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Robust Automatic Parking without Odometry using 

an Evolutionary Fuzzy Logic Controller 
 

Young-Woo Ryu, Se-Young Oh, and Sam-Yong Kim* 

 

Abstract: This paper develops a novel automatic parking algorithm based on a fuzzy logic 

controller with the vehicle pose for the input and the steering rate for the output. It localizes the 

vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it 

automatically learns an optimal fuzzy if-then rule set from the training data, using an 

evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse 

position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer 

mobile robot which emulates the real vehicle. 
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1. INTRODUCTION 
 

An automatic parking system (APS) can park the 

vehicle for inexperienced drivers. Though some 

automobile companies have recently developed 

parking assistance systems (PAS) or APS, issues on 

safety and cost still remains for commercialization. 

APS consists of two parts: the exploration of the 

parking space and parking into that space. These 

maneuvers are more heuristic than algorithmic. 

Consequently, transferring the expert driver’s parking 

skill to an automatic parking system can alleviate the 

driving burden and enhance safety in the next-

generation passenger vehicles. For prior work, a 

vehicle with vision [1,2] or ultrasonic sensors [3-5] 

explored the proper parking space and then found the 

proper starting position. Given the starting position, 

the automatic parking was performed using two main 

lines of approaches. The path planning approach plans 

a feasible reference path in advance, taking into 

account the environmental model as well as the 

vehicle dynamics and constraints and then the control 

commands are generated to follow the reference path 

[2,6,7]. On the other hand, a skill-based approach 

mimics an experienced driver’s parking skill using the 

fuzzy logic [5], neural networks [1,8], etc. There is no 

reference path to follow and the control command is 

generated by considering the orientation and position 

of the vehicle relative to the parking space. These 

approaches require an exact vehicle pose relative to 

the parking space. Daxwanger [1] bypassed pose 

estimation by using a neural network that can directly 

map the video sensor’s image of the environment to a 

corresponding steering angle. However, this approach 

may not generalize well in untrained environments. 

Xu et al. [2] and Jiang et al. [3] used the ultrasonic 

sensors for parking. Ultrasonic sensors normally have 

the distance error to the angle of reflection as well as 

can not obtain the distance in a parking lot without 

obstacles. In order to improve the parking 

performance, Zhao [5] and Adollah [9] optimized the 

fuzzy membership functions using a genetic algorithm 

(GA) based on heuristic rules. However, they did not 

consider parking performance factors such as the 

collision possibility and the overall parking time. 

Furthermore, all this research used the odometry data 

obtained from the wheel encoders, which is not really 

practical. We think that image and sonar based 

localization will be a more practical choice for 

automatic parking. Further, the automatic parking 

algorithm must consider various sizes and shapes of 

the parking lot, control stability, parking time, parking 

accuracy in real experiments. 

This paper proposes a robust parking algorithm that 

can be applied to the general outdoor parking. We first 

propose an improved vehicle localization method 

using both vision and ultrasonic sensors in mutually 

complementary modes. Using these two sensors in 

tandem, the parking space marker obtained via vision 

and the nearby objects sensed via the sonar can help to 

localize the vehicle even when either sensor alone 

would fail to localize. Second, we do not use any 

odometry information in this process since it would be 
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too expensive and cumbersome to be used in real 

vehicles. Third, we optimize the rule set and 

membership functions for the fuzzy logic controller 

(FLC) by developing a proper performance index 

function for robust parking. The performance index 

for our fuzzy controller takes into account the 

possibility of collision, parking time, and the decency 

of the final parked pose. Furthermore, an initial 

exploration to find a proper initial ready-to-reverse 

position (this is a point in a “green zone”) improves 

on the overall parking stability as well as the elapsed 

time for parking. Also, a tight space maneuvering case 

is easily handled by proper tuning of the fuzzy 

controllers. Finally, through simulation and real 

experiments, we successfully implemented two 

parking maneuvers: parallel parking and garage 

parking. 

