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Abstract: This study proposed a two-stage method, which combines a convolutional neural network
(CNN) with the continuous wavelet transform (CWT) for multiclass modulation classification. The
modulation signals’ time-frequency information was first extracted using CWT as a data source. The
convolutional neural network was fed input from 2D pictures. The second step included feeding
the proposed algorithm the 2D time-frequency information it had obtained in order to classify the
different kinds of modulations. Six different types of modulations, including amplitude-shift keying
(ASK), phase-shift keying (PSK), frequency-shift keying (FSK), quadrature amplitude-shift keying
(QASK), quadrature phase-shift keying (QPSK), and quadrature frequency-shift keying (QFSK), are
automatically recognized using a new digital modulation classification model between 0 and 25 dB
SNRs. Modulation types are used in satellite communication, underwater communication, and
military communication. In comparison with earlier research, the recommended convolutional neural
network learning model performs better in the presence of varying noise levels.

Keywords: modulation; deep learning; wavelet transform; multiclass classification

1. Introduction

The varieties of modulation schemes employed in wireless communication are diversi-
fying, resulting in a more complex communication environment. Wireless communication
technology is always developing. As a consequence, it is becoming more and more impor-
tant to have the ability to swiftly and automatically evaluate and identify communication
signals. Automated modulation categorization (AMC) is a middle step in blind signal pro-
cessing in several fields, including cognitive radios [1] and SDRs [2]. There are two kinds
of AMC [3]. First, to identify the potential categories of received signals, the probability
function of the received signals is calculated under various hypotheses, and the results are
compared with a predetermined threshold. Bayesian LB techniques often have significant
sensitivity to unknown channel conditions, require substantial prior information, or are
computationally demanding [4–6]. The FB approaches, which can be applied with a lower
level of computer complexity, can find suboptimal solutions. Analyzing the properties

Computers 2022, 11, 162. https://doi.org/10.3390/computers11110162 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11110162
https://doi.org/10.3390/computers11110162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-7656-2817
https://orcid.org/0000-0003-3949-0302
https://orcid.org/0000-0002-6085-7626
https://orcid.org/0000-0002-7947-7025
https://orcid.org/0000-0002-1035-5249
https://orcid.org/0000-0003-2403-8436
https://orcid.org/0000-0002-0962-3453
https://doi.org/10.3390/computers11110162
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11110162?type=check_update&version=2


Computers 2022, 11, 162 2 of 11

of the received signals allows for the determination of the modulation type. Without
a doubt, high-quality features may provide reliable performance at a reasonable price.
Recent research [7] has previously looked at some of these properties, including WT [8],
cyclostationary features [9], and higher-order cumulants [10]. Support vector machines
(SVMs) [11] and D-Trees [12], as well as Random Forests (RFs) [13] and KNNs [14], were
frequently used for AMC systems in earlier studies. Unfortunately, these approaches are
time-consuming since the extraction of handmade features requires in-depth technical
knowledge and domain experience.

Deep learning (DL) has recently received a lot of attention due to its success in a num-
ber of applications, including speech recognition [15], emotion analysis [16], and computer
vision [17]. In contrast to conventional data-analysis and processing techniques, the DL’s
capacity to automatically represent complex, high-dimensional data without the need for
manual features is of critical relevance [18]. Because of this, we have noticed it encroaching
on other domains, such as communications [19]. It is significant to note that some engineers
have completed AMC assignments using DL with success. So far, several methods have
been presented using several different techniques based on deep learning, including LSTM
networks [20–23], deep convolutional networks [21,24,25], RNN [26,27], etc. To clearly
define the complicated relationships of time-correlated signals across Rayleigh fading chan-
nels, along with different additive noise circumstances, an RNN-based AMC technique is
examined in [28]. A sophisticated RNN architecture, known as the long short-term memory
(LSTM) network [29], has been made particularly for learning the long-term dependencies
in the time domain of signals with varying-length modulation. CNNs are capable of extract-
ing more significant discriminating features from multiscale feature representations for the
multiclass classification challenge when compared to RNNs and LSTM. In the newest 24-
modulation DeepSig dataset, a compact CNN combining numerous residual convolutional
stacks, used to gather more relevant information from multilevel representational feature
maps, greatly increases the classification rate. Without feature engineering expertise, DL
outperforms ML in recognition performance [30]. For network training and classification
tasks, the authors in [31] employed constellation diagrams and the AlexNet CNN model.
Additionally, the Caffe framework was used throughout the whole modulation classifica-
tion process. Based on ACGAN, data augmentation was used in [32]. Nevertheless, Peng
et al. Images with grid-like topologies were created using two pretrained models for AMC
(AlexNet and GoogLeNet) by [33]. Only the additive white Gaussian noise signal model,
which includes several time-frequency modifications, is useful when using feature fusion
to enhance performance [34]. Despite the fact that each of these methods modifies AMC for
well-researched picture-identification problems in some way, they all require an intricate
image-processing stage.

