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Purpose: In X-ray fused with MRI, previously gathered roadmap MRI volume images are overlaid
on live X-ray fluoroscopy images to help guide the clinician during an interventional procedure.
The incorporation of MRI data allows for the visualization of soft tissue that is poorly visualized
under X-ray. The widespread clinical use of this technique will require fully automating as many
components as possible. While previous use of this method has required time-consuming manual
intervention to register the two modalities, in this article, the authors present a fully automatic
rigid-body registration method.
Methods: External fiducial markers that are visible under these two complimentary imaging mo-
dalities were used to register the X-ray images with the roadmap MR images. The method has three
components: �a� The identification of the 3D locations of the markers from a full 3D MR volume,
�b� the identification of the 3D locations of the markers from a small number of 2D X-ray fluoros-
copy images, and �c� finding the rigid-body transformation that registers the two point sets in the
two modalities. For part �a�, the localization of the markers from MR data, the MR volume image
was thresholded, connected voxels were segmented and labeled, and the centroids of the connected
components were computed. For part �b�, the X-ray projection images, produced by an image
intensifier, were first corrected for distortions. Binary mask images of the markers were created
from the distortion-corrected X-ray projection images by applying edge detection, pattern recogni-
tion, and image morphological operations. The markers were localized in the X-ray frame using an
iterative backprojection-based method which segments voxels in the volume of interest, discards
false positives based on the previously computed edge-detected projections, and calculates the
locations of the true markers as the centroids of the clusters of voxels that remain. For part �c�, a
variant of the iterative closest point method was used to find correspondences between and register
the two sets of points computed from MR and X-ray data. This knowledge of the correspondence
between the two point sets was used to refine, first, the X-ray marker localization and then the total
rigid-body registration between modalities. The rigid-body registration was used to overlay the
roadmap MR image onto the X-ray fluoroscopy projections.
Results: In 35 separate experiments, the markers were correctly registered to each other in 100% of
the cases. When half the number of X-ray projections was used �10 X-ray projections instead of
20�, the markers were correctly registered in all 35 experiments. The method was also successful in
all 35 experiments when the number of markers was �retrospectively� halved �from 16 to 8�. The
target registration error was computed in a phantom experiment to be less than 2.4 mm. In two in
vivo experiments, targets �interventional devices with pointlike metallic structures� inside the heart
were successfully registered between the two modalities.
Conclusions: The method presented can be used to automatically register a roadmap MR image to
X-ray fluoroscopy using fiducial markers and as few as ten X-ray projections.
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I. INTRODUCTION

In several areas of modern medicine, there has been interest
in combining multiple, complementary imaging modalities in
order to improve the diagnoses of diseases and the delivery
of therapies. In oncology,1 computed tomography �CT� has
long been combined with positron emission tomography
�PET� for improved diagnosis and monitoring of cancer. In
image-guided radiotherapy,2 multiple modalities are com-
bined for better treatment planning. Morphological data from
X-ray and perfusion data from PET have been combined3 to
improve diagnoses in cardiology. 3D CT and MR images
have been combined with electroanatomical maps4 of the
heart to guide electrophysiological procedures. Ultrasound
has been combined with MR �Ref. 5� to guide prostate biop-
sies. CT images have been fused with X-ray fluoroscopy6–8

to guide various interventional procedures.
In this paper, we are concerned with a technique known as

X-ray fused with MRI �XFM�,9–15 also known as XMR, in
which live X-ray fluoroscopy �XF� projection images are dis-
played along with a previously gathered roadmap 3D MR
image. In this paper, we present a novel, fully automatic
method to register the two modalities. In an interventional
procedure, the clinician attempts to avoid invasive surgery
by using a small incision to insert and maneuver an instru-
ment, such as a catheter, inside a patient. The ability to ac-
curately visualize the interventional instrument in relation to
adjacent tissue is essential to the success and safety of inter-
ventional procedures.

