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Abstract

Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of
Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting
accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter
sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML
approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD
(MMSE 20.665.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used
the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter
density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naı̈ve Bayes (NB)
classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set
(pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set
(scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD.
Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from
scanners using principal component analysis did not significantly change the classification results for both classifiers. For the
scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction,
classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings
support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple
scanners, even if a new data set comes from a scanner that was not part of the training sample.
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Introduction

The newly established diagnostic criteria for Alzheimer’s disease

(AD) have stressed the detection of biological markers of disease

for early diagnosis, even before the onset of dementia [1,2].

Among those biomarkers are MRI derived measures of regional

brain atrophy. A promising new imaging marker of AD are

measures of structural disconnection using diffusion tensor

imaging (DTI), consistent with the pathogenetically early involve-

ment of axonal structures in AD [3]. DTI allows the reconstruc-

tion of the main directions of diffusion [4]. From DTI we can

derive scalar indices of anisotropic diffusion, the most widely used

being the fractional anisotropy (FA) and mean diffusivity (MD) as

measures of microstructural white matter (WM) integrity. Reduced
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FA or increased MD indicate impaired WM fiber tract integrity

[5,6]. Previous studies have found a significant decline of fiber

tract integrity in posterior cingulate, corpus callosum, temporal

lobe and parietal lobe WM in AD [7,8,9,10,11,12,13,14,15,16,17].

In addition, multivariate voxel-based approaches to detect changes

in structural connectivity within the whole WM showed a decline

of structural network connectivity in AD dementia and even

prodromal AD [17,18,19,20]. These results agree with the notion

that changes in microstructural integrity of fiber tracts subserving

structural connectivity would precede the decline of neuronal

density in gray matter areas such as the hippocampus [21].

Establishing DTI as an imaging marker of AD requires studying

its diagnostic performance in large samples across multiple sites.

Only few studies have investigated multicenter variability of DTI

derived measures of fiber tract integrity [22,23]. A recent study has

shown that multicenter variability is about 50% higher in DTI

derived FA measures compared to classical MRI volumetric

measures of GM [24]. The question is unresolved to what extent

the multicenter variability compromises the clinical utility of DTI

for the detection of AD dementia.

Machine learning (ML) approaches are particularly sensitive to

distributed disease-specific changes observed in many human

structural and functional imaging studies [18,25,26,27]. They are

designed to identify patterns in data that differentiate between

several classes. In the most basic approach, the univariate Naı̈ve

Bayes (NB) classifier [28], a group comparison of the intensity

values is performed for each voxel separately, and the classification

result is derived from the most likely class. Although NB relies on

the naı̈ve assumption of statistical independence of the features,

previous results, e.g. Plant et al. [27], showed that NB performs

well for the discrimination of AD patients from healthy controls

even if the assumption of statistical independence of different

features is violated. More advanced, multivariate approaches rely

on aggregations of features for class separation. The Support

Vector Machine (SVM) classifier [29,30] has been successfully

applied in several AD imaging studies, e.g. Klöppel et al. [31],

Cuinget et al. [32], Abdulkadir et al. [33], Plant et al. [27] and

Graña et al. [19], showing highly accurate results. For applications

in future diagnostic expert systems ML algorithms must be robust

and stable to work with data recorded across different scanners.

The potential diagnostic accuracy of ML algorithms with DTI

data gathered across different scanners, with different field

strengths and different acquisition schemes, has not yet been

investigated.

Within the European DTI Study on Dementia (EDSD) we have

collected data of more than 330 subjects from ten scanners located

at nine sites. Based on this data set, we aimed to assess the

accuracy of ML classifiers for the automated detection of AD. We

compared the diagnostic accuracy between the univariate NB

classifier as baseline and the multivariate SVM. We used two

complementary cross-validation approaches: first, we draw the test

and training sets from the entire sample, second, we used the data

from each single scanner as test set after learning with the data

from the other scanners to validate the generalizability of our

approach. We compared classification accuracies of NB and SVM

before and after principal component analysis (PCA) and mean

correction of the scans to reduce between scanner variability. We

expected that the SVM ML algorithm would be robust against

scanner effects and more accurate than the massive univariate NB

classification approach, and that removal of scanner variance

would be more relevant in the scanner-based validation than the

pooled data validation approach. The findings of our study will be

informative for the development of radiological expert systems

geared towards the early detection of AD related neuronal

disconnection.

Materials and Methods

Data Acquisition
The data were retrospectively identified from the European

DTI Study on Dementia (EDSD), a newly established framework

of nine European centers: Amsterdam (Netherlands), Brescia

(Italy), Dublin (Ireland), Frankfurt (Germany), Freiburg (Ger-

many), Milano (Italy), Mainz (Germany), Munich (Germany), and

Rostock (Germany), with one center including data from two

different MRI scanners.

At present (October 2012), the data set includes 335 DTI and

335 MRI scans from patients with AD and healthy elderly

subjects. Written informed consent was provided by all subjects or

their representatives. The study was approved by local ethics

committees at each of the participating centers, i.e. (i) the ethics

committee of the medical faculty of the Ludwig-Maximilian-

University, Munich, (ii) the ethics committee of the IRCCS San

Giovanni di Dio FBF, Brescia, (iii) the Faculty Research Ethics

Committee, Faculty of Health Sciences, Trinity College Dublin,

(iv) the ethics committee at the Landesärztekammer Rheinland-

Pfalz, Mainz, (v) the ethics committee of San Raffaele Hospital,

Milan, (vi) the ethics committee of the faculty of medicine of the

Goethe University, Frankfurt, (vii) the ethics committee of the

University Medical Center, Freiburg, and (viii) the ethics

committee of the medical faculty of the University of Rostock.

Due to susceptibility artifacts in the DTI data, all data from one

center (N= 38) had to be excluded from further analysis.

Additionally, 13 of 26 DTI scans, 2 of 35 DTI scans and 1 of

30 DTI scans from three other centers were excluded due to

prominent artifacts in the data which were either caused by

folding, high-frequency inferences, an incorrectly set inversion

time or heavy movement artifacts. Another DTI scan had to be

excluded due to imperfect normalization of the DTI data during

preprocessing.

After preprocessing 280 DTI and MRI scans were retained for

the analysis derived from eight centers representing nine MRI

scanners. The data were derived from 137 patients with clinically

probable AD according to NINCDS-ADRCA criteria [34] and

143 healthy elderly control subjects. All participants were free of

any significant neurological, psychiatric or medical condition

(except for AD in patients), in particular cerebrovascular apoplexy,

vascular dementia, depression, subclinical hypothyroidism as well

as substance abuse. Healthy controls were required to have no

cognitive complaints and scored within one standard deviation of

Table 1. Demographic data and MMSE of the subjects.