The literature demonstrates that the AMC issue is solved using a broad range of feature
extraction and selection techniques, as well as machine learning models. Without any prior
knowledge of feature engineering, DL outperforms ML in recognition performance [35,36].
However, most of the current AMC methods perform poorly when several standard
convolutional layer structures are added to a heavily deep network architecture. This occurs
because extracted feature maps are represented ineffectively and trainable parameters are
expensive. These techniques also need a lot of training time. AMC based on scalogram
images and a deep convolutional neural network is explicitly presented in this paper.
The CNN architecture automatically identified the modulation types after receiving the
scalogram pictures created by the CWT approach, which is used to extract 2D data from
modulated signals. The described methodology effectively utilizes deep convolutional
networks to address AMC difficulties (ConvNet). For robust modulation classification
against channel impairments, a well-performing and cost-efficient AMC system based on
CWT transform is presented.

As an innovation in this work, the combination of feature visualization with the help
of CWT transformation with deep convolutional neural networks has been used. This
approach was chosen because, by visualizing the features with the help of scalogram
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transformation and sending these features to the deep convolutional network, the ability to
recognize patterns related to each modulation in the convolutional network increases.

The contributions of the presented study are as follows:

• 2D-scalogram images are used in order to automatically detect modulation type.
• CWT-based scalogram images are used for the visualization of modulation features in

order to increase the performance of the proposed method.
• The CNN architecture is proposed to automatically classify scalogram images.
• Simulation results indicate that the presented model showed better accuracy compared

to other methods.

This article is divided into five parts. Section 2 addresses both the materials and
the process. The model under discussion is covered in further depth in Section 3. The
research results are presented in Section 4. Section 5 summarizes the results and makes
recommendations for further study directions.

2. Materials and Methods
2.1. The Formulation of ASK, FSK, and PSK

A type of digital transmission in which the digital baseband signal is changed into a
band-restricted high-frequency passband signal is known as a digital passband modulation.
Transition bands may be modulated using ASK, FSK, or PSK.

a. Amplitude-shift keying: The identical frequency carriers in A1 and A2 carry bits 0
and 1 of the baseband signal.

b. Frequency-shift keying: Bits 0 and 1 of the baseband signal are modulated using the
frequency-shift keying (FSK) technique. Two frequencies with the same amplitude
are used in FSK.

c. Phase-shift keying: PSK modulation uses phase variations of the same amplitude
and frequency to modify baseband signal bits 0 and 1.

The basic modulation formulae for ASK, FSK, and PSK are listed here:

XmASK (t) = Am cos ωct (1)

XmPSK (t) = A cos(ωct + θm) (2)

XmFSK (t) = A cos(ωcm t) (3)

The data has been distorted in accordance with the SNR ratio for binary-10110100,
which is data with a decimal value of 180, as illustrated in the diagrams for binary-10110100
digital modulation (Figure 1).
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2.2. The Formulation of QASK, QFSK, and QPSK

Multilevel transmission may be achieved by varying the amplitude, frequency, or
phase of the carrier between more than two distinct values. The throughput of data
transmission may be increased by having numerous carriers, as opposed to only one.
Depending on the kind of modulation utilized, the carrier for the M-piece symbol may
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have variable amplitude (MASK), frequency (MFSK), or phase values [37]. The binary
information signal’s bits are often separated into groups, each of which receives a distinct
carrier. The bit group’s amount of information is sent by this carrier. Multiple-level
modulations often use the modulations QASK, OFSK, or OPSK. These modulations, which
send out two bits at once, quadruple the transmission speed. The data transmission rate is
significantly boosted with the addition of 8, 16, and 32 carriers. Moreover, as the number of
carriers increases, the complexity of the demodulator circuits must also increase. Figure 2
illustrates the frequency ASK, FSK, and PSK modulation with AWGN in 5 dB SNR.
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10110100.