I.A. XFM guidance for interventional procedures

XF, the most commonly used interventional imaging mo-
dality, offers projection images of high temporal and spatial
resolution. The contrast in an XF image depends on the
opacity of the object to X-ray, in particular the attenuation
coefficient of the substance. While XF provides excellent
images of a catheter or blood that contains an iodinated con-
trast agent, most kinds of human tissue have very similar
attenuation coefficients and are very poorly visualized under
XF. Unlike XF, MRI can produce images that provide good
soft-tissue contrast, with the nature of the contrast varied
depending on the structures of interest to the clinician. The
disadvantages of MRI are its slow acquisition time and the
inability to use commonly used interventional tools with the
associated magnetic fields and radiofrequency pulses.

In XFM, these two complementary imaging modalities
are combined by displaying a previously gathered roadmap
MR image along with the live XF projection images. This
allows the interventionist to visualize soft-tissue structures
that are invisible under XF. A previous work13 has demon-
strated that this enhanced image guidance can enable proce-
dure simplification and reduction of radiation exposure. At-
tempts have been made to more closely combine the XF and
MR systems by integrating an X-ray system into an open
“double-doughnut” MR system16 or placing a flat-panel XF
system adjacent to a closed bore magnet.17 In this paper, we
describe a method that can be used with the conventional

X-ray-MR suites in which the patient has to be physically
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moved between the two modalities and which requires no
new hardware. Furthermore, a combined X-ray-MR suite is
not necessary; our method can be used even when the patient
is transferred between rooms.

This requires the registration of the roadmap MR image
with the live XF images. A few different methods have been
proposed. The method described by Rhode et al.,14,15 which
optically tracks sensors placed on the X-ray table and C-arm,
does not allow for the tracking of patient motion relative to
the table and requires an extra optical tracking system. The
disadvantage of using intrinsic anatomical landmarks to per-
form the registration is that the landmarks �such as ribs� are
not necessarily visible and automatically identifiable under
both MR and X-ray. Tomokowiak et al.18 propose using a left
ventriculogram �filling the left ventricle with contrast agent
under XF� in order to register the two modalities, but their
method requires the injecting of contrast agent. Rhode et
al.19 presented a promising method of combining the optical
tracking system with external fiducial markers, similar to the
markers we use, that are MR and X-ray visible. In their
work, which used manual segmentation of the markers, they
report target registration errors of a fraction of a mm, in a
phantom, and of less than 6 mm in vivo.

For registration we use a set of stationary external fiducial
markers �Beekley, Bristol, CT� that are visible under both
imaging modalities �a belt of plastic beads filled with a mix-
ture of gadolinium and iodinated contrast agent� attached to
the patient while undergoing both MR and XF imaging. The
3D locations of these beads are identified separately under
MR and XF and then the two sets of beads are registered to
each other in order that the roadmap MR image may be
correctly displayed on the live XF visualization �as seen in

FIG. 1. Outline of XFM system.
the lower right hand corner of Fig. 1�. There are several
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advantages of this method to those described above. It works
even if the patient moves relative to the table, unlike in some
previous methods;14,15 the belt of beads are noninvasive and
do not require the injection of contrast agent, unlike in other
methods;18 the system does not require new hardware and
can be used with older image intensifier systems, unlike in
some methods;15,16 and can be used in cases when the two
modalities are in different locations and not in a single suite,
unlike in many methods.14–17

This procedure requires three distinct computational
tasks: �a� Identifying the 3D locations of the beads from a
full 3D MR volume, �b� identifying the 3D locations of the
beads from a small number of 2D XF images, and �c� finding
a rigid transformation �rotation and translation� that relates
the MR and X-ray coordinate systems. Identifying the 3D
location of the beads �henceforth referred to as “localizing
the beads”� from MR data requires segmenting a full 3D
volume. The MRI sequence �T1-weighted, gradient echo�
that produces this image was chosen to provide a high con-
trast between the Gd-filled beads and the rest of the image.
Consequently localizing the beads is a relatively straightfor-
ward image processing and segmentation task, described in
Sec. II B. On the other hand, localizing the beads from a
small number of XF images, described in Sec. II C, is more
challenging because the data is limited and because of the
presence of other objects in the XF images. Finally, the rigid
transformation between the two sets of beads is achieved by
a version of the well-known iterative closest point �ICP�
algorithm20 and is described in Sec. II D.

