.453 0.484 0.494 0.503 0.506 0.514 0.517

Baser2n2-BP pooling 0.454 0.479 0.487 0.496 0.499 0.507 0.510

Baser2n2-MHBN pooling 0.453 0.480 0.488 0.497 0.500 0.507 0.509

Baser2n2-SMSO pooling 0.462 0.488 0.497 0.505 0.509 0.516 0.519

Baser2n2-AttSets (Ours) 0.487 0.505 0.511 0.518 0.520 0.525 0.527

The highest values are given in bold

5.2 Evaluation on ShapeNetlsm Dataset

To further investigate how well the learnt visual features and

attention scores generalize across different style of images,

we use the well trained networks of previous Group 5 of

Sect. 5.1 to test on the large ShapeNetlsm dataset. Note that,

we only borrow the synthesized images from ShapeNetlsm

dataset corresponding to the objects in ShapeNetr2n2 testing

split. This guarantees that all the trained models have never

seen either the style of LSM rendered images or the 3D object

labels before. The image viewing angles from the original

ShapeNetlsm dataset are not used in our experiments, since

the Baser2n2 network does not require image viewing angles

as input. Table 7 shows the mean IoU scores of all approaches,

while Fig. 12 shows the qualitative results.

Our AttSets based approach outperforms all others given

either few or multiple input images. This demonstrates that

our Baser2n2-AttSets approach does not overfit the training

data, but has better generality and robustness over new styles

of rendered color images compared with other approaches.

5.3 Evaluation onModelNet40 Dataset

We train the Baser2n2-AttSets and its competing approaches

on ModelNet40 dataset from scratch. For fair comparison, all

networks (the pooling/GRU/AttSets based approaches) are

trained according to the proposed FASet algorithm, which is

similar to the two-stage training strategy of Sect. 5.1.

Training Stage 1 All networks are trained given only 1

image for each object, i.e., N = 1 in all training iterations,

until convergence. This guarantees all networks are well opti-

mized for single view 3D reconstruction.

Training Stage 2 We further conduct the following two

parallel groups of training experiments to optimize the net-

works for multi-view reconstruction.

– Group 1. All networks are further trained given all 12

images for each object, i.e., N = 12 in all iterations,

until convergence. As to our Baser2n2-AttSets, the well-

trained encoder–decoder in previous Stage 1 is frozen,

and only the AttSets module is trained. All other com-

peting approaches are fine-tuned using smaller learning

rate (1e−5) in this stage.

– Group 2. All networks are further trained until conver-

gence, but N is uniformly and randomly sampled from

[1, 12] for each object during training. Only the AttSets

module is trained, while all other competing approaches

are fine-tuned in this Stage 2.

Testing Stage All networks trained in above two groups

are separately tested given N = [1, 2, 3, 4, 5, 8, 12]. The
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Fig. 13 Qualitative results of multi-view reconstruction from different approaches in ModelNet40 testing split

Table 10 Group 1: mean IoU

for silhouettes prediction on the

Blobby dataset. All networks are

firstly trained given only 1

image for each object in Stage 1.

The AttSets module is further

trained given 2 images per

object, i.e., N =2, while other

competing approaches are

fine-tuned given 2 views per

object in Stage 2

1 view 2 views 3 views 4 views

Basesilnet-GRU 0.857 0.860 0.860 0.860

Basesilnet-max pooling 0.922 0.923 0.924 0.924

Basesilnet-mean pooling 0.920 0.922 0.923 0.924

Basesilnet-sum pooling 0.913 0.918 0.917 0.916

Basesilnet-BP pooling 0.908 0.912 0.914 0.914

Basesilnet-MHBN pooling 0.901 0.904 0.906 0.906

Basesilnet-SMSO pooling 0.860 0.865 0.865 0.865

Basesilnet-AttSets (Ours) 0.924 0.931 0.933 0.935

The highest values are given in bold

permutations of input images are the same for all different

approaches for fair comparison.

Results Tables 8 and 9 show the mean IoU scores of

Groups 1 and 2 respectively, and Fig. 13 shows qualita-

tive results of Group 2. The Baser2n2-AttSets surpasses all

competing approaches by a large margin for both single

and multiple view 3D reconstructions, and all the results

are consistent with previous experimental results on both

ShapeNetr2n2 and ShapeNetlsm datasets.

