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Abstract
In this paper we present our audio based system for detecting
“events” within consumer videos (e.g. You Tube) and report
our experiments on the TRECVID Multimedia Event Detection
(MED) task and development data. Codebook or bag-of-words
models have been widely used in text, visual and audio domains
and form the state-of-the-art in MED tasks. The overall effec-
tiveness of these models on such datasets depends critically on
the choice of low-level features, clustering approach, sampling
method, codebook size, weighting schemes and choice of clas-
sifier. In this work we empirically evaluate several approaches
to model expressive and robust audio codebooks for the task
of MED while ensuring compactness. First, we introduce the
Large Scale Pooling Features (LSPF) and Stacked Cepstral Fea-
tures for encoding local temporal information in audio code-
books. Second, we discuss several design decisions for generat-
ing and representing expressive audio codebooks and show how
they scale to large datasets. Third, we apply text based tech-
niques like Latent Dirichlet Allocation (LDA) to learn acoustic-
topics as a means of providing compact representation while
maintaining performance. By aggregating these decisions into
our model, we obtained 11% relative improvement over our
baseline audio systems.
Index Terms: Multimedia Event Detection, Video Retrieval,
Audio-Codebook Models

1. Introduction
With the growth of multimedia content over the internet, there
has been an increased interest in improving the current state-
of-the-art in video retrieval, indexing and multimedia analysis.
This has led to several research initiatives such as the TRECVID
Multimedia Event Detection (MED) and Recounting (MER)
tasks. MED [1] is the task of indexing and searching large cor-
pora of multimedia content in order to retrieve from the col-
lection the most relevant videos that show instances of certain
predefined events. Examples of such events include “Birthday
Party”, “Wedding Ceremony”, etc and are defined using tex-
tual descriptions along with several example videos. The best
performing systems on this task including our system, com-
bine features from multiple modalities, including visual and au-
dio. Even though visual information contributes the most, audio
is found to be significantly important for events where visual
knowledge is either missing or insufficient. Identifying spo-
ken utterances in speech can provide significant clues about the
content of the video, for instance, detecting “cake” or “baking”
in a “Making a Cake” event or “happy birthday” in a “Birth-
day Party” event. Similarly, identifying acoustic sounds can be
indicative of certain activities in the video, an “engine” sound
could confirm the presence of a vehicle while cheering or crowd
noises might be indicative of events showing sport activities.

Recent work has looked at various approaches to audio

analysis for the task of event detection in consumer videos. One
class of approaches makes use of a semantic vocabulary [2, 3],
a set of predefined acoustic event detectors learned in a super-
vised manner over manually annotated data. Though this ap-
proach has the power of offering semantic intuition about the
event, which is useful for video summarization (MER), it does
not scale well to consumer videos which are highly unstructured
and unconstrained and require high annotation costs.

The other approach is to learn the concepts or the acoustic
units in a completely unsupervised manner from the data itself.
A popular technique to learn these units is using a clustering
algorithm such as k-means. While these acoustic units may not
have an attached semantic label, their distribution can convey
information about the event, often referred to as the Bag-of-
Audio-Words (BoAW) model. The BoAW model has been suc-
cessfully applied to several content-based audio retrieval tasks
including MED [4, 5].

Recently, a couple of other promising unsupervised tech-
niques have been proposed that have shown improvements over
the traditional BoAW model. Gaussian super-vectors, which
have been successful for the speaker verification task [6], have
also been applied to MED [7, 4]. First a universal background
Gaussian Mixture Model (UBM) is trained followed by maxi-
mum aposteriori (MAP) adaptation of the means of the mixture
components based on data from each video. The super-vector
representation is then constructed by stacking the means and
variances of the adapted models, and is then used for classifi-
cation. Approaches like the Acoustic Segment Models (ASM)
[8] and the Acoustic Unit Descriptors (AUD) [9] try to model
temporal aspects of sound by decoding the audio signal into a
sequence of acoustic segments using a fixed state HMM. The
video is then represented as a bag-of-words over the n-grams
of these acoustic units. While these approaches report improve-
ments over the BoAW models, they are computationally more
expensive.