 

2. VEHICLE LOCALIZATION AND FUZZY 

LOGIC CONTROL USING A HEURISTIC 

RULE SET 
 

2.1. System overview 

The automatic parking process consists of several 

steps as shown in Fig. 1. The system first checks the 

direction of the parking space and then navigates 

forward to reach a ready-to-reverse position with the 

vehicle orientation parallel to the parking space using 

ultrasonic sensors. After detecting and checking the 

size of the parking bay, the system makes decision on 

the possible parking method - ‘parallel parking’, 

‘garage parking’, or ‘impossible’. The vehicle then 

stops at the recommended ready-to-reverse position 

from which the parking maneuver starts. Finally, 

control for the automatic parking is executed using an 

optimized fuzzy logic controller that is designed to 

achieve an objective function. 

2.2. Vehicle localization 

In order to autonomously drive itself, a vehicle 

needs to know its exact position and orientation, that 

is, the vehicle state or pose vector, [ ].x yθ=x  But 

the vehicle localization must be carried out with 

respect to the detected parking space. To obtain this 

information and also to compensate for possible 

parking space detection errors and to prevent collision, 

we use a camera and 16 ultrasonic sensors. Fig. 2 

shows the local coordinate system and the 

maneuvering space and Fig. 3 shows the localization 

procedure. 

If other vehicles or walls exist, the vehicle state is 

easily determined by ultrasonic sensors. Because the 

ultrasonic sensor data may contain error according to 

the approach direction and the material of the 

reflected object, they are integrated. If the change of 

the ultrasonic sensor value is larger than a certain 

threshold, we can handle this noise with the mean 

value of the both neighboring sensors among 

ultrasonic sensor array. But in case of a ready-to-

reverse direction with a large approach angle between 

the vehicle and the parking space or the position with 

no objects behind, we can’t estimate the vehicle state. 

In this case, the system estimates the vehicle state 

from the parking space markers in an image. After 

extracting parking space marker candidates using the 

 

Fig. 1. The entire process of the automatic parking

system. 

 

 

    (a) Parallel parking.      (b) Garage parking. 

Fig. 2. Local coordinate systems. 

 

Fig. 3. Localization procedure. 
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edge and intensity profiles, we transform the extracted 

parking space markers to the world coordinates. Then 

we estimate the vehicle state by extracting feature 

points. 
 

2.2.1 Coordinate transformation 

When we transform from the image to the world 

coordinates using the flat earth assumption, the 

inverse perspective transform (IPT) is usually applied 

[10]. But because the camera used for parking has a 

short focal length and a wide view angle, the acquired 

image has some radial distortion, and the IPT results 

incur serious errors. Therefore, we used a neural 

network that learns the mapping between the image 

coordinates (u,v) and the world coordinates (x,y) [11]. 

 

(a) Image based localization (original image, vehicle 

coordinate, and vehicle state within the 

environment). 

 

(b) Ultrasonic sensor based localization (original 

image, the sensor pattern, the vehicle state within 

the environment). 
 

Fig. 6. Results of the vehicle state estimation. 

 

 
 

Fig. 7. Structure of the fuzzy controller. 

 
The neural network architecture was a 2-5-5-2 multi-

layer perceptron which enables us to acquire more 

precise world positions as shown in Fig. 4 and Table 1. 

We used 89 grid points in a 390cm×380cm area for 

camera and world coordinate calibration. 

 
2.2.2 Parking space marker extraction 

Valid parking space markers are extracted using the 

Hough transform in the world coordinates [12]. After 

discriminating each marker as ‘rear marker’, ‘left 

marker’, or ‘right marker’, etc., and using the corners 

of the parking space marker as the feature points, we 

can obtain the vehicle state x relative to the parking 

space like in Fig. 5. And finally we can reconstruct the 

top view image in Fig. 6. 

 

2.2.3 Automatic parking using a heuristic based FLC 

A handcrafted FLC for parking has three input 

variables ( , , ),x y θ  one output variable ,θ  and 27 

IF-THEN rules. The structure of the FLC is shown in 

Fig. 7. The fuzzy rule base consists of multiple rules 

 

(a) 

 

(b)                           

(c) 

Fig. 4. Results of the coordinate transformation. (a) 

Original image (b) IPT result (o: Real 

position, *: IPT estimated position) (c) NN 

result (o: Real value, *: NN estimates). 
 

