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Robust Auditory-Based Speech Processing Using the
Average Localized Synchrony Detection

Ahmed M. Abdelatty Ali, Member, IEEE, Jan Van der Spiegel, Fellow, IEEE, and Paul Mueller

Abstract—In this paper, a new auditory-based speech processing
system based on the biologically rooted property of the average lo-
calized synchrony detection (ALSD) is proposed. The system de-
tects periodicity in the speech signal at Bark-scaled frequencies
while reducing the response’s spurious peaks and sensitivity to im-
plementation mismatches, and hence presents a consistent and ro-
bust representation of the formants. The system is evaluated for
its formant extraction ability while reducing spurious peaks. It is
compared with other auditory-based and traditional systems in the
tasks of vowel and consonant recognition on clean speech from the
TIMIT database and in the presence of noise. The results illus-
trate the advantage of the ALSD system in extracting the formants
and reducing the spurious peaks. They also indicate the superiority
of the synchrony measures over the mean-rate in the presence of
noise.

Index Terms—ALSD, auditory, extraction, feature, formant,
processing, recognition, speech, synchrony.

I. INTRODUCTION

T HE SUPERB ability of the human auditory system to
process speech in the presence of noise has motivated

many researchers to build auditory-based speech processing
systems for automatic speech recognition (ASR) applications.
The most widely used systems implement some auditory
effects (such as Bark- or Mel-scale filtering and nonlinear
compression) in a short-time fast (discrete) Fourier transform
(FFT) framework. Examples are the Mel-frequency cepstral
coefficients (MFCC) [13], [51], the perceptual linear predictive
analysis (PLP) [23], [26], and the RASTA processing [24], [25].
Those systems have shown clear improvement over traditional
cepstral and LPC analyzes in speech recognition applications.
However, despite their usefulness, those systems still suffer
from the fixed-window limitation of short-time FFT systems,
which causes the frequency-time resolution tradeoff [31], [45].
Moreover, their modeling of the auditory effects is neither
complete nor accurate. They, however, have the advantage of
fast processing.
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Some researchers, on the other hand, worked on more
accurate auditory modeling [12], [17]–[19], [32], [44]–[47]. In
those models, the auditory effects are emulated as accurately
as possible according to the current understanding. Such trials
have yielded systems that outperformed the MFCC, PLP and
RASTA systems in speech recognition applications especially
in the presence of noise and other adverse conditions [10], [17],
[28]–[31], [39], [43], [50]. They, however, suffer from very
slow processing that makes real-time software implementation,
for the overall ASR system, difficult and uneconomic with the
current state-of-the-art computation and storage powers [31].
For example, their speed was found to be between 40 and 120
times real-time on a Sparc-2 workstation [30], with 35–600
times the number of operations required for the traditional LPC
processing [31], [34].

This work concentrates on auditory-based systems of the
latter type. The superior ability of the human auditory system
to handle and recognize speech in the presence of noise
makes the understanding and modeling of such capability a
necessity. The slow processing time could be economically
overcome by relying on hardware analog VLSI implementation
of the system, which will enable parallel real-time processing
[37], [38]. In the next sections, we investigate some of the
auditory-based systems that proved to yield relatively good
and robust performance, and are readily implementable in
analog VLSI technology. Those include the Bark-scaled filter
bank mean-rate output, the lateral inhibitory network (LIN)
output [46], [47], and the generalized synchrony detector
(GSD) output [44], [45]. A new system is developed by the
authors as a modification to the GSD. It is called the average
localized synchrony detector (ALSD) [3], [7] and is designed
to alleviate some of the limitations of the GSD. The ALSD is
evaluated and compared with the other three systems in their
formant extraction ability as indicated by vowel recognition
experiment for multiple speakers with seven different dialects
of the American English from the TIMIT database.

II. A UDITORY-BASED PROCESSING

The general structure of the auditory-based front-end pro-
cessing systems used in this work is shown in Fig. 1. It consists
of a Bark-scaled filter bank of 36 bandpass filters with a spacing
of half a Bark between neighboring filters. The filter bank used
is a software simulation of an actual analog cochlea that was
implemented in VLSI [35], [36]. This choice of the filter bank
is made in order to ensure its practicality from the hardware im-
plemention standpoint.