5.4 Evaluation on Blobby Dataset

In this section, we evaluate the Basesilnet-AttSets and the

competing approaches on the Blobby dataset. For fair com-

parison, the GRU module is implemented with a single

fully connected layer of 160 hidden units, which has sim-

ilar network capacity with our AttSets based network. All

networks (the pooling/GRU/AttSets based approaches) are

trained with the proposed two-stage FASet algorithm as fol-

lows:

Training Stage 1 All networks are trained given only 1

image together with the viewing angle for each object, i.e.,

N=1 in all training iterations, until convergence. This guar-

antees the performance of single view shape learning.

Training Stage 2 Another two parallel groups of training

experiments are conducted to further optimize the networks

for multi-view shape learning.

– Group 1. All networks are further trained given only 2

images for each object, i.e., N=2 in all iterations. As to
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Table 11 Group 2: mean IoU

for silhouettes prediction on the

Blobby dataset. All networks are

firstly trained given only 1

image for each object in Stage 1.

The AttSets module is further

trained given 4 images per

object, i.e., N=4, while other

competing approaches are

fine-tuned given 4 views per

object in Stage 2

1 view 2 views 3 views 4 views

Basesilnet-GRU 0.863 0.865 0.865 0.865

Basesilnet-max pooling 0.923 0.927 0.929 0.929

Basesilnet-mean pooling 0.923 0.925 0.927 0.927

Basesilnet-sum pooling 0.902 0.917 0.921 0.924

Basesilnet-BP pooling 0.911 0.916 0.919 0.920

Basesilnet-MHBN pooling 0.904 0.908 0.911 0.911

Basesilnet-SMSO pooling 0.863 0.865 0.865 0.865

Basesilnet-AttSets (Ours) 0.924 0.932 0.936 0.937

The highest values are given in bold
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Fig. 14 Qualitative results of silhouettes prediction from different approaches on the Blobby dataset

Basesilnet-AttSets, only the AttSets module is optimized

with the well-trained base encoder–decoder being frozen.

For fair comparison, all competing approaches are fine-

tuned given 2 images per object for better performance

where N =2 until convergence.

– Group 2. Similar to the above Group 1, all networks are

further trained given all 4 images for each object, i.e.,

N=4, until convergence.

Testing Stage All networks trained in above two groups

are separately tested given N = [1,2,3,4]. The permutations

of input images are the same for all different networks for

fair comparison.

Results Tables 10 and 11 show the mean IoUs of above

two groups of experiments and Fig. 14 shows the qualita-

tive results of Group 2. Note that, the IoUs are calculated

on predicted 2D silhouettes instead of 3D voxels, so they

are not numerically comparable with previous experiments

on ShapeNetr2n2, ShapeNetlsm, and ModelNet40 datasets.

We do not include the IoU scores of the original SilNet

(Wiles and Zisserman 2017), because the original IoU scores

are obtained from an end-to-end training strategy. In this

paper, we uniformly apply the proposed two-stage FASet

training paradigm on all approaches for fair comparison.

Our Basesilnet-AttSets consistently outperforms all compet-

ing approaches for shape learning from either single or

multiple views.

5.5 Qualitative Results on Real-World Images

To the best of our knowledge, there is no public real-world

dataset for multi-view 3D object reconstruction. There-

fore, we manually collect real world images from Amazon

online shops to qualitatively demonstrate the generality of

all networks which are trained on the synthetic ShapeNetr2n2

dataset in experiment Group 4 of Sect. 5.1, as shown in

Fig. 15.
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Fig. 16 Qualitative results of inconsistent 3D reconstruction from the

GRU based approach

In the meantime, we use these real-world images to

qualitatively show the permutation invariance of different

approaches. In particular, for each object, we use 6 differ-

ent permutations in total for testing. As shown in Fig. 16,

the GRU based approach generates inconsistent 3D shapes

given different image permutations. For example, the arm of

a chair and the leg of a table can be reconstructed in permu-

tation 1, but fail to be recovered in another permutation. By

comparison, all other approaches are permutation invariant,

as the results shown in Fig. 15.