Table 1. Accuracy comparison of inverse perspective 

transform and neural network estimation. 

 Max. error Mean error 

IPT 9.78 cm 2.54 cm 

NN 1.138 cm 0.391 cm 

 

 

(a)                    (b) 

Fig. 5. Extracted parking space marker and feature 

points. (a) Raw image (b) Parking space 

markers and feature points. 

Camera 

Camera
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with multiple antecedents and the Mamdani’s fuzzy 

inference model is used to determine the output value, 

and the defuzzification is done by using center of 

gravity [13]. The fuzzy rule set for parallel and garage 

parking are shown in Tables 2 and 3. Fig. 9 shows the 

fuzzy membership functions used. 

The fuzzy rule set used for parallel and garage 

parking are shown in Tables 2 and 3. The 

abbreviations represent the linguistic values of each 

variable as follows:  

{NB, NM, N, Z, S, M, B, P, PM, PB}={Negative big, 

Negative medium, Negative, Zero, Small, Medium, 

Big, Positive, Positive medium, Positive big}. 

Based on this fuzzy partitioning, the qualitative 

description looks like: 

•  In case of [ ]x y θ θ =[B B P Z] for parallel 

parking as Fig. 8(a), if the vehicle is near the outer 

boundary of the parking space with a positive 

orientation, it should maintain the current 

orientation for driving toward the parking space. 

•  In case of [ ]x y θ θ =[S S N PB] for parallel 

parking as Fig. 8(b), if the vehicle is near the 

origin with a negative orientation, the vehicle 

should turn in a large angle counterclockwise to 

get aligned with the parking space. 

Table 2. Fuzzy rule set for parallel parking. 

 x/y S B VB 

S PB PB NB 

B PM PB PB θ = N 

VB PM PB PM 

S Z Z NM 

B Z PB PB θ = Z 

VB Z PM PB 

S NB Z Z 

B NM Z PM θ = P 

VB NM Z PM 

 

Table 3. Fuzzy rule set for garage parking. 

 x/y S B VB 

S B B M 

B B B M θ = N 

VB M M M 

S B B M 

B B M S θ = Z 

VB M S S 

S M M S 

B M S Z θ = P 

VB S Z Z 

 

 
  (a)                (b) 

Fig. 8. Elicitation of some fuzzy rules for parallel 

parking. (a) Rule [ ]x y θ θ =[B B P Z] (b) 

Rule [ ]x y θ θ =[S S N PB]. 

(a) Parallel parking. 

(b) Garage parking. 
 

Fig. 9. MFs.  
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3. FUZZY LOGIC CONTROLLER USING 

AUTOMAIC RULE GENERATION 

THROUGH EVOLUTIONARY STRATEGY 
 

When we evaluate the performance of the FLC, we 

consider various factors: 

• Possible collision 

• Parking time 

• Accuracy of the parked position 

• Compactness of the FLC 

• Size of the parking space 

Although the FLC introduced in Section 2 was 

designed by hand, it was not optimal under various 

parking scenarios. In this section, we will optimize the 

FLC using the above criteria as the cost function. 

 

3.1. Modeling of a vehicle 

For the generation of the training data as well as 

training FLC, we used a simulator with the vehicle 

kinematics with skid-steering as in (1), but we 

consider the constraints for the real vehicle like the 

minimum and maximum steering angles [5]. 

( 1) ( ) ( ) ,

( 1) ( ) ( 1)cos( ( 1)) ,

( 1) ( ) ( 1)sin( ( 1)) ,

i i i dt

x i x i v i i dt

y i y i v i i dt

θ θ θ

θ

θ

+ = +

+ = + + +

+ = + + +

 (1) 

where 
( ) ( )

( ) ,
2

r l
r

v i v i
v i v

+
= =velocity of the right 

side wheel, lv =velocity of the left side wheel 

( ) ( )
( ) ,r l

v
v

v i v i
i w

w
θ

−
= =distance between the left side 

and right side wheels. 