While previous publications9,12,13,21 have presented the
XFM system as applied to endomyocardial injections,9 mitral
cerclage annuloplasty,21 and the closure of ventricular septal
defects13 �VSDs� in a swine model, none have presented the
computational method that achieves the automatic registra-
tion. In early works,9,21 the procedure was minimally auto-
mated and required extensive, time-consuming, interaction
by a skilled human operator to localize the MR and X-ray
markers by manual examination of the data. A more recent
work13 used a promising predecessor22,23 of the method that
we present in this paper. That method achieved automatic
MR and XF localization of the markers but suffered a few
shortcomings including the restriction that the angular spac-
ing of the XF projections be small ��3°� and was therefore
not conducive to using fewer X-ray projections. The method
we present in this paper uses an edge-detection-based strat-
egy for XF projection segmentation that is similar to that
used by its predecessor but is otherwise completely different.
These differences include the use of a more robust XF pro-
jection segmentation method, a novel backprojection-based
XF localization method that does not require the XF projec-
tions to be closely spaced in angle, and the use of the well-
known iterative closest point algorithm for the registration
�which replaces a more heuristic prior method�.

I.B. Localizing fiducial markers from a few X-ray
projection images

A problem similar to bead localization from XF images

has been addressed in the area of prostate brachytherapy seed
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localization. The problem in brachytherapy is to identify the
3D locations of radioactive seeds that have been implanted in
the patient from a few XF images. A range of algorithms24–30

has been described to solve the problem. In all these meth-
ods, each XF image is first segmented to identify the pixels
that represent the seeds, just as we do. The algorithms to then
identify the 3D locations of the seeds from their segmented
projection images may be divided into two classes. The first
class of algorithm24–26 explicitly computes a correspondence
�or matching� between seeds �i.e., they find which seed shad-
ows on one projection image correspond to which other seed
shadows on a different projection image�. These kinds of
methods are referred to in the brachytherapy literature as
“seed-matching” approaches. The second class of
algorithms27–30 avoids this explicit matching step and di-
rectly finds the 3D locations of the seeds, either using a
backprojection-based method28,30 or setting up the problem
as the minimization of a cost function.27,29 These nonmatch-
ing approaches have the important advantage of avoiding the
difficult task of reliably finding correspondences from
�sometimes erroneous, as explained below� segmented pro-
jection images.

There are differences between the localization problems
in XFM and brachytherapy that make none of the above
methods directly applicable. All the brachytherapy methods,
while they make allowances for spurious and hidden/
occluded seeds, assume that every true seed is identified in
every projection. This assumption does not necessarily hold
true in XFM for two reasons. First, unlike in brachytherapy
where the seeds tend to be restricted to a small volume,
inside the patient and close to the origin of the imaging sys-
tem, the beads in XFM lie on a belt external to the patient
and each projection image does not contain all the beads.
Second, the segmentation of the projection images in XFM
tend to be less perfect than in brachytherapy and therefore
the segmented XF images can overidentify and underidentify
beads. The imperfect segmentation is because of the pres-
ence of other structures �such as ribs, tissue, and interven-
tional devices� and because, in order to reduce dosage, a
lower power X-ray �70 kVp/102 mA� is used which results
in reduced contrast. Consequently, in XFM, a bead may be
identified in as few as two projection images.

In contrast with these aspects that are more difficult in
XFM than in brachytherapy, the XFM problem is easier in
some aspects. Specifically, the beads in XFM are larger than
brachytherapy seeds, making the problem less sensitive to
errors in the pose of the C-Arm, the number of markers is
smaller in XFM than in brachytherapy, and because the belt
of beads is fixed and taut, we have a minimum bound on the
distances between beads that we can use to eliminate false
positives.