Figure 3 illustrates binary data ranging from 0 to 255 for quadrat-type modulations,
while Figure 4 illustrates corrupted signals with SNR = 5 dB noise.
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3. The Proposed Method

This study presents a novel method for the categorization of modulation signals with
noise levels ranging from 0 to 25 dB. Before the time-frequency information was extracted,
these modulated signals were originally subjected to CWT. The time-frequency data that
had been retrieved were first input into the CNN and fully connected layers of the deep
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neural network. We will present each stage of the suggested plan in the section that follows.
The flowchart for the suggested technique is shown in Figure 5.
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3.1. The Continuous Wavelet Transform (CWT)

When the continuous wavelet transform is used to analyze signals whose frequency
changes over time, a time-frequency diagram is produced. The technique used to convert
to the time-frequency domain is crucial in pattern-recognition techniques. For this transfor-
mation, the wavelet transform is well suited because nonstationary signals, such as EEG,
ECG, and EMG, may be effectively transformed using this technique [38,39]. The signal is
changed using wavelet functions, such as Daubechies, Morlet, Symlet, and Gaussian in a
wavelet transform.

A signal’s CWT may be expressed as:

Z(a.b) =
1√
a

∫ ∞

−∞
s(t)ψ∗

(
t− b

a

)
dt (4)

where (t) is a signal with finite energy, ψ∗ is the mother wavelet’s complex conjugate, and a
and b are parameters that affect the wavelet’s scaling and translation, respectively. Smaller
scale values cause the wavelet to contract and disclose high frequencies in the signal,
whereas larger (scale) values cause the wavelet to expand in time and show low-frequency
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information in the signal [40]. By constantly changing the a and b variables along the
range of scales and lengths of the signal, respectively, the continuous wavelet transform is
computed.

Similar to a spectrogram made with a quick Fourier transform, a scalogram is a
visual depiction of a signal’s CWT (STFT). By permitting variable-size analysis windows
at different frequencies, the CWT effectively outperforms the STFT in terms of temporal
and frequency resolution. The frequencies that are present at various points in the signals’
scalograms are evident.

3.2. Convolutional Neural Network Architecture

The second kind of neural architecture that is often used is CNN. The two main dis-
tinctions between CNN and ANN are the architecture and input data. In ANN, numerical
values are employed, but in CNN, pictures are used. A collection of pixels with the dimen-
sions w, h, and d make up an image (I). Images are sized, first by their width and height,
and then by their depth. The color model used affects how deep an image seems. For
example, d is equal to three in the case of the three-color RGB (Red–Green–Blue) scheme.

The architecture of the neural model consists of fully connected layers, convolution,
and pooling. Convolutional filtering layers change the picture by emphasizing and extract-
ing certain elements, which is accomplished by the convolution operation (a star operation *)
between the filter k (a matrix of size p× p) and the image Ix,y (for each individual pixel in
the position (x, y)):

k ∗ Ix,y =
p

∑
i=1

p

∑
j=1

ki,j.Ix+i−1, y+j−1 + b1 (5)

where b1 is a bias. The pooling layer is used to reduce the image’s file size. To analyze each
pixel and its surroundings, the function ω(.) is employed (such as minimum, maximum, or
average). The pixel that performs the function is added to the reduced picture ω(.). It can
be expressed in the following way so as to maximize its utility:

ω
(

Ix,y
)
= max

i,j∈{−1,0,1} I x−i,y−j (6)

Image resizing may be calculated as w−k
s+1 ×

h−k
s+1 , where s is a kernel shift (the size of

neighborhood). These two layers may be used repeatedly before the FC layer, which is the
last kind of layer. This neural network has a number of hidden layers and a single output
layer (similar to ANN).

Our CNN model’s structure is shown in Figure 6. As can be observed, this structure is
made up of convolutional layers, two pooling layers, and a fully connected layer where
classification is performed using the output from the second pooling layer. Six probability
values are created for each of the six classes of generated modulation by our CNN after it
analyses a scalogram picture.
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4. Experimental Results

We used the CWT and deep convolutional neural network (CNN) to analyze the
digital modulation categorization method. The modulation techniques used to encrypt
decimal data in the range of 1 to 255 were many. MATLAB was used to create a total of six
distinct SNR rates, each with a 5 dB increase, in a range from 0 dB to 25 dB.