3.2. Extraction of the fuzzy rule set from training data 

We can greatly improve on the parking performance 

of the heuristic rules set given in Section 2.2.3 by 

evolving the fuzzy rule set embedding the grade of 

certainty concept (CF: Certainty Factor) as in [14]. 

CF represents weights of fuzzy if-then rules. Because 

some fuzzy if-then rules increase the complexity for 

the optimization, we can simplify and find the best set 

of fuzzy if-then rules from training data using CF. It 

constructs a fuzzy-rule-based system that divides the 

n-dimensional input pattern space [0, 1]
n
 into c 

disjoint decision areas and CF is calculated by the 

training patterns defined in vehicle state space. A 

fuzzy if-then rule with an empty class consequent is 

referred to as a dummy rule that has no effect on the 

classification of a new pattern. The training data 

contains the consecutive pairs of the vehicle state x 

and the corresponding angular velocity θ  under 

various initial positions using manual maneuvering as 

in Fig. 10. 

The acquired θ  is quantized to 5 classes that are 

linguistic values for the output membership functions. 

The IF-THEN rule is optimized by adjusting the 

parameters of the membership functions as in (2). 

1 1Rule : If is and ... is

then Class with ,

j j n jn

j j

R x A x A

C CF CF=
 (2) 

where 

1jA … :jnA  Antecedent fuzzy set, 

:jC  Consequent class, 

:jCF  Certainty of the fuzzy if-then rule .jR  

The grade of certainty for the rule jR  to the input 

pattern 1 2,x ( , , )p p p pnx x x=  is: 

1 1(x ) ( ) ( ).j p j p jn pnx xµ µ µ=   (3) 

The sum of the grades of certainty for the rule jR  

over the class training patterns in each class is: 

class

x class

( ) (x ).

p

h j j p

h

Rβ µ
∈

= ∑   (4) 

The class h with the maximum class ( )h jRβ  is the 

consequent ,jC  and the grade of certainty jCF  

becomes 

class class

1

( ( ) ) / ( ),
j

c

j h j h j

h

CF R Rβ β β
=

= − ∑  (5) 

where 

c: number of the class 

( ) /( 1).

j

class h j

h h

R cβ β
≠

= −∑  

 

 

Fig. 10. Training samples for parallel parking (the

green portion indicates the vehicle front). 
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Table 4. Grade of certainty and consequent class for 

parallel parking. 

 x/y S B VB 

S 1(PM) 0 0 

B 0 0 0.52(PB)θ = N 

VB 0 0 0.85(Z) 

S 0.71(Z) 0 0 

B 0 0 0.57(PM)θ = Z 

VB 0 0 0.73(PB)

S 0.47(NM) 0.87(Z) 0 

B 0.51(Z) 0.37(PM) 0.52(PM)θ = P 

VB 0 1(Z) 0.97(PB)

 
Table 5. Grade of certainty and consequent class for 

garage parking. 

 x/y S B VB 

S 0.79(B) 0.31(B) 0 

B 0 0.48(Z) 0 θ = N 

VB 0 0.61(Z) 1(M) 

S 0.56(B) 0.52(B) 0 

B 0 0 0 θ = Z 

VB 0 0 0 

S 0.59(Z) 0.62(S) 0 

B 0 0 0 θ = P 

VB 0 0 0 

 
Tables 4 and 5 show the CF and the consequent 

classes from the training data for the parallel and 

garage parking respectively. While the previous rule 

set has 27 rules, the new rule set has just 13 and 9 

rules respectively. This rule set will be further 

optimized by evolutionary strategy (ES) in the next 

section. 

 

3.3. Fine-tuning of the FLC with evolutionary 

strategy (ES) 

ES searches the solution space through the use of 

simulated evolution to choose the most effective 

parameters for the FLC. In this research, ES optimizes 

the parameters for both the membership functions and 

the rule set until the cost falls within a certain 

threshold as shown in Fig. 11. 