AD controls

No. of subjects (women)1 137 (79) 143 (72)

Age (SD) in years2 72.5 (8.3) 69.2 (5.9)

MMSE (SD)3 20.6 (5.3) 28.8 (1.1)

Years of education (SD)4 10.2 (3.3) 13.1 (3.8)

1not significantly different between groups, x2 (1) = 1.5, p= 0.22.
2significantly different between groups, t (278) = 3.92, p,0.001.
3significantly different between groups, Mann-Whitney U= 263, p,0.001.
4significantly different between groups, t (271) =26.7, p,0.001.
Abbreviations: SD, standard deviation; MMSE, mini-mental state examination;
AD, Alzheimer’s disease.
doi:10.1371/journal.pone.0064925.t001
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the age and education adjusted norm in all subtests of the

Consortium to Establish a Registry of Alzheimer’s Disease

(CERAD) cognitive battery [35]. Patients were significantly older

and had less years of education than the controls (Table 1). Gender

was not different between groups (Table 1). As expected, MMSE

scores [36] were significantly lower in AD patients compared to

controls, with the patients ranging in the mild to moderate stages

of dementia [36]. The number of subjects per scanner ranged

between 13 and 46 with a median of 29 (Table 2).

Data Preprocessing
Preprocessing of DTI data was performed using the diffusion

toolbox of FSL (Version 4.1, FMRIB, Oxford, UK, http://www.

fmrib.ox.ac.uk/fsl/) [37]. Preprocessing included corrections for

eddy currents and head motion, skull stripping with the Brain

Extraction Tool and fitting of diffusion tensors to the data with

DTIfit. Deformation-based analysis of MPRAGE data and of the

FA and MD maps was performed using SPM8 (Wellcome Trust

Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.

ac.uk/spm/) implemented in Matlab 7 (Mathworks, Natwick).

The images in native space were manually aligned to set the

anterior commissure as the origin of coordinate system and then

FA and MD maps were affinely aligned to the corresponding

MPRAGE scans.

For spatial normalization, the VBM8 toolbox (Version 414,

http://dbm.neuro.uni-jena.de/vbm8/) [38] implemented in

SPM8 was used to create a customized DARTEL template. To

include an equally large sample from every scanner, we created

the template out of N= 54 images, randomly selecting six scans

(three AD patients and three healthy controls) from each of the

nine scanners. The resulting template was used for high-

dimensional DARTEL normalization of the MPRAGE scans as

implemented in VBM8. Images were segmented into gray matter

(GM) and white matter (WM) and transformed to MNI space

applying modulation for non-linear components only. The

Deformation fields derived from this step were applied to the

spatially coregistered FA and MD maps, without modulation. To

exclude all voxels outside the WM of the FA and MD maps, we

used a binary WM mask based on the average WM image derived

from the random sample of N= 54 normalized images described

above. Additionally, we created a corresponding binary GM mask

following the same procedure. The GM and WM segments as well

as the masked FA and MD maps in MNI space were smoothed

using an 8 mm full width at half maximum (FWHM) isotropic

Gaussian kernel. After smoothing, all scans were again masked

with the WM or GM mask, respectively, to restrict the subsequent

analysis to be performed based on the voxels within the

corresponding areas, only. Without additional masking after

smoothing our subsequent analysis detected group differences in

areas outside the respective tissues, e.g. in the ventricles. These

artifacts were caused by imperfect smoothing at the segment or

tissue borders.

Classification Methods
For classification, the four modalities gray matter density

(GMD), white matter density (WMD), WM FA and WM MD

were processed separately. For learning and classification we used

the approach suggested in Plant et al. [27] and the WEKA

machine learning toolkit (Version 3.6.6, http://www.cs.waikato.

ac.nz/ml/weka/) [39]. The learning and classification process is

illustrated in Figure 1 and involves three main steps: (i) feature

selection, (ii) learning and classification, and (iii) evaluation. In

order to estimate the performance of our methods objectively we

used two cross-validation approaches: first, we pooled all data and

divided them into a training set and a test set using the tenfold

cross-validation technique (pooled cross-validation). All scans from

the 280 subjects were randomized and stratified with respect to the

diagnosis into ten folds using WEKA. For each iteration one fold

was used as test data to evaluate the prediction accuracy and the

remaining folds were used as training data. We repeated the

tenfold cross-validation ten times for a more general performance

estimation of the classifier. Second, we used the data from each

single scanner as test set and the data from the remaining scanners

as training set (scanner-specific cross-validation). This allowed us

to evaluate the generalizability of our methods by simulating that

they were applied to data from a new scanner.

Feature Selection
The scans originally contained more than two million voxels.

After image segmentation and masking, WM and GM tissue maps

included 236,389 and 254,799 voxels, respectively. To reduce the

computation time and memory space needed for data processing,

and to improve the ML algorithm performance, the number of

features (i.e. voxels) was further reduced: Following Plant’s

approach [27], features that did not contribute any information

to the separation of the data were excluded using the entropy-

based information gain (IG) criterion [40,41]. The IG is an

information theoretic value describing how much a feature, in our

Table 2. Scan parameters for DTI and number of subjects per scanner.

Center Scanner Tesla TR TE gradients b-values

voxel size

[mm] Gap [%] iPAT averages

number of

subjects (AD)

I Allegra 3.0 5000 118 30 0; 1000 26266 20 2 1 33 (17)

II Achieva 3.0 12396 52 15 0; 800 26262 0 2 2 29 (9)

III Trio 3.0 146 100 60 0; 1000 26262 0 2 1 24 (16)

IV Trio 3.0 11800 94 61 0; 1000 26262 0 2 1 13 (4)

V Sonata 1.5 8000 105 6 0; 1000 26263 0 2 1 31 (18)

VI Avanto 1.5 6500 95 12 0; 1000 26262.5 0 2 3 29 (15)

VII Trio 3.0 9300 102 12 0; 1000 26262 0 2 4 46 (26)

VIII Avanto 1.5 5100 85 30 0; 1000 26262.4 20 2 3 40 (15)

IX Verio 3.0 8200 93 20 0; 1000 26262 0 2 3 35 (20)

Abbreviations: TR, repetition time; TE, echo time; iPAT, integrated parallel imaging techniques; AD, Alzheimer’s disease.
doi:10.1371/journal.pone.0064925.t002
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Figure 1. Flow chart of the ML analysis.
doi:10.1371/journal.pone.0064925.g001
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case a certain voxel, contributes to the separation of the data. We

decided to use the IG, because it has successfully been employed in

a previous study on structural MRI [27], allowing for comparison

of performance with the previous data set.

Notations. Given are a discrete set of classes, i.e. the

diagnosis, C= {AD, HC} and a data set DS consisting of MRI

scans of n subjects s1, …, sn labeled with a class. For each subject

we have an MR image that is represented by a feature vector

composed of d voxels v1, …, vd. We refer to the class label of subject

si by si.c.