In this paper we detail out some of the parameters and their
effects on the performance of the Audio-Codebook model. We
draw similarities between the Bag-of-Audio-Words and Bag-
of-Visual-Words based on a similar analysis [10, 11, 12, 13]
done in the past on visual categorization, and show empirically
how different design decisions influence the expressiveness of
the Audio-Codebook. Our work is closely related to an ear-
lier analysis done by [5] on Bag-of-Audio-Words model on the
MED dataset. We build on their work by performing a more
detailed analysis on a much bigger dataset and with more event
classes. Major contributions of this paper are:

• We report results on the largest publicly available con-
sumer video dataset. While previous work have reported
experiments on smaller datasets and with fewer events,
we hope that the scale of these results would be a good
reference for future audio based MED research.

• We evaluate low level feature representations that result



in more expressive codebooks and help to capture tem-
poral information.

• We analyze parameters for codebook generation such
as sampling method, codebook size, encoding, etc, and
their effects on the expressiveness of the resulting audio
codebooks. We show that a codebook learned by random
sampling can perform almost as well as one generated
through a more expensive k-means clustering.

• We evaluate compression techniques including Latent
Dirichlet Allocation (LDA) and Agglomerative Cluster-
ing to reduce the codebook size while maintaining per-
formance.

• We perform detailed fusion experiments to capture the
complementary nature of the various models for MED.

2. Dataset and Setup
We report experiments on the development data from the
TRECVID MED task. Our dataset comprises of 28 events that
have appeared in MED10 (P001-P003), MED11 (E001-E015)
and MED12 (E021-E030) evaluations. To evaluate robustness
to new event classes and scalability to larger datasets we vali-
date our approaches on three different evaluation sets:

1. MED-9746 Dataset (18 Events, E001-E015, P001-P003)
with 3104 videos for training and 6642 for testing.

2. MED-11746 Dataset (28 Events, E001-E015, E021-
E030, P001-P003) with 6584 videos for training (event
independent detectors) and 7642 for testing.

3. MED-50328 Dataset (25 Events, E006-E030) with
17857 training videos and 32471 testing videos.

Each target event has around 100-200 positive video samples on
average. The remaining videos are unrelated to the target events
and are provided as “background” videos.

For the evaluation, we use the PMiss@TER=12.5, which is
defined as the point at which the ratio between the Probability
of Missed Detection and Probability of False Alarm is 12.5:1.
We then compute the average PMiss@TER=12.5 as the average
across all event classes.

3. Low Level Feature Representations
3.1. Mel-Frequency Cepstral Coefficients (MFCC)

We use MFCC as our fundamental frame level feature. MFCCs
have found wide usage in speech recognition and speaker iden-
tification. The single-channel soundtrack is first re-sampled
to 16kHz. For our experiments, we compute 20 dimensional
MFCCs over 32ms windows with a 10ms hop. We also calcu-
late deltas over 5 frame windows resulting in a 40 dimensional
feature vector. Our experiments as well as work in [14] show
that having 20 coefficients performs better at event classification
than using the traditional 13 coefficients used for speech. We
also experimented with double deltas and energy coefficients
but they provided little or no gains.

3.2. Stacked Cepstral Features

Previous work [15] in speech recognition have shown that
capturing temporal information can be helpful. Conventional
approaches involve performing regression across successive
frames to calculate deltas or applying transforms to series of

stacked cepstral vectors. Such an approach appears appeal-
ing for tasks like event classification where it would be help-
ful to capture temporal knowledge in the codewords of the
Audio-Codebook. To incorporate temporal information into our
framework, we consider stacking N consecutive 40 dimensional
MFCC feature vectors with a 10 ms shift resulting in a 40×N
dimensional representation, where N is the “stacking” parame-
ter. We experimented with different values for N (3, 5, 7) and
found that N=5 with 10ms shifts provides the best trade-off be-
tween computational complexity for computing codebooks and
event classification performance.