Our algorithm falls into the second class of nonmatching
methods. We first segment the XF projection images to pro-
duce bead masks to identify those pixels which represent
beads and those which do not. We backproject these bead
masks onto the volume of interest. We then process this
backprojected volume to identify the groups of voxels that

represent beads. The key problem is to identify, among the
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large group of candidate beads, which ones are false posi-
tives. We explain this iterative method in Sec. II C 4. This
general approach of discarding false positives from a large
number of candidates is one that is also employed in the
work of Lee et al.28 While the general approach of their
method is similar to ours, their method is not directly appli-
cable to XFM for two reasons. First, their assumption that
every seed is identified in every projection does not hold true
for XFM. Second, the criteria that they use to eliminate false
positives are based on an empirical observation of brachy-
therapy seeds, while the criteria and resultant method we use
are based on the nature of beads and their XF projections.

II. METHODS

II.A. Outline of XFM system

The outline of the XFM imaging system is shown in Fig.
1. Before the interventional procedure, the belt of beads
�numbering no more than L=16� is strapped around the torso
of the patient and MR images are collected. In our experi-
ments, the beads were distributed with a cluster of eight
beads on the anterior portion of the belt and a cluster of eight
beads on the posterior portion. For the purpose of bead lo-
calization, a T1-weighted gradient-echo MR sequence is used
to gather a 3D image that displays a strong contrast between
the gadolinium inside the beads and surrounding tissue.
Other 2D and 3D physiological MR images are also gathered
for later fusion during the procedure. The patient is then
moved to the X-ray fluoroscope and a small number
���20� of XF images are collected for the purpose of bead
localization. The automatic localization of the beads is per-
formed on both the MR and XF data. Each bead localization
produces a set of 3D coordinates of the centers of the beads.
These two sets of 3D coordinates are then fed into a regis-
tration algorithm which computes the rigid-body transforma-
tion �the rotation and translation� that relates the two sets of
markers. This rigid-body transformation is used to fuse the
MR images onto the live XF image during the procedure. An
example of a fused image is shown at the bottom right of the
figure. The contours from the MR image are overlaid onto an
XF projection image. Also visible on the XFM image are the
beads, which appear dark as they contain iodinated contrast
agent.

II.B. Automatic localization of markers in MR

The 3D MR images used for marker localization contain
the whole volume of interest. A typical image is 128�128
�144 voxels with a resolution of 3.1�3.1�1.6 mm3. As
seen in Fig. 2, which shows two maximum-intensity projec-
tions �MIPs� of one such volume image, the contrast between
the voxels representing the beads �light regions� and voxels
representing other tissue is large as a result of the use of a
T1-weighted sequence �a 3D gradient-echo sequence with
echo time TE=0.94 ms, repetition time TR=2.6 ms, and
flip angle=17°�.

The markers are identified by first thresholding the full

3D volume image to make a binary image which is zero
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everywhere except for voxels whose value is greater than a
fraction of the value of the maximally valued voxel �we use
a threshold of 0.5�. Nonzero voxels in the image that are
connected to each other are grouped together. We define two
voxels to be connected if they are both nonzero and one
voxel is one of the 26 neighbors of the other voxel31 �p. 67�.
Groups that contain more than S voxels are discarded and
then the remaining groups are sorted on the basis of the
maximally valued voxel in each group. The best L remaining
voxel groups are considered to be real beads. In our system,
we use no more than 16 plastic beads of a finite volume so
we choose L=16 and S corresponding to 0.9 cc. The centroid
of each voxel group is computed to be the center of the bead.

To refine the values of this centroid, a second pass
through the L identified beads is performed. The problem
with the initial estimate is that the threshold, being conser-
vative, sometimes segments beads partially. Furthermore, the
value of the highest-valued voxel is not the same in every
bead �because of the inconsistencies in the concentration of
the Gd contrast agent or the sensitivity of the MR receiver
coils�. In this second pass, all the L beads are reconsidered
and thresholded using a lower threshold �0.2� relative to the
maximally valued voxel of the specific bead, not the maxi-
mally valued voxel of the whole volume. The black dots at
the centers of the white circles in Fig. 2 represent the centers
of the beads. A visual inspection suggests that all the markers
have been correctly identified in Fig. 2.