The Bark-scale filter distribution preserves the temporal
structure of the output waveforms and avoids the frequency-time

1063-6676/02$17.00 © 2002 IEEE
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Fig. 1. Auditory-based front-end system.

resolution tradeoff encountered in fixed-window short-time
FFT-based systems. The low-frequency region is characterized
by relatively sharp narrow-band filters. The high-frequency
region has wider-band, and hence faster, filters. This achieves
high-frequency resolution in low-frequency regions where it
is needed to distinguish sonorants, which are usually static
in nature and hence do not need high time resolution. On
the other hand, the high-frequency (wideband) filters will
have low-frequency resolution and high time resolution. This
will be useful for dynamic sounds that are characterized by
high-frequency energy and usually require high time resolution.
Thus, this filter bank approach, as opposed to the fixed-window
approach, invests the appropriate resolution where it is needed
and is therefore compatible with the characteristics of the
speech signal and the requirements of speech processing. The
amplitude responses of the filter bank are shown in Fig. 2.

The filter bank is followed by a nonlinear stage that performs
half-wave rectification with a compressive and saturating non-
linearity. The description of this stage is given by [44]

(1)

where is the input, is the output, and are constants (10
and 65 respectively). It is clear that the function is exponential
for negative inputs, linear for small input values and compres-
sive for larger signals.

The system is then divided into two branches. One branch
gives the mean-rate response and the other gives the synchrony
(phase-locked) response. The mean-rate response path begins
with a short-term adaptation and forward masking (STA)
module, followed by an automatic gain control (AGC) module
and finally ending with an envelope detector. The synchrony
path, on the other hand, has a low-pass filter (LPF), an AGC
and a synchrony detector.

The STA system models the short-term adaptation and for-
ward masking effects that take place in the cochlear response
[22], [49]. The model describes two separate mechanisms that
influence the concentration of neurotransmitters. A membrane
allows the flow of a supply from a source region at a rate propor-
tional to the concentration gradient across the membrane, with a
proportionality constant of . When the concentration gradient
is negative (i.e., the concentration in the supply region is too
small), the channels in the membrane close and the neurotrans-
mitters are lost by natural decay at a rate that is proportional to
its concentration within the region, with a proportionality con-
stant of . This is shown mathematically as follows [44]:

(2)

Fig. 2. Frequency (amplitude) responses of the filter bank.

Fig. 3. Short-term adaptation and forward-masking modeling. Responses of a
probe tone presented alone (in the top curve) and with a preceding masker of
various durations and amplitudes.

where is the concentration of neurotransmitters within the
region, and is the concentration in the source region (i.e.,
the input). The output of the system is represented by the flow
rate across the membrane: . The constants
and are 8.3 s and 58.3 s , respectively. The discrete-time
realization is achieved by approximating by a first differ-
ence in time and normalizing with respect to the sampling fre-
quency. The response of this block is shown in Fig. 3.

This module is included in the mean-rate response only since
it was found that, biologically, the synchrony response is only
marginally affected by such effects [14], [41], [42], [53]. On
the other hand, from a practical viewpoint, including such an
effect in the synchrony response strongly obliterates the for-
mant structure for long steady sounds (like vowels). Short-term
adaptation was found to improve the immunity of the system
to noise [39]. By enhancing the changes it helps attenuate sta-
tionary noise. This is obvious in its high-pass filter effect that
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eliminates any stationary source of distortion. This principle
is used in the RASTA processing and shown to improve the
robustness of the system [24], [25]. Moreover, the adaptation
and masking effects help significantly in marking and empha-
sizing the boundaries between different speech segments. This
proved to be useful in the segmentation of speech into acousti-
cally-compatible segments [7].

The AGC is used for dynamic range compression, to accom-
modate inputs with various amplitudes. using the relation [44]

(3)

where is a constant, and represents the “expected value
of” obtained by passing through a low-pass filter with a
time constant of about 3 ms.