Entropy of the class distribution. The entropy of the class

distribution H(C) is defined as H(C)~{
P

ci[C
p(ci)log2p(ci),

where p(ci) denotes the probability of class ci, i.e.

p(ci)~Ds[DSDs:c~ci D=n. H(C) corresponds to the required amount

of bits needed to identify the class of an unknown subject and

scales between zero and one. In case of two classes and if the

number of subjects per class is equal for both classes, H(C) = 1. In

case of unbalanced class sizes the entropy of the class distribution is

smaller than one and approaches zero if there are much more

instances of one class than of the other class.

Information gain of a voxel. The information gain

IG(vi) =H(C)–H(C|vi) of a voxel vi describes the difference of the

entropy of the class distribution H(C) and the additional amount of

information provided by vi on the class, which is noted as the

conditional entropy H(C|vi). In case of two classes the information

gain scales between zero and one. A value of zero means that the

feature does not contribute any information to the differentiation

of the data. In contrast, a value of one indicates that the class labels

of all subjects can be derived from the corresponding voxel without

any errors. To compute the conditional entropy, features with

continuous values need to be discretized using the algorithm of

Fayyad and Irani [42]. This method divides the attribute range

into class pure intervals using a criterion based on the minimum

description length principle to determine the optimal number and

location of the cut points (for a more extensive description of this

algorithm see Section 7.2 in Witten and Frank [39]).

After computing the IG for each voxel of the training scans a

density-based clustering algorithm [27,43] was applied to remove

noise and to only retain groups of more than seven contiguous

voxels. The value of seven is derived from a voxel – which can be

seen as a cube – and its six direct neighbors. The resulting clusters

define the area of interest which was used to mask both, the

training data and the test data.

Learning and Classification
For classification we used two different types of classifiers: (i) a

multivariate Support Vector Machine (SVM) [29,30] with a radial

basis function (RBF) kernel and (ii) a univariate Naı̈ve Bayes (NB)

classifier [28] as baseline. SVM performed highly accurately in

former studies, e.g. in Klöppel et al. [31], Plant et al. [27], Cuinget

et al. [32], and Graña et al. [19]. In contrast, NB is simple and

efficient but relies on the naı̈ve assumption of statistical

independence of the features. Under this assumption this

algorithm is statistically optimal regarding the minimal error rate.

Preceding results, e.g. Plant et al. [27], showed that NB performs

well for the detection of AD vs. HC even if this assumption of

statistical independence of different features is not correct.

For the SVM we needed to define two parameters including the

complexity or cost constant C and the radial basis function kernel

width (c.0). The parameter .0 determines the trade-off between

margin maximization and training error minimization for the soft

margin SVM. To estimate suitable values for C and c we used a

grid search in the range of C= 223, 222, …, 28 and c= 2214, 2213,

…, 221 which we performed for each modality separately. Using

the same parameter space for each modality is appropriate as the

range of every input feature was rescaled to be between zero and

one before applying the SVM algorithm. Due to high computa-

tional costs of SVM parameter estimation we used a two-step

Table 3. SVM classification results for the original and PCA variance reduced data (pooled cross-validation).

Modality Accuracy [%] Sensitivity [%] Specificity [%]

No. of features [103

voxels]

Reduced

variance

FA original 80.3 [66.0, 94.7] 78.8 [57.1, 96.6] 81.9 [64.3, 100.0] 26 (11%) –

reduced |r|.0.6 81.8 [71.4, 100.0] 78.0 [57.1, 100.0] 85.5 [65.4, 100.0] 23 (10%) 29%

reduced |r|.0.5 79.9 [66.0, 89.5] 74.5 [53.4, 96.6] 85.1[64.3, 100.0] 22 (9%) 46%

reduced |r|.0.4 78.3 [62.5, 89.3] 74.4 [50.0, 100.0] 82.0 [57.1, 100.0] 21 (9%) 58%

MD original 83.3 [69.1, 96.4] 79.6 [57.1, 100.0] 86.9 [71.4, 100.0] 128 (54%) –

reduced |r|.0.6 83.4 [70.1, 94.7] 75.9 [55.4, 92.9] 90.7 [71.4, 100.0] 67 (28%) 31%

reduced |r|.0.5 82.9 [71.4, 93.0] 74.8 [57.1, 92.9] 90.6 [75.8, 100.0] 49 (21%) 56%

reduced |r|.0.4 82.2 [67.9, 94.7] 74.2 [51.8, 92.9] 89.8 [66.7, 100.0] 43 (18%) 63%

WMD original 82.7 [67.9, 96.4] 77.9 [55.4, 92.9] 87.4 [71.4, 100.0] 41 (17%) –

reduced |r|.0.6 – – – – –

reduced |r|.0.5 81.1 [66.0, 93.0] 74.2 [50.0, 92.9] 87.8 [65.4, 100.0] 60 (25%) 23%

reduced |r|.0.4 79.1 [64.3, 92.9] 72.8 [51.8, 92.9] 85.2 [64.3, 100.0] 53 (22%) 45%

GMD original 89.3 [78.6, 100.0] 87.4 [69.2, 100.0] 91.2 [72.3, 100.0] 182 (71%) –

reduced |r|.0.6 – – – – –

reduced |r|.0.5 – – – – –

reduced |r|.0.4 74.6 [57.1, 89.3] 66.3 [40.5, 85.7] 82.7 [64.3, 100.0] 20 (8%) 32%

For each modality the average number of informative voxels is provided and in parentheses the proportion compared to the respective tissue masks is presented. In the
last column the removed variance proportion is given.
Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; WMD, white matter density; GMD, gray matter density.
doi:10.1371/journal.pone.0064925.t003
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approach: First, we computed the accuracy of the SVM classifier

for the whole range of parameters with only two arbitrarily

selected folds. Then, we selected a smaller area for the parameter

range in which we repeated the parameter estimation process for

all of the other folds. For the parameter estimation we performed

an internal fourfold cross-validation for the training data. Thus,

the test data were not used for parameter selection. The

parameters which gave the best average results for all repetitions

were applied for the final classification and validation process. For

the NB classifier we assumed a Gaussian distribution of the

features for both groups (AD and HC). The distribution

parameters were estimated based on the training data using the

maximum likelihood method.

For feature selection, classifier model building, and parameter

estimation, we used the training data, only. This method ensured

that the test data was strictly separated from these steps and solely

used to evaluate the prediction of previously generated models.