II.C. Automatic localization of markers in X-ray

II.C.1. Segmenting beads in X-ray fluoroscopy
images

Each XF projection image is first distortion-corrected, by
the method described by Gutiérrez et al.,11 to produce an
image as shown in Fig. 3�a�. This image is segmented to
produce a bead mask, as shown in Fig. 3�c�, an image that is
zero everywhere except for the pixels corresponding to the
beads. We refer to a contiguous nonzero region in a bead
mask as a bead region. Note that while most bead regions
correspond to the projection of a single bead, sometimes they
correspond to more than one bead whose projections overlap
�identified by the dashed circles�. Single-bead and multibead
regions can be distinguished on the basis of the convex hull
of the bead region. It is easy to see that the area of a single-

FIG. 2. Bead localization in MR. �a� Coronal MIP and �b� axial MIP. The
white x’s denote the locations of the markers found by the MR marker
localization algorithm.
bead region would be equal to the area of its convex hull,
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while the area of a multibead region would be less than the
area of its convex hull. Multibead regions are identified as
those for which the ratio of its area to the area of its convex
hull is less than a threshold �that we set to be 0.9�.

To create a bead mask from an XF projection image, a
Canny edge detector32 �followed by skeletonization �Ref. 31,
p. 543�� is first applied to each XF image to produce a
binary-valued edge mask, as shown in Fig. 3�b�. This edge
mask is zero everywhere except for pixels that lie on edges
where it is equal to 1. As shown in Fig. 3�b�, the edge de-
tector returns edges of several features in the XF image such
as the ribs and the shadow of the heart. The distinctive fea-
ture of the beads is that their projections have a roughly
ellipselike shape regardless of the orientation, or view angle,
of the XF projection. Particularly, they consist of two parallel
straight edges with rounded corners. In the best cases, the
edge detector finds the complete, continuous, outline of the
bead, but more often than not, the edge detector finds an
incomplete edge that contains at least one corner of the out-
line. We iterate through every edge found by the edge detec-
tor and identify those that might represent the corner of a
bead.

The corners of beads are identified as those edges that �i�
contain a rounded corner �defined as changing direction by
90° within a sufficiently small distance; we use 40 pixel
units� and �ii� have lower-valued pixels on the inside of the
corner �because the iodine in the bead absorbs x rays�. Figure
4�a� plots the direction vs distance of three different edges
�cases I, II, and III�. The XF images and the edge masks
corresponding to the three cases are shown on the right. Both

FIG. 3. Segmenting beads: �a� XF projection image. �b� Corresponding edge
mask. �c� Bead mask extracted from edge mask. Dashed circles identify
overlapping beads.

FIG. 4. Identifying bead corner �a� Direction vs distance. �b� Case I: Good.
�c� Case II: Nonellipsoidal. �d� Case HI: Ellipsoidal but not a bead shadow.
The thick line represents the segment of the trace that is identified as a bead

corner.
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cases I and III qualify as bead corners by the first test. The
points represented by the thicker line correspond to points on
the rounded corner. Case II does not pass the bead-corner test
and is correctly identified as not being a bead. Case III fails
the pixel-value test and is therefore correctly rejected as a
bead corner. Identifying beads by the change in direction of
the edge allows for the segmentation to be robust to rotations
of the bead outline within the XF image. Furthermore, iden-
tifying them purely by their distinctive corners makes the
algorithm robust to cases when the bead projections overlap
each other.

If an edge is identified to contain a corner of a bead out-
line, the bead mask corresponding to that bead is found in a
two step template-matching process. First, the shape of the
bead outline is predicted by using knowledge of the edge
under consideration. Then, this prediction is corrected by the
other edges in its neighborhood. In particular, if the predicted
bead outline does not lie on an edge pixel, it is adjusted to lie
on the closest edge pixel that lies on a line segment perpen-
dicular to the predicted bead outline.