The envelope detector is a simple low-pass filter with a cutoff
frequency of 50 Hz. On the other hand, the low pass filter in
the synchrony path is used to model the synchrony suppres-
sion that occurs at high frequencies due to the neural latencies
and response jitters. This attenuates the phase-locking capability
above 4 kHz.

The synchrony detector is used to detect the temporal
phase-locking characteristics of the response. Examples of syn-
chrony detectors are the lateral inhibitory network (LIN) and the
GSD.

The LIN approach has different forms and has been used
by several researchers [15], [16], [46], [47]. It is based on in-
hibiting each filters output by one or more of the neighboring
filters. This helps enhance the spectral peaks and improves the
frequency resolution. This could be as simple as subtracting the
neighboring filter output, or it could be more involved like using
a feedforward or feedback inhibitory network. The approach
used in this work is using a feedforward lateral inhibitory net-
work similar to that used by Shamma and described in [47].
The output of each unit is computed by subtracting a weighted
sum of its neighbors, followed by a threshold operation and
a time-window average. In this way, the peaks (formants) are
enhanced by detecting the filters that have strong phase differ-
ences with their neighbors. This is a simple, fast and effective
approach for detecting the synchrony and producing a robust
formant representation. It is interesting to know that the order of
operations did not cause any noticeable difference in the output.
Thus performing the lateral inhibition on the AGC output fol-
lowed by the averaging (filtering) gave nearly the same results
as averaging before the lateral inhibition.

The GSD is designed by Seneff [45] to enhance the promi-
nent peaks at the formant resonances, improve the spectral res-
olution, reduce features of the spectrograms associated with the
glottal excitation, and normalize for amplitude. It detects the
periodicity in the temporal response (instead of the envelope
mean-rate) by computing an auto-correlation-like output. It gen-
erates a soft-limited ratio of the expected (averaged) magnitude
value of the sum and difference of the output of each filter and a
delayed version of it, as shown in Fig. 4. The delay of each GSD
must match its corresponding filters center frequency (i.e., the

Fig. 4. GSD block diagram.

delay is equal to the inverse of the center frequency). This op-
eration is expressed as follows:

(4)

where is the input to the GSD (output from the AGC stage)
at time sample , is the synchrony output of theth
channel [i.e., tuned to theth filter by setting , where

is the th filter center frequency (CF) and is the sampling
frequency], represents envelope detection, and, , and
are constants.

The sum and difference waveforms are constructed from the
output of the AGC stage, full-wave rectified and low-pass fil-
tered to obtain the envelope response in (4). The constant
is set to a value slightly less than 1.0 in order to position the
zero of the denominator slightly inside the unit circle and hence
reduce the sharpness of the nulls at multiples of. This was
found to be useful for low-frequency filters in order to decrease
the preciseness of the tuning [45]. A small thresholdis sub-
tracted from the numerator in order to suppress the response to
small amplitude signals. Its value is chosen to be slightly larger
than the spontaneous rate. The saturating nonlinearity is used to
soft-limit the output and prevent infinite responses. At small am-
plitudes, the response is nearly linear and then saturates for large
input amplitudes. The linear range of the input is controlled by
the value of .

As shown in Figs. 1 and 4, the GSDs are used to compute the
synchrony from the AGC outputs. Each AGC output is applied
to a GSD tuned to the center frequency of the corresponding
auditory filter. Thus if there is a prominent peak in the signal
at a particular frequency,, it will show up as periodicity in
the AGC waveforms. The channel whose CF is closest towill
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detect the correct periodicity by generating a response that is
significantly larger than its neighbors.

The GSD has many advantages over other systems. First, be-
cause it measures periodicity rather than frequency, it avoids
the problem of detecting synchrony to the second harmonic of a
strong peak. It could, however, detect synchrony at half the fre-
quency especially if the high-frequency slopes of the filters are
not very steep. Detecting periodicity also makes it more immune
to noise. Moreover, taking the ratio between the sum and differ-
ence waveforms performs an energy-normalization that reduces
the temporal fluctuations in the response due to the envelope of
the glottal excitation [45].