Evaluation
As results we report the mean accuracy, sensitivity and

specificity. The accuracy was defined as accura-

cy= (|TP|+|TN|)/n where |TP| is the number of true positives,

|TN| is the number of true negatives and n is the total number of

subjects. Following a common convention, we defined correctly

classified patients with AD as true positives. The sensitivity and the

specificity measure the ability of a classifier to identify positive and

negative instances, i.e. sensitivity=|TP|/(|TP|+|FN|), specifici-

ty=|TN|/(|TN|+|FP|), where |FN| and |FP| are the number

of false negative and false positive instances, respectively. As it is an

open research problem to estimate the classification error we

provide the 2.5 and 97.5 percentiles of our results as 95%

confidence interval.

Visualization
To assess which voxels contributed most to the separation of the

data we performed sensitivity analysis [44,45] of the learned SVM

models. In contrast to previous studies, e.g. Cuinget et al. [32] and

Klöppel et al. [31], we could not use the weight vector of the

learned linear SVM model to visualize which voxels were used to

Table 4. Cross-validation results using the data of each scanner as fold.

Modality ML algorithm Accuracy [%] Sensitivity [%] Specificity [%]

No. of features [103

voxels]

FA original SVM 73.8 [57.8, 86.0] 73.0 [13.1, 94.0] 70.4 [19.3, 98.0] 11 (5%)

NB 69.4 [52.6, 88.6] 68.3 [19.0, 100.0] 70.5 [12.0, 100.0]

mean corrected SVM 76.2 [60.5, 91.1] 65.0 [44.3, 97.8] 86.3 [52.0, 100.0] 49 (21%)

NB 72.7 [63.8, 89.2] 66.7 [30.7, 93.8] 77.8 [62.5, 89.8]

MD original SVM 63.6 [46.6, 82.3] 72.2 [25.3, 100.0] 58.5 [20.0, 97.5] 129 (55%)

NB 68.0 [57.7, 89.0] 54.0 [26.0, 97.8] 81.4 [25.0, 100.0]

mean corrected SVM 78.3 [67.0, 94.8] 60.8 [26.7, 93.1] 92.4 [80.3, 100.0] 157 (66%)

NB 72.7 [58.1, 88.2] 63.3 [35.4, 94.0] 82.0 [33.8, 95.0]

WMD original SVM 78.8 [58.7, 91.8] 72.6 [42.0, 98.7] 85.7 [47.0, 100.0] 42 (18%)

NB 73.4 [58.8, 81.9] 67.4 [50.0, 87.6] 77.6 [57.7, 99.0]

mean corrected SVM 85.4 [71.5, 98.6] 73.8 [43.3, 97.8] 96.7 [88.6, 100.0] 55 (23%)

NB 73.0 [52.3, 83.6] 61.5 [31.3, 84.3] 84.5 [66.3, 98.8]

GMD original SVM 82.4 [71.9, 97.5] 82.2 [52.0, 100.0] 84.1 [48.0, 100.0] 180 (71%)

NB 69.9 [35.8, 91.4] 65.0 [0.8, 97.6] 78.0 [13.7, 100.0]

mean corrected SVM 91.1 [82.7, 100.0] 84.0 [67.9, 100.0] 98.3 [95.0, 100.0] 200 (78%)

NB 70.4 [61.0, 82.1] 67.1 [47.3, 91.7] 74.5 [58.2, 86.0]

For each modality the average number of informative voxels is provided and in parentheses the proportion compared to the respective tissue masks is presented.
Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; WMD, white matter density; GMD, gray matter density; ML, machine learning; SVM, Support Vector
Machine; NB, Naı̈ve Bayes.
doi:10.1371/journal.pone.0064925.t004

Table 5. NB classification results for the original and PCA
variance reduced data (pooled cross-validation).

Modality Accuracy [%] Sensitivity [%] Specificity [%]

FA original 70.4 [56.1, 84.0] 65.4 [42.9, 85.7] 75.1 [57.1, 93.3]

reduced |r|.0.6 72.2 [54.3, 86.2] 72.7 [51.8, 92.9] 71.8 [42.9, 93.3]

reduced |r|.0.5 71.1 [54.5, 85.7] 71.2 [50.0, 92.9] 71.0 [44.7, 92.9]

reduced |r|.0.4 71.3 [53.6, 85.7] 70.0 [44.4, 92.9] 72.6 [46.3, 92.9]

MD original 68.8 [53.6, 80.8] 50. 9 [28.6, 75.2] 85.9 [71.4, 100.0]

reduced |r|.0.6 71.1 [54.3, 85.7] 55.6 [32.0, 78.6] 85.9 [64.3, 100.0]

reduced |r|.0.5 68.6 [54.3, 80.8] 43.5 [16.0, 70.4] 92.7 [78.6, 100.0]

reduced |r|.0.4 68.6 [55.3, 79.0] 44.5 [21.4, 71.4] 91.7 [74.8, 100.0]

WMD original 74.7 [53.6, 89.5] 70.9 [40.5, 92.9] 78.4 [53.3, 100.0]

reduced |r|.0.6 – – –

reduced |r|.0.5 72.4[53.6, 91.2] 62.5 [35.7, 89.2] 82.0 [57.1, 100.0]

reduced |r|.0.4 68.6 [57.1, 82.1] 57.0 [30.8, 78.6] 79.7 [58.5, 100.0]

GMD original 69.9 [51.7, 84.0] 61.6 [35.7, 82.3] 78.1 [55.1, 92.9]

reduced |r|.0.6 – – –

reduced |r|.0.5 – – –

reduced |r|.0.4 66.0 [42.9, 85.7] 63.3 [40.5, 85.7] 68.6 [40.0, 92.9]

Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; WMD, white
matter density; GMD, gray matter density.
doi:10.1371/journal.pone.0064925.t005
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separate the data. This approach is only applicable for the linear

kernel SVM for which the classifier model can be simplified to a

linear combination of features, i.e. voxel intensity values [46,47].

Instead, we used a nonlinear combination of voxels (the Gaussian

radial basis function kernel) for which an approximate visualiza-

tion technique, called sensitivity analysis, is available. Sensitivity

analysis is a heuristic which assesses the relative importance of a

single voxel for classification. Thus, it provides a relative measure

of how much the value of a certain voxel influences the outcome of

the learned SVM model [44]. To calculate the sensitivity maps we

used the Matlab script of Rasmussen, which is freely available at

http://petermondrup.com/?page_id = 127.

In order to determine the most informative anatomical locations

from the sensitivity maps, we computed the mean image from all

100 maps (each run and fold). As different areas within the mean

sensitivity maps were contiguous and could not be clearly

separated from each other, we used a custom algorithm that

identified the location of the highest sensitivity values within a

predefined range of adjacent voxels. Then, the anatomical location

information was obtained with the Talairach Daemon software

available at http://www.talairach.org after MNI to Talairach

coordinate transformation using the icbm2tal script of Lancaster

et al. [48] available at http://brainmap.org/icbm2tal. Finally, we

manually verified the results by comparing them with those

reported by the FSL atlasquery tool (FSL Version 4.1, FMRIB,

Oxford, UK, http://www.fmrib.ox.ac.uk/fsl/) [37] and the

printed Talairach atlas [49].