A chromosome of ES contains the left, center, and 

right points for each of the triangular or trapezoidal 

membership functions as in Fig. 12. 

Tuning the membership functions requires 

adjustment of the values of these parameters. Another 

important issue for the optimization problem is to 

determine the cost function. In this research, the cost 

function for ES considers the collision possibility, the 

elapsed parking time, and the accuracy of the parked 

position as follows: 

1 2 3 4cost ,c p ow N w T w e w e= ⋅ + ⋅ + ⋅ + ⋅  (6) 

where 

:iw  Weight for eachsubcost 

:cN  Occurenceof collision (binary) 

:T  Overall parkinmg time 

:pe  Final position error 

:oe  Final orientation error. 

The adaptive mutation used is as follows: 

x '( ) x ( ) ( ) (0,1),

'( ) ( ) exp[ (0,1) (0,1)],

1 1, ,
22

(0,1) Gaussian random number,

(0,1) (0,1) using ascounter.

i i i j

i i j

j

j j σ j N

σ j σ j τ N τ N

τ τ'
nn

N

N N j

= +

′= +

= =

=

=

 (7) 

To illustrate the tuning results, the membership 

functions with the best performance are shown in Fig. 

13. Even though there is no obvious improvement 

relative to extensive heuristic tuning, the tuning 

process with ES is more systematic and results in a 

significant time saving for the designer. 

Population initialization

Evaluation

Stop Condition?

End

Selection and

Removal unused rules

Adaptive mutation

Yes

No

Population initialization

Evaluation

Stop Condition?

End

Selection and

Removal unused rules

Adaptive mutation

Yes

No

Fig. 11. Optimization process for the membership 

function. 

 

Fig. 12. A chromosome structure of a membership 

function. 
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(a) Parallel parking. 

 

 

(b) Garage parking. 

Fig. 13. Optimized MFs. 

 
Furthermore, we can remove those rules playing a 

minor role. The total rule set, 

1 2 13[ ] [0 1 0],S s s s= =   (8) 

where 

jS = 1: the j
th

 candidate rule is included in S, 

jS = 0: otherwise case. 

We can optimize the rule set using a new cost 

function with the number of the rules added. Finally, 4 

and 7 rules for each parallel and garage parking were 

finally selected like the gray cells in Tables 4 and 5. 

We find the membership functions as a function of 

different sizes of the maneuvering space. 

 

3.4. Exploration of the proper initial poses 

Although an optimized fuzzy controller can be 

found as described earlier, it is also important to start 

from a good ready-to-reverse position, that is, the 

green zone for stable and good parking. After 

exploring the parking space, the vehicle moves to a 

good ready-to-reverse position. The system explores 

certain regions of the ready-to-reverse positions by 

checking the parking possibility in advance. These 

regions are defined by quantizing the antecedent 

variables x, y, .θ  If the vehicle is in the valid region 

so called the green zone, the automatic parking 

process will start right away. Otherwise, the vehicle 

has to move to the green zone first. Fig. 14 shows this 

green zone. Bright cells have a good possibility of 

proper parking. For moving to the green zone, because 

it is not required to the exact position and pose in 

green zone, we applied simple PD controller. 

 
4. EXPERIMENTAL RESULTS 

 
The Pioneer 3-AT robot is the autonomous vehicle 

considered here. The wheels on one side of the robot 

are mechanically coupled and thus skid steering is 

used to maneuver the robot in Fig. 15(a). It has 16 

ultrasonic sensors as in Fig. 15(b) and a camera with a 

120° view angle in the rear that looks in downward 

direction. 

 

   

(a) Testbed.        (b) Sensor configuration. 

Fig. 15. System hardware. 

Good ready-to-reverse poses in this parking space

Poor ready-to-reverse poses in this parking space
(a) (b)

 

Fig. 14. Green zone (bright pixels for representing 

the vehicle center position) for good starting 

poses. (a) Parallel parking (b) Garage 

parking. 
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(a)                    (b) 

  

(c)                   (d) 

  

(e)                   (f) 

Fig. 16. Parallel parking procedure. (a) Initial position 

(b) Exploration of the space (c) Ready-to-

reverse position (d) Backup maneuvering (e) 

Forward adjustment maneuvering (f) Final 

position reached. 