This process of fitting a bead outline to an edge is illus-
trated in Fig. 5. The edge identified as a bead corner is shown
in Fig. 5�a�. The bead corner is represented by the thicker
line. A rough template of the bead is formed using the two
straight edges �as shown in Fig. 5�b�� of the bead outline
adjacent to the bead corner and closing the shape in a simple
polygonal manner �as shown in Fig. 5�c��. This predicted
bead outline is then adjusted to lie on the closest edge pixel
that lies on a line segment perpendicular to the predicted
bead outline as shown in Fig. 5�d�. The corrected bead out-
line is then filled31 �p. 535� to make the bead mask.

II.C.2. Backprojecting the XF projections

In anticipation of the second part of our algorithm, we

FIG. 5. Fitting a bead outline to an edge. �a� Edge map. The thick line
represents the bead corner that has been identified. �b� The two straight
edges adjacent to the bead corner are identified. �c� The predicted bead
�dashed line� outline is formed by extending the bead corners and edges in
a polygonal manner. �d� The bead outline is formed by adjusting the bead-
outline prediction by the closest edge pixels. The closed bead outline is
filled to form the bead mask.
describe the efficient tomographic backprojection of sparse
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projection images �bead masks�. The geometry of an XF pro-
jection �see Figs. 1–3 in Ref. 33� oriented at view angle �� is
encapsulated by a projection matrix P��. Note that because
the C-arm of the XF system is able to rotate in 3D, the view
angle �� is a scalar pair consisting of a primary and secondary
angle. As described by Shechter et al.,33 the matrix P�� de-
pends on the primary and secondary view angles, the dis-
tance of the source to the isocenter of the XF system, the size
and resolution of the XF intensifier that detects the transmit-
ted x rays, and the distance of the source to the intensifier. In
addition, to account for an addition residual in-plane rotation
and translation, the projection matrix is modified based on
calibration data.10 A 3D point �qx ,qy ,qz� in space is projected
onto the 2D point �pu , pv� in the XF projection image. The
point �pu , pv� is derived as follows. The vector r�
= �ru ,rv ,rw� is computed from the vector q� = �qx ,qy ,qz ,1� by
matrix multiplication: r�= P��q� . Then the point �pu , pv� in the
XF projection image is computed as pu=ru /rw and pv
=rv /rw. The backprojection of a single XF projection image
g�pu , pv� onto a 3D volume f�qx ,qy ,qz� can be expressed as
f�qx ,qy ,qz�=g�pu , pv�, where p� is computed from q� as ex-
plained above.

Backprojecting L projections onto a 3D image volume
with N voxels, using nearest neighbor interpolation, costs cL

arithmetic operations per voxel, i.e., cLLN total operations.
But since the bead masks that we are backprojecting are very
sparse, zero everywhere except for in the bead regions, this
cost is reduced by using ray-driven backprojection34 and
only operating on the bead regions of the XF projections. If
the fraction of bead-region pixels to the total number of pix-
els of each bead mask is �, then the cost of backprojecting L
bead masks is �cLLN.

II.C.3. Identifying the volume of interest

Since the cost of backprojection is proportional to the
number of voxels of the backprojected 3D volume image, it
is computationally beneficial to use a small number of vox-
els. The number of voxels is, in turn, inversely proportional
to the voxel size �which affects how finely the bead locations
can be resolved� and proportional to the size of the volume
of interest. A voxel size of 3 mm is found to be adequate in
resolving bead locations using backprojection. In Sec. II E,
we describe a method to refine the estimate of the bead lo-
cations, so the 3 mm voxel size used here does not limit the
resolution of the final estimate of the bead locations.