Variance Reduction
In order to reduce the variance introduced by different scanners

and other confounding factors, for the pooled cross-validation

approach we used principal component analysis (PCA). This

method has been used for dimension reduction in previous

neuroimaging studies, e.g. in Teipel et al. [18] and Zuendorf et al.

[50]. We hypothesized that PCA will capture disease related

variance but also systematic noise, e.g. between-scanner differ-

ences, which can then be removed to improve the classification

accuracy.

We integrated variance reduction after randomizing the scans

into training sets and test sets and before selecting the features and

building the classifier model (see Figure 1). Again, for all steps we

used solely the training data to calculate the parameters and

subsequently applied the transformations to both the training data

and the test data. First, we standardized the training data using

voxel-wise z-score transformation: zi,k= (xi,k–�xxi)/si, where xi,k is the

value of voxel i in scan k, �xxi is the mean value of voxel i across all

scans and si is the standard-deviation of voxel i across all scans.

Then, we computed the eigenvalues li and eigenimages vi of the

covariance matrix XTraining XTraining
T of the training data matrix

XTraining using PCA. We projected the original images into the

component space YTraining=VTraining
T XTraining using the eigen-

images as new basis of the coordinate system VTraining= (v1, v2 …,

vn). Subsequently, we correlated the eigenimage scores contained

in the new data vectors YTraining= (y1, y2, …, yn)
T with

confounding factors, i.e. the subjects’ age, gender and duration

of education, the magnetic field strength of the scanner and the

center in which the subject was scanned, using Pearson’s

correlation. We removed the eigenimages for which the correla-

tion with the scores superseded a prespecified threshold for at least

one of the confounding factors by zeroing the corresponding

eigenimages. For instance, if the first two eigenimages are

removed, the new partial basis VTraining,partial= (v0, v0, v3, …, vn)

Figure 2. SVM sensitivity maps (upper 5% percentiles). Sensitivity maps for (A) FA, (B) MD, (C) WMD, and (D) GMD. The maps display the
relative importance of each voxel for the classification decision, with white/yellow areas being more important than red areas. Preceding SVM
classification, voxels that did not contribute any information to the group separation of AD and HC were masked out (IG criterion). The slices shown
are: 246, 238, 228, 220, 210, 22, 8, 16, 26, 34, and 44 in MNI space.
doi:10.1371/journal.pone.0064925.g002
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will contain two zero-vectors v0 instead of the first two

eigenimages v1 and v2. Finally, we projected the cleaned training

images back into the original image space XTraining,cleaned=VTrai-

ning,partial YTraining using the partial basis VTraining,partial. For the test

data we first applied the same scaling parameters as determined

previously for the z-score transformation of the training data.

Then, we also projected the test data matrix XTest into the

component space using the full basis YTest=VTraining
T XTest and

reprojected it into the original image space using the partial basis

XTest,cleaned=VTraining,partial YTest. Subsequently, we repeated the full

feature selection and classification procedure as described above.

No unique criterion exists to define if two components are

highly correlated. As a common rule of thumb Cohen [51] (p.77ff)

suggested |r|.0.5 as high correlation so that r2=0.25 of the

variance is accounted for by the explanatory variable. In contrast,

Hardy and Bryman [52] (p.27f) defined the correlation in the

range of 0.7 to 0.9 as strong, while correlations in the range of 0.4

to 0.6 were rated as being moderate. Here, we first determined a

correlation threshold from the highest occurring values of the

histogram of correlations and subsequently reduced this threshold

by steps of 0.1 to compare the results. For comparison, we

additionally computed the correlation of diagnosis with the

components.

PCA and similar variance reducing approaches need the

complete data set to estimate the optimal model parameters. In

order to evaluate the performance of the ML algorithms for the

scanner-specific cross-validation, we wanted the test data to be

excluded from the parameter estimation process and the learning

step. Under the assumption that different scanners and scan

parameters introduce independent variance, it is highly probable

that a certain bias will remain in the test dataset after applying the

variance reduction. Therefore, we calculated a mean image for

each scanner by averaging the voxel values across all healthy

subjects. The mean images were then used for voxel-wise mean

centering, that means to subtract the corresponding mean image

from every scan: x*i,k= xi,k–�xxi,s, where xi,k is the original value of

voxel i in scan k, �xxi,s is the mean value of voxel i across all scans

from healthy subjects scanned in scanner s. We did not apply a full

z-score transformation or other rescaling operation because the

low number of eight or nine healthy subjects in some centers

would have introduced an additional bias.

Results

Feature Selection
For the WMD maps and DTI data the IG values ranged

between 0 and 0.25, for the GMD maps between 0 and 0.5. We

empirically determined 0.05 as threshold from the histogram of

the IG values and clustered the IG maps with this threshold.

Figure S1 shows the clusters of informative voxels derived from the

averaged IG maps for each of the modalities. Masking with the

clustered IG maps reduced the number of voxels to around

Table 6. Anatomic areas of the twenty most informative
voxels derived from the averaged SVM sensitivity maps for FA.

Coordinates (mm)

Region Side x y z Sensitivity

Cuneus WM L 229 265 14 1.00

Precentral gyrus WM L 217 251 36 0.98

Parietal lobe WM L 2 218 23 0.98

Temporal lobe WM R 32 221 20 0.94

Parahippocampal gyrus WM R 24 223 221 0.93

Uncus WM L 235 22 227 0.92

Parietal lobe WM L 6 25 24 0.92

Uncus WM R 33 26 224 0.91

Parahippocampal gyrus WM L 238 218 214 0.90

Temporal lobe WM L 22 26 14 0.90

Fornix L 35 248 2 0.89

Postcentral gyrus WM L 217 229 27 0.88

Cingulate gyrus WM R 12 20 18 0.87

Postcentral gyrus WM L 217 211 29 0.87

Frontal lobe WM L 229 2 212 0.87

Fusiform gyrus WM L 48 250 214 0.85

Temporal lobe WM L 236 265 29 0.85

Corpus callosum R 238 235 25 0.84

Cuneus WM L 227 239 20 0.84

Insula WM R 27 245 17 0.84

These points were restricted to be at least 10.5 mm distant from each other.
The coordinates given are in MNI space. For easier interpretation, we first
applied the natural logarithm to the sensitivity values and then rescaled them
to be between zero and one.
Abbreviations: WM, white matter; L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0064925.t006

Table 7. Anatomic areas of the twenty most informative
voxels derived from the averaged SVM sensitivity maps for
MD.