 

The parking space is represented by the parking 

markings and possible surrounding obstacles as in Fig. 

16, showing the real experiments. The vehicle starts 

from an initial position of Fig. 16(a) and then seeks 

both for a parking space and alignment to it as shown 

in Fig. 16(b). When a proper parking space has been 

found, it will decide on a proper parking scheme and 

the initial reverse-to-backup position. Finally, the 

system will use vision and the sonar readings to 

continuously localize itself to implement the 

preselected parking control using a properly optimized 

fuzzy logic controller as shown in Figs. 16(d)-(f). 

Figs. 17 and 18 show the reconstructed trajectories 

using the proposed automatic parking system in three 

different parking areas. The vehicle trajectories are 

reconstructed by applying the vehicle localization 

procedure in Section 2.2. One would notice however 

that in Fig. 16, the perspective parking views make it 

rather difficult to judge how well the actual control is 

executed. In order to help visualization of the parking 

precision, Figs. 17 and 18 show the reconstructed 

controlled trajectories seen from the top. 

Although these figures exhibit a stable performance 

without any collision, the best and most stable result 

is obtained from a relatively larger parking space 

since the proposed parking scheme does not attempt 

to seek a good parked position but to achieve the 

whole parking process at one shot (with just a single 

(a) 1.8×1.8 times the dimension of the vehicle. 

(b) 1.5×1.5 times. 

(c) 1.4×1.4 times. 

Fig. 17. Reconstructed trajectory for parallel parking 

as a function of the size of the maneuvering

space.  

 

(a) 1.5×1.5 times.       (b) 1.4×1.4 times. 

Fig. 18. Reconstructed trajectory for garage parking.
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back up motion). 

Fig. 19 shows the parking procedure after moving 

to a green zone because the vehicle started from a 

poor initial pose. For instance, if we start from an 

initial position of Fig. 19(a), it would have to go 

through a time-consuming series of backward and 

forward maneuver adjustments. However, if we 

instead decide to adjust the ready-to-reverse position 

as in Fig. 19(b), we can eliminate these tedious 

backward-forward movements. As shown in Figs. 

19(c) and (d), we are able to parallel park at one shot 

through this adjustment of the ready-to-reverse 

position. 

 

5. CONCLUSIONS 
 

We developed a novel automated parking utilizing a 

robust localization algorithm, an automated fuzzy 

controller design, based on initial search of a good 

ready-to-reverse position. Our contributions are: 

1) Efficient localization: For fully automatic parking, 

it is required to exactly estimate the relative 

position and heading of the vehicle. The rear 

ultrasonic sensors that have been commonly used 

for parking assistance cannot usually extract this 

information. The sensor system for APS must have 

a vision and range sensors for covering all-around 

directions. The proposed localization draws upon 

this sensor configuration and can operate well 

without odometry. Because the reactive control 

uses raw signals of the sensors, it is required to 

newly train according to the different sizes and 

shapes of the parking lot. In contrast, our position-

based control facilitates the controller design. 

2) Fuzzy controller optimization: We used the FLC 

which is suitable for position based control. 

Because the fuzzy rule set is constructed not from 

heuristics but from the training data, it is made 

compact and efficient by removing unnecessary 

rules. Further, the membership functions are 

optimized by considering the collision possibility, 

the elapsed time, and the accuracy of the parked 

position. This process can improve the stability of 

parking in spite of variations of the parking space. 

3) Good starting vehicle pose for parking: The 

proposed system calculates a green zone for the 

proper initial positions for the parking maneuver. 

Starting from a good ready-to-reverse position 

usually makes the ensuing parking control a lot 

easier. 

Our system can also adapt to different vehicle 

platforms by tuning the kinematics and weights for 

each cost of ES. In the future, we can also apply the 

current system as it is to a parking assistance system 

(without any control). Finally, we could also train our 

FLC with a neural network emulating some kind of 

human parking behavior. 
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