In order to reduce the 3D volume of interest, a rough
estimate of the volume occupied by the beads is made by the
following simple multiresolution algorithm. First, a FOV-
mask image is created from each bead-mask image to cap-
ture the vertical extent of the bead mask. In particular, a
FOV-mask image is zero-valued on the rows above and be-
low the most extremal bead regions of the corresponding
bead mask and 1 everywhere else. These FOV-mask images
are then backprojected onto a very sparse, large 3D volume
centered at the origin of the system. A rough estimate of this
volume is made by finding a cuboidal region in this back-

projected volume outside of which the voxel values fall be-
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low a threshold �we use half the number of projections�. This
gives a rough estimate of the volume of interest. To reduce
the volume of interest a little more, we backproject the same
projections onto a finer 3D grid within this cube-shaped re-
gion. We then find a smaller cube-shaped region within this
backprojected volume outside of which the voxel values fall
below the threshold.

II.C.4. Identifying beads in 3D volume

As described previously, we compute a bead mask for
each XF projection. Since the field of view of the XF system
is limited, each XF projection image does not contain all 16
beads. Furthermore, the segmentation of beads is often im-
perfect and the algorithm both overidentifies �i.e., contains
false positives� and underidentifies �i.e., contains false nega-
tives� beads in XF projection images.

A naïve approach to identifying the location of the beads
would be to backproject all the bead masks onto the volume
of interest, threshold the volume, and compute the centroids
of connected components in this volume. While this works
well when the number of XF projections is large and all the
bead projections are correctly segmented, in the case of a
small number of XF projections that have errors in their seg-
mentation, it tends to produce false negatives �for high
thresholds� and false positives �for low thresholds�.

In order to improve the performance, we employ an itera-
tive approach that exploits additional constraints. The con-
straints are based on the following four observations about
the voxels of the backprojected volume that correspond to
true beads.

First, we know that a voxel corresponding to a true bead
would likely have a large magnitude. The magnitude of a
voxel is equal to the number of bead regions that backproject
onto it. This is equivalent to the number of projections for
which the voxel lies on a ray between the X-ray source and a
bead region �which we will henceforth refer to as bead-
region-rays�. It is unlikely that a nonbead voxel will lie on
bead-region-rays from multiple projections. Conversely, if a
voxel does not lie on a bead-region-ray from multiple pro-
jections, it is very unlikely to be a bead.

Furthermore, if we eliminate a bead region whose corre-
sponding beads have been correctly identified, the likelihood
of false positives decreases. This is because as the bead
masks are made sparser, the likelihood that a nonbead voxel
lies on bead-region-rays from several views decreases.

Second, we know that the beads have a known volume
and are not arbitrarily small. In particular, if the back-
projected volume contains a small number of connected vox-
els with a large magnitude, it is unlikely to be a bead. Third,
we know that the beads are not arbitrarily close to each other
�because they are affixed to a belt in a known configuration�.
When backprojecting bead masks from a limited range of
view angles, the thresholded image sometimes contains a
false-positive group of voxels that is close to a true bead.

28
This phenomenon has been observed in the brachytherapy
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problem. These false positives can be eliminated by ensuring
that the identified beads are no less than a certain distance
from each other �we use 18 mm�.

The fourth observation is about the nature of imperfec-
tions when segmenting the XF projection images to make the
bead masks. Even when a bead has not been identified on a
bead mask, the outline of its projection is always partially
identified by the edge detector in every view. So if the 3D
coordinate of a true bead is reprojected onto the edge mask
of any XF view, it will lie within the partially detected out-
line of a bead. This observation is also used to eliminate false
positives.

The outline of our iterative algorithm is shown in Fig. 6.
Initially, a 3D volume image is created by backprojecting all

FIG. 6. XF bead finding iterative algorithm.
the bead masks. The volume image is thresholded using a
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high threshold �observation I� and connected clusters of vox-
els that are of sufficient volume �we use 60 mm3� �observa-
tion II� are identified using image morphological
operations31 �Chapter 9�. The centroids of these connected
clusters of voxels are computed to get a list of 3D coordi-
nates of candidate beads.