Coordinates (mm)

Region Side x y z Sensitivity

Inferior frontal gyrus WM R 39 27 2 1.00

Parahippocampal gyrus WM R 20 211 229 1.00

Middle occipital gyrus WM R 24 290 18 0.98

Fusiform gyrus WM L 248 262 212 0.97

Superior parietal lobule WM L 229 262 54 0.96

Inferior temporal gyrus WM R 60 230 224 0.95

Middle occipital gyrus WM R 36 289 11 0.95

Middle frontal gyrus WM R 44 41 14 0.94

Inferior frontal gyrus WM L 245 30 22 0.94

Cerebellum WM R 8 254 227 0.93

Lingual gyrus WM R 233 214 28 0.92

Fusiform gyrus WM R 30 277 214 0.91

Parahippocampal gyrus WM L 229 28 230 0.91

Putamen WM L 224 2 26 0.91

Middle frontal gyrus WM R 44 15 32 0.91

Inferior temporal gyrus WM R 59 251 217 0.91

Putamen WM L 214 23 28 0.91

Putamen WM R 35 220 25 0.90

Superior temporal gyrus WM L 238 2 218 0.90

Supramarginal gyrus WM L 257 241 38 0.90

These points were restricted to be at least 10.5 mm distant from each other.
The coordinates given are in MNI space. For easier interpretation, we first
applied the natural logarithm to the sensitivity values and then rescaled them
to be between zero and one.
Abbreviations: WM, white matter; L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0064925.t007
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26*103 for FA maps, which corresponds to 11% of the number of

voxels of the WM tissue mask (Table 3). For MD maps

approximately 128*103 voxels (54%) were selected, for WMD

41*103 voxels (17%) and for GMD 181*103 voxels (71%). Masking

of the corresponding scanner-based folds kept roughly the same

number of voxels (Table 4) except for the FA maps. For those,

approximately 11*103 voxels (5%) and 49*103 voxels (21%) were

selected in the validation process using the original scans or the

mean corrected scans, respectively.

Classification
An overview of the classification results for the pooled cross-

validation is given in Table 3 (SVM) and Table 5 (NB). In

summary, we obtained a mean accuracy of 80.3% for FA and

83.3% for MD with the multivariate SVM classifier. We achieved

82.7% accuracy for WMD and 89.3% accuracy for GMD. The

accuracies for the DTI indices were significantly smaller than

those for the GMD maps with p,0.001 when we compared them

across the ten repetitions (two-tailed paired t-test). For the mass-

univariate NB classifier we achieved an average accuracy of 70.3%

for FA, 69.7% for MD, 75.1% for WMD and 71.5% for GMD.

These results were significantly lower than those of the SVM with

p,0.001 when we compared the mean accuracies of the ten

repetitions (two-tailed paired t-test). Each of the SVM classifier

models concord for on average 70% of the subjects across all four

modalities. In the pair-wise comparison up to 79% of the subjects

were correctly identified by the SVM models for MD and GMD.

Four percent of the subjects were additionally correctly identified

by the DTI indices compared to GMD. In contrast, the GMD

SVM model additionally identified ten to twelve percent of the

subjects compared to each of the other modalities. For the NB

classifier the classifier models concord in 41% of the subjects

across all modalities. In the pair-wise comparison 51–57% were

correctly classified by both classifier models while 14–20% of the

subjects were correctly identified by either of the classifiers

(approximately equally distributed). The results for the scanner-

specific cross-validation are given in Table 4. For the SVM

classifier we obtained a mean accuracy of 73.8% for the FA maps,

63.6% for MD, 78.8% for WMD, and 82.4% GMD. For the NB

classifier we received 69.4 for FA, 68.0% for MD, 73.4% for

WMD, and 69.9% for GMD.

Visualization
Figure 2 and Figure S2 show the averaged sensitivity maps for

each of the modalities. For easier interpretation, Figure 2 displays

only the upper 5% percentiles of the sensitivity values. To scale

sensitivity values, we first applied the natural logarithm to the

sensitivity values and then rescaled them to be between zero and

one. Table 6, Table 7, Table 8, and Table 9 report the anatomical

locations of the twenty highest sensitivity values for each modality.

We restricted these points to be at least 10.5 mm distant from each

other. For FA, we found large areas with high sensitivity values in

the corpus callosum and medial temporal lobes, including WM of

the hippocampus, cingulate gyrus WM, precuneus, parietal,

temporal, and prefrontal lobe WM, but also in a small cluster in

the left precentral and postcentral gyrus WM and WM around the

basal ganglia. For MD, high sensitivity values clustered within the

lateral and medial temporal lobe WM, including parahippocampal

Table 8. Anatomic areas of the twenty most informative voxels derived from the averaged SVM sensitivity maps for WMD.

Coordinates (mm)

Region Side x y z Sensitivity

Parahippocampal gyrus WM R 24 223 224 1.00

Limbic lobe WM R 29 229 26 0.99

Parahippocampal gyrus WM L 226 224 220 0.98

Middle temporal gyrus WM R 56 262 2 0.97

Middle frontal gyrus WM L 229 9 45 0.96

Inferior temporal gyrus WM L 50 12 218 0.95

Superior temporal gyrus WM L 259 2 29 0.95

Superior temporal gyrus WM R 56 3 212 0.95

Middle occipital gyrus WM L 236 275 6 0.95

Supramarginal gyrus WM R 59 242 33 0.95

Middle temporal gyrus WM R 54 2 227 0.94

Lingual gyrus WM R 50 12 2 0.93

Middle temporal gyrus WM R 63 217 217 0.93

Precentral gyrus WM R 24 251 2 0.93

Insula WM R 51 0 6 0.92

Fornix L 22 26 11 0.92

Inferior parietal Lobule WM L 260 226 38 0.92

Cerebellum WM R 27 256 254 0.90

Lentiform nucleus, lateral globus pallidus WM R 23 25 214 0.90

Superior temporal gyrus WM R 256 232 218 0.90

These points were restricted to be at least 10.5 mm distant from each other. The coordinates given are in MNI space. For easier interpretation, we first applied the
natural logarithm to the sensitivity values and then rescaled them to be between zero and one.
Abbreviations: WM, white matter; L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0064925.t008
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gyrus and fusiform gyrus, prefrontal lobe WM, parietal and

occipital WM. There was an additional cluster in the cerebellum

For WMD, high sensitivity values occurred in prefrontal lobe,

medial temporal lobe, corpus callosum and WM areas of the

caudate nucleus and putamen. For GMD, high sensitivity values

occurred in parieto-temporal association cortices, medial temporal

lobe, including hippocampus and parahippocampal gyrus, and

cingulate gyrus. Additionally, the putamen was involved. For all

indices, brainstem, primary sensori-motor areas and the cerebel-

lum were almost devoid of AD related changes.