Nevertheless, the GSD response contains significant spurious
peaks that are due to individual harmonics of the fundamental
frequency (F0), noise, and other artifacts, especially for female
speakers below the first formant region (F1). This was described
by Seneff [45] as a major problem that limits the effectiveness
of the GSD in ASR applications. Moreover, it requires accurate
matching between the filters CF and the GSD delay time (tuning
frequency). This matching may need to be as tight as 0.1% for
the low-frequency filters [45]. Such requirement is not easily
achieved in practical analog VLSI implementations due to tech-
nology limitations. If not achieved, the spurious peaks increase
significantly.

A. AverageLocalized Synchrony Detector

The aforementioned limitations of the GSD are mainly due to
the sharp tuning of the GSD that is desired to improve the reso-
lution and enhance the formant peaks. The way to reduce those
problems is by increasing the filter bandwidth [45]. This could
be the input bandpass filter or the GSD filter (by decreasing

for example). The smoothing effect of such process will de-
crease the sharpness of the GSD and hence reduce the above
problems. Unfortunately, suchblind smoothing will also deteri-
orate the resolution of the GSD in a way that defeats its original
purpose. In other words, we are faced with a resolution-accu-
racy tradeoff that is increasingly manifested in the absence of
accurate matching. To get rid of spurious peaks that affect the
formant extraction accuracy, we need to smooth the spectrum
by using wider-band filters, which would deteriorate the resolu-
tion.

To alleviate this problem, we modified the GSD in order to
represent the average localized synchrony [14], [42], [53]. The
output of each ALSD is the average ofGSDs tuned to thesame
frequency but applied to several filters in the neighborhood of
the corresponding filter. The value ofis decided empirically
based on the resolution and bandwidth of the filters used. This
can be expressed as follows:

(5)

where is the ALSD output of theth channel (filter);
is the output of the GSD which is tuned to theth filter;

is the output of the th filter (after the AGC stage);
is the output of theth GSD (i.e., the GSD tuned to theth filter)
when applied to theth filter. The constants and add up

Fig. 5. ALSD block diagram.

to . (i.e., ). We chose to be equal to 3, with one
filter on each side of the center filter (i.e., and

ranges from to ). The ALSD block diagram and
connection are shown in Fig. 5.

We need to emphasize that the operation described in (5) is
not equivalent to simply averaging the inputs of neighboring fil-
ters and applying them to the same GSD. It is also different from
averaging the outputs of neighboring GSDs. The nonlinearity of
the GSD and its tuning characteristics make the ALSD output
substantially different from those two averaging operations as
will be shown later.

The ALSD provides an extra degree of freedom that enables
us to achieveselectivesmoothing while preserving the resolu-
tion and formant structure. It also decreases the system response
to individual harmonics (compared to formants). It is interesting
to have a close look and investigate why it has such a selec-
tive-smoothing effect. The following remarks can be readily ob-
served.

1) Formants extend to neighboring filters while spurious
peaks and individual harmonics usually do not. This
enhances the response of the ALSD to formants, relative
to nonformants or using wider filters, while preserving
the resolution.

2) Smoothing performed by widening the filters will in-
evitably deteriorate the filter’s resolution. This is not
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necessarily the case with the ALSD since the original
sharp filters are still preserved.

3) Wider filters cause loss (or reduction) in the synchrony
due to the decrease in the signal’s periodicity. This causes
significant deterioration in the output and hence weakens
the response. On the other hand, the ALSD preserves the
sharp filters. Strong periodicity will cause a strong re-
sponse from the central GSD that is tuned to the corre-
sponding filter. Such strong response, (though averaged
with weaker responses from GSDs tuned to the same filter
but applied to neighboring filters), will lead to a strong
overall response due to the nonlinearity of the divider.

This last point needs more elaboration. The reason the ALSD
gives better performance than using wider filters is because the
GSD is a nonlinear processor that is based on taking the inverse
of a certain measure of periodicity. Using wider filters is equiv-
alent to an averaging process of neighboring filters which is fol-
lowed by taking the inverse. On the other hand, the ALSD op-
eration is equivalent to averagingafter taking the inverse. The
interesting properties of the ALSD could be illustrated by inves-
tigating the relationship between the mean of the inverses (call
it ) and the inverse of the means (call it ).