3.3. Large Scale Temporal Pooling Features (LSPF)

While using Stacked Cepstral Features helps in capturing tem-
poral aspects at a granular scale(50ms), we would also like to
model longer lasting sounds like cheering, engine noise, mu-
sic etc which usually span over several seconds. One way to
achieve this is to compute statistics or pooling functions over
longer temporal windows. Previous work have used such fea-
tures for music classification [16] and acoustic event detection
(AED) [17]. But unlike AED which requires manual annota-
tions, we encode them into an Audio-Codebook via unsuper-
vised clustering. In our work we use a wide range of pooling
functions including extremes, moments, percentiles, crossings,
peaks, regressions, and means over low level descriptors like
MFCC, Chroma, PLP, pitch, loudness, spectral flux, etc. These
features try to capture the spectral and temporal shape of the
waveform over a short window.

We experiment with various window lengths and shift pa-
rameters and found that 2sec windows with 100ms shift pro-
vides the best results for both MED (via unsupervised cluster-
ing) as well as Acoustic Event Detection(via supervised learn-
ing) [2]. The features were computed using the openSmile [18]
toolkit resulting in a 6700 dimensional feature set. In order to
reduce the dimensions for effective clustering, the features were
first standardized to have zero mean and unit variance. This was
followed by a feature selection step using Information Gain Cri-
teria based on the labeled data from [2], reducing the dimen-
sions to 5500. To remove correlated features, PCA (Principal
Component Analysis) Whitening was performed and top 300
components were considered to form the final representation.

Model AvgPMiss@TER=12.5
LSPF 4s 100ms 8000 Codebook 0.596
LSPF 2s 100ms 8000 Codebook 0.595
LSPF 1s 100ms 8000 Codebook 0.592

LSPF 0.5s 100ms 8000 Codebook 0.582

Table 1: Performance of Large Scale Pooling Features (LSPF)
for different temporal windows on the MED-9746 dataset. In
general we observe that smaller windows work better for MED
while larger windows perform better on AED. Evaluation was
done using the procedure defined in Section 5.1.

4. Audio-Codebook Generation
We use the k-means clustering method for generating the au-
dio codebooks from the low level continuous feature represen-
tations defined above. K-means is an unsupervised clustering
algorithm that tries to minimize the variance between the k clus-
ters and the training data. In the codebook generation step, we
first randomly sample points from the videos in the training set



and then run k-means clustering. The centroids of the resulting
clusters form our codebook. Each video is then represented as
a histogram of codeword counts by encoding low level feature
vectors using the trained codebooks. Thus we obtain a fixed
size representation for a variable sized video.

To account for the length of different audio documents
we perform L1 normalization on the histogram features be-
fore performing classification. In [5], unnormalized histograms
were shown to perform better than L1 normalized representa-
tions owing to the correlations between event classes and video
length. However in order to ensure our models are free from
such class biases especially as we scale to bigger datasets and
more event classes, we use L1 normalized histograms.

There are several other design decisions that influence the
discriminating power of the resulting codebook including the
codebook size, the sampling process, and the encoding process.

4.1. Sampling Method

Since it is not feasible to run clustering on all the frames ex-
tracted from the audio-signal, one popular approach is to per-
form random or uniform sampling where each frame in the au-
dio signal has equal probability of getting selected. In [13] the
authors show that this leads to an unbalanced Zipf’s like distri-
bution in the feature space. Since k-means is a variance based
algorithm, given such a distribution, it will assign more and
more clusters to the denser areas of the feature space while fail-
ing to represent more informative regions. In Table 2 we show
that codebooks learned this way are not any more informative
as those constructed using random selection. This is because
features that occur frequently usually represent sounds that are
present in almost every audio, and hence are too generic to pro-
vide any discrimination among classes. These can be termed as
“Acoustic Stop Words” by drawing relation with stop words in
text. Hence over sampling data-points from this space adversely
affects the expressive power of the codebook.