5.6 Computational Efficiency

To evaluate the computation and memory cost of AttSets, we

implement Baser2n2-AttSets and the competing approaches

in Python 2.7 and Tensorflow 1.2 with CUDA 9.0 and cuDNN

7.1 as the back-end driver and library. All approaches share

the same Baser2n2 network and run in the same Titan X and

software environments. Table 12 shows the average time

consumption to reconstruct a single 3D object given dif-

ferent number of images. Our AttSets based approach is as

efficient as the pooling methods, while Baser2n2-GRU (i.e.,

3D-R2N2) takes more time when processing an increas-

ing number of images due to the sequential computation

mechanism of its GRU module. In terms of the total train-

able weights, the max/mean/sum pooling based approaches

have 16.66 million, while AttSets based net has 17.71 mil-

lion. By contrast, the original 3D-R2N2 has 34.78 million,

the BP/MHBN/SMSO have 141.57, 60.78 and 17.71 million

respectively. Overall, our AttSets outperforms the recurrent

unit and pooling operations without incurring notable com-

putation and memory cost.

5.7 Comparison BetweenVariants of AttSets

We further compare the aggregation performance of f c,

conv2d and conv3d based AttSets variants which are shown

in Fig. 3 in Sect. 3.4. The f c based AttSets net is the same

as in Sect. 5.1. The conv2d based AttSets is plugged into

the middle of the 2D encoder, fusing a (N , 4, 4, 256) tensor

into (1, 4, 4, 256), where N is an arbitrary image number.

The conv3d based AttSets is plugged into the middle of

the 3D decoder, integrating a (N , 8, 8, 8, 128) tensor into

(1, 8, 8, 8, 128). All other layers of these variants are the

same. Both the conv2d and conv3d based AttSets networks

are trained using the paradigm of experiment Group 4 in

Sect. 5.1. Table 13 shows the mean IoU scores of three vari-

ants on ShapeNetr2n2 testing split. f c and conv3d based

variants achieve similar IoU scores for either single or multi

view 3D reconstruction, demonstrating the superior aggre-

gation capability of AttSets. In the meantime, we observe

that the overall performance of conv2d based AttSets net is

slightly decreased compared with the other two. One possi-

ble reason is that the 2D feature set has been aggregated at

the early layer of the network, resulting in features being lost

early. Figure 17 visualizes the learnt attention scores for a 2D

feature set, i.e., (N , 4, 4, 256) features, via the conv2d based

AttSets net. To visualize 2D feature scores, we average the

scores along the channel axis and then roughly trace back the

spatial locations of those scores corresponding to the origi-

nal input. The more visual information the input image has,

the higher attention scores are learnt by AttSets for the cor-

responding latent features. For example, the third image has

richer visual information than the first image, so its attention

scores are higher. Note that, for a specific base network, there

are many potential locations to plug in AttSets and it is also

possible to include multiple AttSets modules into the same
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Table 12 Mean time

consumption for a single object

(323 voxel grid) estimation from

different number of images

(milliseconds)

Number of input images 1 4 8 12 16 20 24

Baser2n2-GRU 6.9 11.2 17.0 22.8 28.8 34.7 40.7

Baser2n2-max pooling 6.4 10.0 15.1 20.2 25.3 30.2 35.4

Baser2n2-mean pooling 6.3 10.1 15.1 20.1 25.3 30.3 35.5

Baser2n2-sum pooling 6.4 10.1 15.1 20.1 25.3 30.3 35.5

Baser2n2-BP pooling 6.5 10.5 15.6 20.5 25.7 30.6 35.8

Baser2n2-MHBN pooling 6.5 10.3 15.3 20.3 25.5 30.7 35.7

Baser2n2-SMSO pooling 6.5 10.2 15.3 20.3 25.4 30.5 35.6

Baser2n2-AttSets (Ours) 7.7 11.0 16.3 21.2 26.3 31.4 36.4

Bold values indicate the corresponding methods outperform others

Table 13 Mean IoU of AttSets variants on all 13 categories in ShapeNetr2n2 testing split

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-AttSets (conv2d) 0.642 0.648 0.651 0.655 0.657 0.664 0.668 0.674 0.675 0.676

Baser2n2-AttSets (conv3d) 0.642 0.663 0.671 0.676 0.677 0.683 0.685 0.689 0.690 0.690

Baser2n2-AttSets ( f c) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

Bold values indicate the corresponding methods outperform others

Estimated 

3D shape

Ground TruthAttention Scores learnt by AttSets(conv2d)

Input Images

Fig. 17 Learnt attention scores for deep feature sets via conv2d based

AttSets

net. Fully evaluating these factors is out of the scope of this

paper.