Equation (4) shows that the difference term in the denomi-
nator is the main periodicity-indicator, while the sum term in
the numerator is mainly for normalization. We will denote the
difference term as . The more periodicity the signal exhibits,
the smaller will be. If we ignore the limiter, we can represent
the relationship between the outputand the difference term
by an inverse relationship, i.e., , where is nonnega-
tive. This relationship is shown in Fig. 6. It is clear that strongly
periodic signals have very small values ofcompared to aperi-
odic signals. At , the signal is perfectly periodic and the
output is infinite (before being limited by the saturating nonlin-
earity).

In Fig. 6, assume that we have two inputsand to the
sameGSD with corresponding outputs and . Averaging the
input filters’ outputs is equivalent to averaging the periodic-in-
dicators (difference terms). The mean ofand is whose
output is . It can be easily proved that the mean ofand
lies at the midpoint of the straight line connecting the two points
as shown in the figure. Therefore, it is clear that the mean of the
outputs, , is larger than the output of the mean . This
could be represented as follows:

(6)

(7)

(8)

(9)

This argument can be extended for averaging more than two
terms. If we have three inputs , and with the corre-
sponding outputs , and . Then

(10)

Fig. 6. Illustration of the inverse-mean relation.

Using mathematical induction, we can prove that forinputs
, whose corresponding outputs are:

, we have

(11)

Equation (11) shows that the mean of the inverses is always
greater than (or equal to) the inverse of the means. Therefore,
the ALSD output is greater than the output of the same GSD
tuned to a wider filter. It is important to note that this argument
is not valid for the mean of the outputs from GSDs tuned todif-
ferentfrequencies. Moreover, careful examination of (11) leads
to interesting conclusions regarding the difference.

• The difference is inversely proportional to
. Thus, the response enhancement (relative to

smoothing using wider filters) is stronger for smalls
which indicate higher periodicity (peaks). This indicates
that the ALSD enhances peaks more than flat regions or
valleys. It also enhances formants (which tend to extend
to neighboring filters causing the neighborings to be
small) more than spurious peaks.

• The difference is directly proportional to the differ-
ences between thes and inversely proportional to their
product. Thus increases with dissimilars. This indi-
cates that the ALSD works better with sharp filters and
strong peaks. This is an intuitive result that agrees with
our experiments. It indicates that when using sharp filters,
the ALSD will smooth the response while preserving the
peaks by enhancing them relative to other regions, there-
fore preserving resolution.

• The difference is inversely proportional to the number
of averaged inputs. This clearly indicates that using too
many filters in the averaging process is not desirable since
it destroys the ALSD advantage and hence deteriorates the
resolution. It emphasizes the importance oflocalizingthe
averaging process in order to preserve the “place” infor-
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Fig. 7. System response for three noisy sinusoidal signals with frequencies 500 Hz, 1000 Hz, and 3000 Hz and SNR= 0 dB. (a) GSD, (b) ALSD, (c) LIN,
(d) mean-rate, (e) GSD with averaged inputs (wider filters), and (f) GSD with averaged outputs.

mation. A similar effect was found in the human auditory
system [41].

These comments lead to the conclusion that the ALSD has the
ability to smooth the response and hence decrease the spurious
peaks and the sensitivity of the system to mismatches. Never-
theless, it still relatively preserves the resolution by enhancing
the true formants relative to spurious peaks, flat regions and
valleys. Therefore, its operation is a combination of averaging
(smoothing) and lateral-inhibition (sharpening) simultaneously.
Whereby, it selectively smooths out the undesired peaks (spu-
rious peaks and harmonics) while sharpening the desired peaks
(formants).

It is also clear how the ALSD provides an additional degree
of freedom. Choosing the number of channelsto include in
the averaging depends on the resolution and sharpness of the

filters. When we have a large number of sharply tuned filters
(i.e., high resolution), we can use larger value ofthan with a
smaller number of loosely tuned filters since in the former case
we would have large differences between, and small products
of, the s. The ALSD would not be needed in the latter case
anyway since the response is smooth enough.