Two different experimental conditions were created for the digital modulation cate-
gorization task. In the first experiment, a variety of SNR rates were used to evaluate the
classification accuracy of the proposed model. This experiment was run five times, raising
the SNR rate from 0 dB to 25 dB in 5-decibel increments, for each class of 255 samples.
The information from each grade level was then compared with the others. The second
experiment produced 1530 samples, with SNRs ranging from 0 to 25 dB for each class.
Thus, 9180 spectrogram pictures were used to feed the suggested model. We also compared
the outcomes of every experiment with one another.

Several preprocessing techniques were applied to the scalogram pictures. To eliminate
any undesirable white areas, the acquired standard CWT pictures were first automatically
cropped. Next, the resolutions were decreased from 657 × 535 × 3 to 227 × 227 × 3 pixels.
This made it possible to focus on certain areas of interest in the scalogram pictures.

All training was carried out using MATLAB (2021a) and an NVIDIA graphics card
(8 GB onboard RAM). We examined the model’s classification ability at different SNR
rates between 0 and 25 decibels (dB) in terms of our prior results. As a result, for each
class, only 255 scalogram images with a single SNR rate were taken into account. To put
it another way, a total of 1530 spectrogram pictures were used to feed input to the CNN
model. Experiments on the modulation classification issue were carried out by randomly
dividing the dataset into training (70%) and testing (30%) groups.

The suggested model contains a diagonal pattern in the confusion matrix for modulation-
type recognition. It highlights the model under consideration’s high level of categorization
accuracy. The results of the experiment are reported in Table 1, as a function of the SNR
rates. The total accuracy of all SNRs comes out to be over 99.9, indicating that the suggested
approach is noise resistant.

Table 1. The proposed model’s accuracy when different SNR rates are considered independently.

Class
SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB Avg. Acc

ASK (Proposed) 99.84 99.88 99.90 99.91 99.93 99.97 99.90
FSK (Proposed) 99.58 99.60 99.70 99.91 99.94 99.94 99.77
PSK (Proposed) 99.99 99.99 99.99 100 100 100 99.99
QASK (Proposed) 99.99 99.99 99.99 100 100 100 99.99
QFSK (Proposed) 99.99 99.99 99.99 100 100 100 99.99
QPSK (Proposed) 99.99 99.99 99.99 100 100 100 99.99
Avg. ACC (Proposed) 99.90 99.91 99.92 99.97 99.978 99.98 99.938

Equations (7)–(10) are used to compute accuracy, precision, recall, and F1-score mea-
surements in order to assess the model’s effectiveness in the sequence of 7, 8, 9, and 10.
These measurements are computed using the true positive (TP), false negative (FN), false
positive (FP), and true negative (TN) indices. TP and TN reflect the number of positive
and negative samples that were properly identified, while FP and FN reflect the number of
positive and negative samples that were incorrectly classified.

Accuracy =

(
total number o f correct samples

number o f total samples

)
f or ithclass

(7)

Precision = (
true positives

true positives + f alse positives
)

f or ithclass
(8)
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Recall =
(

true positives
true positives + f alse positives

)
f or ithclass

(9)

F1− score =
(

2× precision× recall
precision + recall

)
f or ithclass

(10)

A total of 2000 scalograms were input into the suggested model. To ensure that the
findings could be used generally, the recommended model was also trained and evaluated
using the 10-fold cross-validation method. We divided the dataset into 10 groups to provide
a more specific illustration. A tiny sample of the data was tested, and the remaining nine
portions were utilized to train the proposed model. This process was carried out 10 times.

We utilized a confusion matrix to measure the model’s performance for the digital
modulation classification problem. The resultant confusion matrix is shown in Figure 7.
Table 2 displays the classification results for each class of the confusion matrix. In other
words, the classification performance of the suggested model was good.
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Figure 7. Confusion matrix of categorization results, including all SNR rates in each class.

Table 2. The proposed model’s results covered all SNR rates in each class.