5.8 Feature-Wise Attention versus Element-Wise
Attention

Our AttSets module is initially designed to learn unique

feature-wise attention scores for the whole input deep fea-

ture set, and we demonstrate that it significantly improves

the aggregation performance over dynamic feature sets in

previous Sects. 5.1, 5.2, 5.3 and 5.4 . In this section, we fur-

ther investigate the advantage of this feature-wise attentive

pooling over element-wise attentional aggregation.

For element-wise attentional aggregation, the AttSets

module turns to learn a single attention score for each element

of the feature set A = {x1, x2, . . . , xN }, followed by the

so f tmax normalization and weighted summation pooling.

In particular, as shown in previous Fig. 2, the shared function

g(xn, W) now learns a scalar, instead of a vector, as the atten-

tion activation for each input element. Eventually, all features

within the same element are weighted by a learnt common

Estimated 

3D shape

Estimated 

3D shape

Ground Truth

Input

Images

Element-wise Feature-wise Attention

Fig. 18 Learnt attention scores for deep feature sets via element-wise

attention and feature-wise attention AttSets

attention score. Intuitively, the original feature-wise AttSets

tends to be fine-grained aggregation, while the element-wise

AttSets learns to coarsely aggregate features.

Following the same training settings of experiment Group

4 in Sect. 5.1, we conduct another group of experiment

on ShapeNetr2n2 dataset for element-wise attentional aggre-

gation. Table 14 compares the mean IoU for 3D object

reconstruction through feature-wise and element-wise atten-

tional aggregation. Figure 18 shows an example of the

learnt attention scores and the predicted 3D shapes. As

expected, the feature-wise attention mechanism clearly

achieves better aggregation performance compared with the

coarsely element-wise approach. As shown in Fig. 18, the

element-wise attention mechanism tends to focus on few

images, while completely ignoring others. By comparison,

the feature-wise AttSets learns to fuse information from all

images, thus achieving better aggregation performance.
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Table 14 Mean IoU of all 13 categories in ShapeNetr2n2 testing split for feature-wise and element-wise attentional aggregation

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-AttSets (element-wise) 0.642 0.653 0.657 0.660 0.661 0.665 0.667 0.670 0.671 0.672

Baser2n2-AttSets (feature-wise) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

Bold values indicate the corresponding methods outperform others

Table 15 Mean IoU of different training algorithms on all 13 categories in ShapeNetr2n2 testing split

1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views 24 views

Baser2n2-AttSets (JoinT) 0.307 0.437 0.516 0.563 0.595 0.639 0.659 0.673 0.677 0.680

Baser2n2-AttSets (FASet) 0.642 0.660 0.668 0.674 0.676 0.684 0.688 0.693 0.694 0.695

The highest values are given in bold

5.9 Significance of FASet Algorithm

In this section, we investigate the impact of FASet algorithm

by comparing it with the standard end-to-end joint training

(JoinT). Particularly, in JoinT, all parameters Θbase and Θatt

are jointly optimized with a single loss. Following the same

training settings of experiment Group 4 in Sect. 5.1, we con-

duct another group of experiment on ShapeNetr2n2 dataset

under the JoinT training strategy. As its IoU scores shown

in Table 15, the JoinT training approach tends to optimize

the whole net regarding the training multi-view batches, thus

being unable to generalize well for fewer images during test-

ing. Basically, the network itself is unable to dedicate the base

layers to learning visual features, while the AttSets module

to learning attention scores, if it is not trained with the pro-

posed FASet algorithm. The theoretical reason is discussed

previously in Sect. 4.1. The FASet algorithm may also be

applicable to other learning based aggregation approaches,

as long as the aggregation module can be decoupled from the

base encoder/decoder.

6 Conclusion

In this paper, we present AttSets module and FASet train-

ing algorithm to aggregate elements of deep feature sets.

AttSets together with FASet has powerful permutation

invariance, computation efficiency, robustness and flexible

implementation properties, along with the theory and exten-

sive experiments to support its performance for multi-view

3D reconstruction. Both quantitative and qualitative results

explicitly show that AttSets significantly outperforms other

widely used aggregation approaches. Nevertheless, all of our

experiments are dedicated to multi-view 3D reconstruction.

It would be interesting to explore the generality of AttSets

and FASet over other set-based tasks, especially the tasks

which constantly take multiple elements as input.
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