In general, the choice of does not have to be the same for
all channels. Thus different channels could average different
number of GSDs. This is especially useful for high-frequency
channels that tend to be wider in band, less affected by har-
monics and less sensitive to mismatches than low-frequency
channels. In some cases, smoothing for such channels may not
be needed at all. The choice ofis therefore decided by ex-
perimentation according to the resolution, accuracy, and weight
required for each channel.
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Fig. 8. System response for three sinusoidal signals with frequencies 500 Hz, 700 Hz, and 900 Hz. (a) GSD, (b) ALSD, (c) LIN, (d) mean-rate, (e) GSD with
averaged inputs (wider filters), and (f) GSD with averaged outputs.

III. PERFORMANCEEVALUATION

A. Formant Representation

The spectral responses of the various auditory-based systems
discussed previously to sine waves and speech are shown in
Figs. 7–12. Each response represents a snapshot of the spectrum
in the middle of the sound. Each figure shows the responses of six
different systems. The first four parts, (a)–(d), in each figure are
the GSD (generalized synchrony detector, developed by Seneff
[44]), ALSD (average localized synchrony detector, developed
by the authors [3], [7]), LIN (lateral inhibitory network, devel-
oped by Shamma [47]), and the mean-rate [7], [44], respectively.
Part (e)showstheGSDresponseusingwider filters(i.e.,averaged
inputs) and part (f) shows the GSD response when the outputs
from neighboring GSDs are averaged (i.e., averaged outputs).

Fig. 7 shows the responses for three sine waves at 500 Hz,
1000 Hz, and 3000 Hz. All systems gave strong peaks at the
three frequencies. The GSD peaks are sharper than those of
the mean-rate. It suffers, however, from strong spurious peaks.
The ALSD managed to significantly suppress the spurious peaks
while preserving the sharpness of the peaks. The LIN and the av-
eraged-input (wider-filter) GSD had significant spurious peaks
at several frequency locations. The noise added to the signals
shows the GSD and ALSD systems to yield better responses
than the mean-rate. The LIN suffers from significant spurious
peaks but the original peaks are still dominant.

Fig. 8 shows the responses to three sine waves at 500 Hz,
700 Hz, and 900 Hz. This represents a worst-case scenario, for
the ALSD, from the resolution standpoint since those sine waves
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Fig. 9. System response for three noisy sinusoidal signals with frequencies 500 Hz, 700 Hz, and 900 Hz and SNR= 0 dB. (a) GSD, (b) ALSD, (c) LIN,
(d) mean-rate, (e) GSD with averaged inputs (wider filters), and (f) GSD with averaged outputs.

are spaced about one Bark apart and hence represent the max-
imum resolution of the system. It is clear that the ALSD is still
capable of resolving the three signals (though with considerable
smoothing). On the other hand, the averaged-input (wider-filter)
and averaged-output GSDs were unable to resolve the three sig-
nals. This clearly illustrates the selective-smoothing effect of the
ALSD, that was mentioned earlier, and its ability to smooth the
response while preserving the resolution. Fig. 9 shows that the
ALSD is still able to resolve the three signals in the presence of
significant noise (SNR 0 dB).

Fig. 10 shows the responses to the back vowel /ao/ spoken by
a female speaker (from the TIMIT database). The GSD, LIN,
and mean-rate outputs suffer from significant peaks below the
first formant (F1), which are due to the fundamental frequency
individual harmonics. Those peaks are worst for the GSD. The

ALSD, however, has significantly attenuated such harmonics.
It is instructive to compare the performance of the ALSD
with that of the averaged-input (wider-filter) and averaged-
output GSDs. Though the three systems have smoothed the
response, the selective smoothing of the ALSD could be easily
contrasted with the blind smoothing of the other two systems.
The ALSD attenuated the spurious peaks while preserving F1
almost unaffected. On the other hand, the wider-filter GSD
attenuated F1, while strongly enhancing one of the harmonics.
The averaged-output GSD was not able to remove one of the
harmonics and it affected the F1 peak by shifting it from its
correct position.