Method AvgPMiss@TER=12.5
16000 Hard Encoded Codebook 0.582

26000 Random Sampled Codebook 0.580

Table 2: Randomly Sampled codebook performs similar to a
Hard Encoded codebook learned using K-means [MED-9746]

4.2. Codebook Size

Like the Bag-of-Visual-Words model, the discriminating power
of an audio codebook model is governed by the codebook size.
The codebook size is determined by the number of clusters K
generated by the k-means clustering. There are various trade-
offs to be considered for choosing the right number of clusters.
One is a trade-off between efficiency and performance. Larger
codebooks perform better but at a significantly higher compu-
tational cost. Furthermore, the choice also varies with the type
of corpus and the low level feature representations. Higher the
feature dimensions, larger the size of the codebook that results
in the best performance. For feature representations defined in
Section 3 we experimentally find that K=4096 for Section 3.1,
K=8000 for Section 3.2 and Section 3.3 result in the most ex-
pressive codebooks for the MED task.

Figure 1 shows the relationship between performance and
size of the audio codebook. We see consistent improvements
as the codebook size increases from 100 to 4000 with the im-
provements becoming less prominent as we reach 16000. This

could be attributed to the reasons described in the previous Sec-
tion 4.1, as k-means will assign major fraction of the codewords
to the denser regions while leaving only a few to represent the
more informative but less dense regions. Contrary to the find-
ings in [5] where a 1000 codebook provided the best perfor-
mance, we see improvements even with codebook sizes as high
as 16000, suggesting the need for larger codebooks as the event
classes increase.

Figure 1: Performance vs Codebook size [MED-9746]

4.3. Soft vs Hard Encoding

Once the codebook has been generated, each video could then
be represented in terms of frequency distribution of the code-
words. This is usually done in two ways: hard encoding, where
each continuous feature descriptor is assigned only to the clos-
est cluster centroid. Previous work in computer vision [10] have
shown that hard encoding fails to capture the inherent uncer-
tainty of the feature descriptor and a more expressive vocabu-
lary can be achieved by assigning a degree of similarity between
feature descriptors and the codewords. This is termed as soft en-
coding. Several methods have been employed to perform soft
encoding. In our implementation, we first rank the N closest
codewords in the increasing order of their euclidean distance
from the feature descriptor and then weigh them by the inverse
of their ranks. From results in Table 3 we can see that soft en-
coding outperforms hard encoding. Furthermore as the size of
the codebook grows the improvement of soft over hard encod-
ing becomes more prominent, as with more cluster centroids we
have more variability in point assignment.

CodebookSize Hard Encoding Soft Encoding
4096 MFCC 0.578 0.571

16000 MFCC 0.582 0.556

Table 3: AvgPMiss@TER=12.5 for Hard and Soft Encoding on
MED-9746 dataset using MFCC features.

5. Experiments
5.1. Event Classification and Fusion

For performing event classification, we use Kernel Support Vec-
tor Machines (SVM) owing to their ability in capturing nonlin-
ear decision boundaries. We report experiments using two dif-
ferent kernels, Radial Basis Function (RBF) and Chi-Squared.
While RBF is a good initial kernel for modeling arbitrary input



space, Chi-Squared kernels usually outperform them for his-
togram representations. We also report results from the GMM
super-vector (GSV-SVM) system on MED task to act as our
baseline. We refer reader to [4] for a detailed summary of
the system. For feature representation we use the L1 nor-
malized histograms for the Bag-of-Audio-Words model with
Chi-Squared Kernel and the super-vector representation for the
GSV-SVM with RBF kernel. We employ the one-against-all
paradigm for classifier learning by training a binary classifier
(in-event or out-of-event) for each of the 28 event classes. In or-
der to combine our different sub-systems, we perform Weighted
Average Fusion with uniform weights.

Scorefusion =

N∑
i=1

ScoreModeli

N
(1)

5.2. Codebook Compression

It is often desirable to have a compact codebook with higher
performance. In order to reduce the dimensions of the learned
codebook without impacting performance, we experimented
with two approaches.