Variance reduction. For pooled cross-validation, the SVM

classification results for the DTI data and the noise reduction

approach using PCA are displayed in Table 3. For FA maps, the

accuracy slightly but not significantly increased from 80.3% to

81.8% when highly correlated components (|r|.0.6) were

removed. When reducing the correlation threshold to |r|.0.5

and |r|.0.4 the accuracy slightly decreased to 79.9% and 78.3%,

respectively. For MD, the accuracy for the variance-reduced data

set was 83.4% for |r|.0.6 and decreased slightly to 82.9% for

|r|.0.5 and 82.2% for |r|.0.4, respectively. Figure 3 displays

Table 9. Anatomic areas of the twenty most informative voxels derived from the averaged SVM sensitivity maps for GMD.

Coordinates (mm)

Region Brodmann area Side x y z Sensitivity

Middle frontal gyrus 6 L 226 22 48 1.00

Caudate tail L 221 29 211 0.97

Lentiform nucleus, lateral globus pallidus R 27 215 211 0.97

Precuneus 7 R 11 260 39 0.97

Precuneus 7 L 211 260 42 0.94

Hippocampus R 33 230 25 0.94

Precentral gyrus 9 L 233 27 35 0.90

Posterior cingulate 23 R 8 253 23 0.89

Thalamus, pulvinar L 25 230 17 0.88

Superior temporal gyrus 21 R 63 215 28 0.88

Amygdala L 238 224 211 0.88

Supramarginal gyrus 40 L 251 247 33 0.87

Middle occipital gyrus 19 R 236 274 12 0.86

Middle occipital gyrus 19 L 33 280 12 0.86

Middle temporal gyrus 39 R 47 259 26 0.86

Uncus 20 R 36 29 235 0.86

Caudate head R 18 30 23 0.86

Precuneus 7 R 3 245 53 0.84

Middle frontal gyrus 9 L 230 44 32 0.83

Supramarginal gyrus 40 R 51 247 36 0.83

These points were restricted to be at least 10.5 mm distant from each other. The coordinates given are in MNI space. For easier interpretation, we first applied the
natural logarithm to the sensitivity values and then rescaled them to be between zero and one.
Abbreviations: L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0064925.t009

Figure 3. Comparison of informative voxel clusters. Comparison of the original cluster maps with the variance reduced ones for (A) FA and (B)
MD. The slices shown are:246,238,228,220,210,22, 8, 16, 26, 34, and 44 in MNI space. Red – IG clusters of the original data, Blue – IG clusters of
variance reduced data |r|.0.6, Yellow – overlap of both.
doi:10.1371/journal.pone.0064925.g003
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the IG clusters for FA and MD maps for the original data and

variance reduced data sets (|r|.0.6) and their overlap. Figure 4

shows the correlation with the centers of the first thirteen principal

components for a randomly selected training data set. Addition-

ally, the correlations with the diagnosis are presented in Figure 4.

Each of those components explains at least 1% of the variance in

the selected training data set. For WMD, no components were

correlated higher than |r|.0.6. The accuracy decreased from

originally 82.7% to 81.1% for |r|.0.5 and 79.1% for |r|.0.4.

Only few components of GMD were correlated above 0.4. The

original accuracy of 89.3% dropped to 74.6% for |r|.0.4. In this

case, the removed first component also carried a large amount of

information about the diagnosis, it was correlated with diagnosis

with |r| < 0.6. The classification results for the NB classifier have

a similar trend and are given in Table 5.

The results for the scanner-specific cross-validation after mean

correction are given in Table 4. For the SVM classifier we

obtained a mean accuracy of 76.2% for FA, 78.3% for MD,

85.4% WMD, and 91.1% for GMD. The accuracy for MD and

the brain tissue density scans increased significantly compared to

the original scans omitting mean correction with p,0.05 (two-

tailed paired t-test). These values are slightly lower (DTI) or larger

(brain tissue density) than the results obtained in the cross-

validation with mixed folds but not statistically significant. For NB

we received 72.7% for FA, 72.7% for MD, 73.0% for WMD, and

70.4% for GMD. The accuracies for the NB did not change

significantly compared to the original scans, or compared to the

cross-validation with mixed folds.

Discussion

Our results indicate accurate and robust classification of patients

with AD dementia and cognitively healthy elderly controls using

ML based classification of multicenter DTI and MRI data. A

classification accuracy of up to 91% for GM maps compares

favorably with previous studies. Abdulkadir et al. [33] reported an

accuracy of 87% for a multicenter GM data set comprising 417

subjects from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database, while Cuinget et al. [32] obtained 81%

sensitivity and 95% specificity for GM data from 299 subjects

from the same database. Smaller studies yielded effects of similar

magnitude. For example Klöppel et al. [31] achieved 87.5%

accuracy for GM data from 68 subjects pooled from two centers

and Plant et al. [27] 90% accuracy with 50 subjects from one

single center.

For DTI parameters, we reached an accuracy of 82% (variance

reduced) for the FA index and 83% for MD (mixed folds) and 76%

and 78% (scanner-based folds), respectively. Graña et al. [19]

reported a classification accuracy in the range of 97% to 100% for

FA and 92% to 98% for MD for a monocenter DTI data set of 45

subjects. These earlier results seem quite optimistic and may reflect

the relatively small number of participants compared to the large

number of features.

Our SVM results for the DTI indices were significantly smaller

than those for the GMD maps. This may partly be due to the

clinically manifest disease stage of our patients which is typically

associated with widespread cortical atrophy. Many studies

investigated the dynamics of neuroimaging biomarkers during

the progression of AD and found a significant correlations of either

cortical atrophy measures or DTI based measures and MMSE

Figure 4. Principal components and correlated factors for a randomly selected training data set. Correlations for (A) FA, (B) MD, (C)
WMD, and (D) GMD. The first thirteen components each explain at least 1% of the variance in the selected training data set.
doi:10.1371/journal.pone.0064925.g004

Automated Detection of AD Using Multicenter DTI

PLOS ONE | www.plosone.org 11 May 2013 | Volume 8 | Issue 5 | e64925



[8,53,54,55,56,57,58]. But only few studies compared both

anatomical MRI and DTI in this context [59,60,61]. In a meta-

analysis, Clerx et al. [62] showed that in dementia stages of AD

the effect sizes of volumetric medial temporal lobe atrophy

measurements are superior to DTI derived measurements. In

contrast, using regions of interest in the hippocampus, patients

with amnestic mild cognitive impairment (MCI) showed a more

accurate separation between MCI and healthy subjects using

markers of diffusion anisotropy compared to hippocampus volume

[62,63,64]. Therefore, even if structural connectivity was the more

sensitive marker compared to volumetry in predementia stages of

AD, this advantage may be offset by the higher multicenter

variability of DTI measures at least when examining dementia

stages of AD which are characterized by severe reductions of

cerebral gray matter.