Fig. 11 illustrates, strikingly, the benefit of the ALSD system.
The responses are for the vowel /aa/ spoken by a female speaker.
This is a low-back vowel that is characterized by high F1 and
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Fig. 10. System response for the vowel /ao/ spoken by a female speaker. (a) GSD, (b) ALSD, (c) LIN, (d) mean-rate, (e) GSD with averaged inputs (wider filters),
and (f) GSD with averaged outputs. In (f), F1 is shifted.

low F2. Thus it has a relatively tight requirement on the res-
olution to resolve the two close formants. It is clear that not
only was the ALSD able to resolve the formants, but it also sig-
nificantly reduced the spurious peaks that existed in the GSD,
LIN, and mean-rate outputs. Those spurious peaks were located
below F1 and between F1 and F2. They were so strong that it was
difficult to tell the real formants from the spurious peaks. The
wider-filter GSD, on the other hand, totally failed in suppressing
the harmonics or extracting the formants. The averaged-output
response was also unacceptable due to the significant peak-split-
ting at the formant positions. This was another example of the
superiority of the selective-smoothing approach of the ALSD
over traditional smoothing techniques.

Fig. 12 shows the response to the vowel /aa/ spoken by a
male speaker. Though the harmonics below F1 were less se-
vere than the female case, similar conclusions to those of the
female speakers were obvious. The ALSD was consistently ca-

pable of resolving the formants and reducing the spurious peaks
that plagued the GSD, LIN, and mean-rate. The wider-filter and
averaged-output GSDs, on the other hand, repeatedly showed
failures and errors in their responses.

It is important to note that the aforementioned figures were
shown for illustration purposes and they represent cases were
the problems of the traditional systems were evident and
strong. There are many cases in which the GSD, LIN, and
mean-rate responses were quite similar to the ALSD output.
The ALSD response, however, showed consistent ability (with
various sounds and speakers) to correctly extract the formants,
selectively smooth the response and significantly reduce the
spurious peaks.

B. Recognition Experiments

The other auditory-based systems mentioned in this work
(i.e., the mean-rate, LIN, and GSD) have been previously eval-
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Fig. 11. System response for the vowel /aa/ spoken by a female speaker. (a) GSD, (b) ALSD, (c) LIN, (d) mean-rate, (e) GSD with averaged inputs (wider filters),
and (f) GSD with averaged outputs.

uated in various ASR applications in the literature. The ALSD
front-end system was also tested and evaluated in numerous
phoneme recognition experiments by the authors [1]–[7]. In this
work, our goal is to evaluate the ALSD system’s ability to ex-
tract the formants and compare its performance with other au-
ditory-based systems.

Formant extraction has been one of the most challenging tasks
in speech processing [45], [52]. Though extremely desirable
and useful, an accurate formant tracker is something that is
yet to be built. The reason behind this is the peak-splitting and
peak-merging phenomena that often happen in the spectrum and
cause significant inconsistencies in the formant structure. Some
researchers tried to build sophisticated formant-tracking algo-
rithms to deal with this problem, while others opted to use al-
ternative approaches like using the “effective” formants in lieu
of regular formants, where “effective” usually refers to a simpler
and more consistent version of the formants [11], [27], [40].

The ALSD was tested in some ASR experiments that aim
at evaluating its formant extraction and representation ability
for both clean and noisy speech. The outputs tested were the
traditional Mel-scaled cepstral analysis [8], [30], the mean-rate,
the LIN, the GSD, and the ALSD. They were evaluated in
a vowel classification experiment that classifies four vowels:
/aa/, /uw/, /ae/, and /iy/. The vowels were extracted from
different contexts of continuous speech of multiple speakers
with seven different dialects of American English from the
TIMIT database. The vowels are chosen to represent the four
extremes of the vowel chart and the four main tongue positions.
Therefore, they could be classified using the first two formants.
The experiments are performed on clean speech and on speech
distorted by white Gaussian noise with different signal-to-noise
ratios.