Similar to the work in [19], we use Latent Dirichlet Allo-
cation (LDA) [20], a probabilistic generative model to discover
latent acoustic topics from the codewords. Using hard encoding
each video is first represented as a stream of codewords from
the audio codebook learned in Section 4. Then a set of topics
is learned using the LDA implementation in MALLET [21] ,
which uses variational inference to approximate the posterior
distributions. The learned topic distributions for each video are
then used as the representation for classification. As shown in
Table 4, though the approach does not improve performance
over the corresponding hard encoded codebook, the representa-
tion significantly reduces the dimensions from 16000 to 600.

Method AvgPMiss@TER=12.5
16000 Hard Encoding 0.582

LDA 600 Topics 0.585

Table 4: LDA with 600 Topics performs comparably to 16000
hard encoded codebook on the MED-9746 dataset

Second approach involved performing Agglomerative Clus-
tering with single linkage over the codewords from the 16000
audio codebook, to reduce it to 4096 dimensions. The intuition
behind this approach is based on our previous discussion in Sec-
tion 4.1 on how more clusters are assigned to denser regions in
a k-means approach. Hence, in a 16000 codebook, a major frac-
tion of the codewords is concentrated around the dense regions
providing redundant information, which can be removed using
an agglomerative clustering approach. Table 5 compares the
performance of a 16000 audio codebook with the performance
of the same codebook after compression using the above ap-
proach. Both systems use soft encoding for representation and
are evaluated on the MED-11746 dataset.

Method AvgPMiss@TER=12.5
MFCC-16000-Codebook 0.565

MFCC-16000-Compressed 0.562

Table 5: Codebook compression with Agglomerative Clustering

Method MED-11746 MED-50328
MFCC-4096 0.571 0.544
GSV-SVM 0.577 0.562

MFCC-16000-Compressed 0.562 0.540
MFCC-Stack5-8000 0.554 0.522

LSPF-8000-2sw 0.595 0.580
LSPF-8000-0.5sw 0.582 0.577

FUSION-ALL 0.515 0.482

Table 6: Avg PMiss@TER=12.5 for our models

5.3. Results

Table 6 compares the performance for our different models
over two datasets MED-11746 and MED-50328. It shows that
our baseline systems, 4096 MFCC audio codebook (MFCC-
4096) and GSV-SVM provide comparable performance. Fur-
thermore, by training a bigger 16000 audio codebook fol-
lowed by codebook compression using agglomerative cluster-
ing (MFCC-16000-Compressed) as defined in Section 5.2, we
achieve improvements in performance without sacrificing com-
pactness. Stacked Cepstral Feature codebook of size 8000
(MFCC-Stack5-8000) remains to be the single best performing
system. This suggests that by capturing temporal characteristics
at the feature representation level results in a more expressive
codebook. LSPF-8000-2sw and LSPF-8000-0.5sw depict the
performance of Large Scale Temporal Pooling Features (LSPF),
extracted every 100ms over 2sec and 0.5 sec windows respec-
tively. A codebook size of 8000 was used for representation.
Though on their own they perform worse than our baseline sys-
tems, they provide a 2 percent absolute improvement in perfor-
mance after performing fusion. FUSION-ALL represents our
best overall system after performing late fusion on the above
systems. We achieve Average PMiss@TER=12.5 of 0.482 on
the MED-50328 Development Set, which is a 11.4% relative
improvement over our baseline 4096-Codebook Model and a
14.3% relative improvement over the GMM supervector model.

6. Conclusion
In this work, we have presented our audio-only system for the
Multimedia Event Detection (MED) task. In particular, we have
shown our analysis of the popular Audio-Codebook model on
the MED development dataset, and have performed extensive
experiments to show how various design decisions can influ-
ence the performance of such a model. We also presented audio
representations that could help incorporate temporal informa-
tion into the codebook model at the feature representation level,
leading to improved performance on the MED Task.
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