With 68% to 75% accuracy the results we obtained with the NB

classifier were significantly lower than those of the SVM. These

findings disagree with the high accuracy of NB based classification

shown in a previous study with 50 subjects [27]. One possible

explanation may be that we used multicenter data. Since the NB

algorithm relies on differences in the distribution of voxel intensity

values between diagnostic classes, additional variance introduced

by the different scanners may have caused the reduction of

classification accuracy. Secondly, as previously outlined by Rish

[65], although the underlying assumption in NB of statistical

independence of the features simplifies learning and training, it

also leads to a loss of information which is contained in

combinations of features. We assume that both factors explain

the lower accuracy the of univariate NB classifier compared to

multivariate SVM.

Feature Selection
In our data-driven approach we used the IG criterion for voxel

selection. The IG has the advantage over more widely used

parameters, such as the t value or correlation coefficient, that it

can directly be applied to multiclass data, which will be useful in

future studies with additional diagnostic categories. In the study by

Plant et al. [27] the IG values ranged between 0.1 and 0.6 for a

combined GMD and WMD data set of 50 subjects. With our data,

we expected lower values because pooling of data from different

centers likely increased variability. We recorded IG values up to

0.5 for GMD and values up to 0.25 for the other modalities.

We used the feature selection step to exclude noninformative

voxels. Although the empirically determined but possibly very

liberal threshold of 0.05 kept a high number of voxels with a

comparatively small amount of information, it enabled the

multivariate SVM classifier to additionally exploit the information

from those areas. Varying the IG threshold did not significantly

increase the performance of the classifiers in our earlier empirical

tests. Hence, we did not vary the minimum threshold for the IG

values to further reduce the number of voxels to be used for

classification. Alternatively, Graña et al. [19] used only the upper

percentiles with different thresholds for voxel selection. In contrast,

Klöppel et al. [31] and Cuinget et al. [32] omitted any feature

selection step. We recommend preselecting informative voxels to

reduce time and memory needed for the training and classification

process.

Our approach recovered the typical anatomical areas that are

involved in AD as shown in previous monocenter DTI and

anatomical MRI studies [7,8,9,10,11,12,13,14,15,16,17], includ-

ing medial temporal lobe, cortical association areas for GMD and

the associated WM areas, including intracortically projecting fiber

tracts such as the corpus callosum and fornix. These findings

confirm the overall validity of our approach.

Variance Reduction
When we performed PCA with pooled cross-validation we

found several components that were highly correlated with

scanner, particularly for FA and MD. These findings agree with

results from a multicenter clinical and physical phantom study [24]

suggesting 50% higher variability of FA values across centers

compared to GMD. For FA, MD and WMD, classification

accuracy from the SVM and regional distribution of group

differences were relatively unaffected by removing variance

components associated with age, gender and scanner. This

suggests that the variance introduced by the scanner (and the

other confounders) and the variance introduced by the diagnosis

were largely independent from each other. The SVM algorithm

and the NB classifier worked sufficiently robust to compensate the

variance introduced by confounding factors so that the classifica-

tion results remained almost unchanged after removing scanner-

specific variance, as well as variance associated with age and

gender.

For the scanner-specific cross-validation we used mean correc-

tion instead of PCA. Methods for variance reduction such as PCA

or regression-based data correction need the complete data set to

estimate the optimal model parameters. In order to evaluate the

performance of the ML algorithms for new data objectively, we

wanted the test data to be excluded from the parameter estimation

process and the learning step. Given the assumption that different

scanners and scan parameters introduce independent variance, it

is highly probable that a certain bias will remain in the test dataset

after applying the variance reduction. Therefore, we used the very

basic approach of mean correction which we could apply to the

data from each scanner, independently. Mean correction signif-

icantly increased the accuracy of the SVM classifier for MD and

the tissue density scans. These results confirm that the indices

obtained from DTI as well as the tissue density maps obtained

from anatomical MRI depend on the scanner and the used scan

parameters. The SVM algorithm seems to be highly sensitive to

the bias introduced by the scanner and scan parameters to the

DTI data – in case of the uncorrected data the accuracy drops to a

level corresponding to the accuracy obtained using the mass-

univariate NB classifier. In case of the pooled cross-validation the

SVM algorithm was able to adapt its internal model to the higher

variability of the scans during the learning phase. In contrast, in

the scanner-specific cross-validation the data from one scanner

were excluded from learning such that the SVM algorithm

optimized its internal model using the data from the other

scanners, only. Thus, the SVM sensitivity and specificity was

highly depending on the ‘similarity’ of the test scans to the scans

included in the learning data set. Our results for the mean

corrected data show that this method is well suited to correct the

bias between scanners to a certain amount, leading to an increased

accuracy of roughly the same magnitude as the pooled cross-

validation: these findings suggest that our estimates of diagnostic

accuracy can be generalized to new scanners that were not part of

the training process.

Limitations and Future Work
Our data set did not include data from subjects in prodromal

stages of AD. Therefore, we could not evaluate performance of our

approach in the prediction of AD dementia. Future work of the

EDSD will extend the database to include subjects with MCI in

order to investigate this topic. Moreover, we will investigate

whether the DTI and MRI-derived indices provide complemen-

tary information regarding AD detection. This additional infor-

mation could be exploited by the SVM classifier and improve the

results.
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Conclusion
Our data suggest that machine learning algorithms together

with multicenter DTI data provide a robust measure to assess

white matter degeneration in AD dementia. The accuracy of our

results compares favorably with earlier monocenter DTI studies.

Cross-validation using the data from each scanner as an own fold

suggest that our results can be generalized to new scanners. Future

research will focus on early detection of AD specific structural WM

changes in prodromal stages of AD. Presently, the EDSD study is

collecting a multicenter DTI data set of MCI subjects that are

characterized by CSF biomarkers and clinical follow-up.

Supporting Information

Figure S1 IG values of informative voxels for the group

separation of AD and HC. IG maps for (A) FA, (B) MD, (C)

WMD, and (D) GMD. Clustered and thresholded at 0.05, these

voxels define the mask for classification. The slices shown are:

246, 238, 228, 220, 210, 22, 8, 16, 26, 34 and 44 in MNI

space.

(EPS)

Figure S2 SVM sensitivity maps for (A) FA, (B) MD, (C)

WMD, and (D) GMD. The maps display the relative

importance of each voxel for the classification decision, with

white/yellow areas being more important than red areas.

Preceding SVM classification, voxels that did not contribute any

information to the group separation of AD and HC were masked

out (IG criterion). The slices shown are: 246, 238, 228, 220,

210, 22, 8, 16, 26, 34, and 44 in MNI space.

(EPS)
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