The first two formants are extracted using a relatively simple
formant tracking algorithm. The algorithm picks the peaks that
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Fig. 12. System response for the vowel /aa/ spoken by a male speaker. (a) GSD, (b) ALSD, (c) LIN, (d) mean-rate, (e) GSD with averaged inputs (wider filters),
and (f) GSD with averaged outputs.

satisfy certain constraints in location, amplitude and continuity.
The four vowels are classified using two threshold values (for
the two formants) that divide the two-dimensional space into
four regions using a Bayesian classification maximum pos-
terior probability criterion. The system is trained using 120
tokens from six speakers (three males and three females) and
tested on 30 different speakers with more than 1000 of the
aforementioned vowels. Three measurements are taken in the
middle third of each vowel and a majority rule is used for the
decision.

The choice of this classification method is motivated by the
purpose of the experiments. Since we are interested in evalu-
ating the systems’ abilities to accurately extract the formants in

the presence of noise, it is necessary to ensure that the classifica-
tion decision is based on the formant positions and not any other
spectral artifacts. Moreover, we need to evaluate the ability of
the system to reduce spurious peaks and hence enable us to use
a relatively simple formant tracking algorithm.

The results of the experiments are summarized in Fig. 13. The
mean-rate and traditional cepstral analysis give almost identical
results. For clean speech, we see that the ALSD gives the best
performance, followed by the cepstral/mean-rate, the LIN, and,
finally, the GSD. The relatively bad performance of the LIN
and the GSD is attributed to the presence of spurious peaks that
cause errors in formant extraction. The ALSD smooths the re-
sponse, while preserving the formants, and hence improves the
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Fig. 13. Classification accuracy, in the presence of different levels of white Gaussian noise, for the different front-end processing systems in vowel recognition
experiment on 30 speakers with seven different dialects of American English from the TIMIT database. The ALSD gives the best performance. The mean-rate and
traditional outputs deteriorate more sharply with noise than the synchrony measures.

Fig. 14. Comparison between the ALSD, GSD, and mean-rate in different
phoneme recognition experiments.

performance. When noise is added to the system, the perfor-
mance deteriorates. The deterioration is worst for the mean-rate,
which falls sharply. This is in agreement with previous findings
which demonstrated that synchrony measures are usually more
robust than mean-rate. We can also see that the deterioration of
the ALSD response with noise is almost identical to that of the
GSD, which indicates that the ALSD preserved the robustness
of the GSD while improving the performance by decreasing the
spurious and individual harmonic peaks.

Other large-scale phoneme recognition experiments in
continuous speech have verified the usefulness of the ALSD
[4]–[7]. Those include fricative, stop, and vowel recognition
experiments on speaker-independent continuous speech from
the TIMIT database. Statistically guided knowledge-based
algorithms were used for the various recognition tasks. The

results are summarized in the chart shown in Fig. 14. In the
place of articulation detection of stop consonants, the ALSD
showed a consistent improvement of 3% with respect to the
GSD in clean and noisy speech [4], [7]. This is due to the partial
reliance of such detection on the formant of the neighboring
vowels [5], [7]. These included all classes of vowels spoken by
different speakers in various contexts from the TIMIT database.
Moreover, a comparison of the ALSD with the mean-rate and
traditional cepstral analysis showed a consistent improvement
of 5% and 6% in the stop and fricative place of articulation
detection respectively.

IV. CONCLUSION

A new auditory-based speech processing system, namely the
ALSD, is developed to alleviate some of the limitations of the
GSD, such as the presence of spurious peaks, sensitivity to im-
plementation mismatches and response to individual harmonics.
The system is compared with several other systems in their for-
mant extraction ability from clean and noisy speech. The other
systems are the traditional cepstral analysis, the Bark-scaled
mean-rate detector, the LIN detector, and the GSD.

The results demonstrate the advantage of the ALSD in ex-
tracting the formants and reducing the spurious peaks. They also
indicate the superiority of the synchrony measures, in the pres-
ence of noise, compared to the mean-rate and traditional sys-
tems. In spite of their superb formant extraction ability, the LIN
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and GSD systems are plagued by significant spurious peaks,
which complicate the formant-tracking task. The ALSD signifi-
cantly reduces such spurious peaks by selectively smoothing the
output response while preserving the formants and resolution
of the system. It simplifies and improves the formant extraction
and is more suitable for analog hardware implementation.
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