Class Accuracy Precision Recall F-Score

ASK (Proposed) 99.90 99.80 99.90 99.93
FSK (Proposed) 99.77 99.49 99.9 99.69
PSK (Proposed) 99.99 99.99 99.99 99.99
QASK (Proposed) 99.99 99.99 99.99 99.99
QFSK (Proposed) 99.99 99.90 99.61 99.75
QPSK (Proposed) 99.99 99.99 99.80 99.88
Avg. (Proposed) 99.938 99.87 99.865 99.86

Table 2 lists the outcomes of Experiment 2. The overall accuracy, precision, recall, and
F1-score for the proposed model are 99.938%, 99.87%, 99.865%, and 99.867%, respectively.
With a classification accuracy of 99.99%, PSK is the most accurately identified modula-
tion type, while FSK has the lowest classification accuracy at 99.77%. The experimental
results show that the recommended model can successfully carry out the modulation
categorization task.

As can be seen in Table 2, the accuracy of the proposed method increased with the
increase of SNR. The reason for this is that, by increasing the SNR, the signal power is
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increased, and as a result, the effect of the noise decreases, so it becomes easier to detect the
type of modulation, and the detection accuracy increases.

We have created a novel model for classifying different forms of digital modulations
based on CWT and deep convolutional neural networks (CNN). Our data source was the
CWT, which creates scalograms.

We tried to use the VGG-16, VGG-19, and GoogLeNet for well over an hour. Figure 8,
Table 3 compared with the different CNN architectures on the digital modulation cate-
gorization problem, presents this information, and it is clear to see that the suggested
approach is, on average, quicker and more accurate than all other methods.
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Table 3. The proposed method is compared with the different CNN architectures on the digital
modulation categorization problem.

Metrics AlexNet VGG-16 VGG-19 GoogLenet Proposed

Accuracy 99.40 99.9 99.90 99.56 99.93
Precision 99.40 99.89 100 99.78 99.87

Recall 99.40 99.81 99.90 99.67 99.86
F1-Score 99.40 99.94 99.95 99.73 99.86

Time (min) 27.2 206.1 240.5 217.5 6.3
Time: The amount of time that was required during the training of the network is only equivalent to one training
epoch.

We compared the proposed method against a number of previously trained CNN-
based models for categorizing digital modulation. Table 4 demonstrates that the CNN
models of proposed method were successful in achieving a high degree of classification
accuracy (over 99% accuracy).

Table 4. Compare the proposed method against a number of previously trained CNN.

No Title Year Ref Accuracy

1 Artificial Intelligence-Driven Real-Time Automatic Modulation Classification
Scheme for Next-Generation Cellular Networks. 2021 [1] 97

2 Machine Learning Based Automatic Modulation Recognition for Wireless
Communications: A Comprehensive Survey 2021 [3] 99

3 Faster Maximum-Likelihood Modulation Classification in Flat Fading
Non-Gaussian Channels 2019 [4] 95

4 Deep Convolutional Neural Network with Wavelet Decomposition for
Automatic Modulation Classification 2020 [9] 96

5 Deep Learning-Based Robust Automatic Modulation Classification for Cognitive
Radio Networks 2021 [19] 98.7

6 An Efficient CNN Architecture for Robust Automatic Modulation Classification 2020 [32] 93
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5. Conclusions

In this study, a deep convolutional neural network (CNN) model for classifying
different forms of digital modulation is presented. In order to assess the model’s durability
at different SNR rates, spanning from 0 dB to 25 dB, we first used a transfer learning
technique. These results allowed us to draw the conclusion that the model can categorize
various modulation types appropriately. The effectiveness of the model was assessed using
all six SNR rates. The experiment’s findings demonstrate that the modulation types can
be determined using the CNN model. The model’s classifications are accurate to a level
greater than 99%. On the other hand, we contrasted GoogLeNet’s performance on the same
task with that of other popular CNN models. The suggested strategy surpassed all others in
terms of accuracy and efficiency, as well as training time, when the different CNN models
were compared. Using the hybrid methodology we suggested, we have had tremendous
success categorizing digital modulation signals. We may use this application in conjunction
with the newly suggested communication hardware to recognize modulation signals in the
future. This capacity is necessary for both the real-time demodulation and the automated
detection of this kind of modulated signal. To improve the performance of the proposed
method in future work, feature-selection methods, such as (multivariate ridge regression)
MRR and (Neighbourhood Component Analysis) NCA, could be used to select the optimal
subset of features. These methods can increase the accuracy and speed of detection by
removing the redundancies between the feature vectors.
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