False positives are eliminated from this list of candidate
beads using two tests. In the first test, candidate beads that
are too close to previously correctly identified beads �obser-
vation III� are eliminated. In the second test, candidate beads
whose coordinates when reprojected onto any XF view do
not lie within the outline of a projected bead �observation
IV� are eliminated.

The details of this second test, illustrated in Fig. 7, are as
follows. The test is based on the same principles used to
create bead masks in Sec. II C 1. It assumes that the XF
projection of a bead is likely to be associated with an edge in
the edge map and the inside of the edge will be lower-valued
than the outside of the edge. First a template bead outline is
extracted from the existing bead masks �as will be explained
shortly�. This template bead outline is then reprojected onto
all the other XF views and the outline is corrected to match
the closest edge in the edge mask. Figure 7�a� shows the
template bead outline, denoted by the open circles, overlaid
onto the edge mask. The points of the template bead outline
are corrected by considering a short line segment perpen-
dicular to the template bead outline and resetting the point in
the template bead to the closest edge pixel along that line.

The corrected bead outline, overlaid on the XF image, is
shown in Fig. 7�b�. Notice that the points of the corrected
bead outline better match the edge pixels and the edge of the
bead shadow. This corrected bead outline is scored on the
basis of how likely it is to be a bead. This score, a number
between 0.0 and 1.0, is the fraction of points in the estimated
bead outline that are judged to lie on the edge of a bead

FIG. 7. Scoring of candidate beads. �a� The template bead outline, denoted
by open circles, is overlaid onto the edge mask. �b� The corrected bead
outline, denoted by the black dots.
shadow. A point is categorized as lying on the edge of a bead
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shadow if it �a� lies on an edge pixel in the edge mask and
�b� if the pixels adjacent to the point on the “inside” of the
bead outline are lower-valued than the pixels on the “out-
side” of the bead outline. The solid dots in Fig. 7�b� repre-
sent points on the corrected bead outline that have passed
these tests and are classified as belonging to an edge of a
bead shadow. This particular bead-outline scores 0.945, i.e.,
105/111 of its points pass the test.

A candidate bead is labeled a false positive if the mini-
mum score over all the XF views or the average score over
all the XF views fall below certain thresholds �we use 0.05
and 0.5, respectively�. The template bead outline is chosen as
the bead region corresponding to the candidate bead that has
the highest area-to-convex-hull-area ratio. As explained be-
fore, this makes it likely to be a single-bead region and there-
fore a good template when comparing to other projection
views.

Once the false positives have been eliminated from the
list of beads, the bead masks are made sparser by removing
bead regions that correspond to beads that have been identi-
fied so far. Care is taken to ensure that only bead regions
corresponding to a single bead �as tested by the area-to-
convex-hull-area ratio� are removed. This is done so that
bead regions that correspond to beads that have not yet been
identified but share a bead region with a previously identified
bead are not removed.

Then the iteration is repeated; the sparsified bead masks
are backprojected onto the 3D volume, a list of candidate
beads is made and reduced by removing false positives, and
the bead masks are further sparsified by removing the bead
regions corresponding to the beads that have been so far
found, until all the 16 beads are found. Figure 8 shows the
computed centroids �dots� of the identified beads overlaid on
one of the XF projection images. The dotted lines denote the
borders of the beads that were identified by the segmentation
procedure �as described in Sec. II C 1�. Notice that even
though the segmentation of this particular projection is inac-
curate, the centroids of the beads are correctly identified be-
cause they have been correctly identified in a sufficient num-

FIG. 8. Segmented XF projection with the 3D coordinates of the localized
beads �dots� reprojected and overlaid. The dashed lines denote the outlines
of the segmented beads found by the method described in Sec. II C 1. Note
that the segmentation misidentifies and underidentifies the beads in this
particular projection. Despite the inaccurate segmentation, all 16 beads are
correctly identified by the full marker localization method.
ber of other projections.

Medical Physics, Vol. 38, No. 1, January 2011
The iterative method we have described requires the back-
projection of the bead masks onto a 3D volume once every
iteration. This operation is made more efficient in two ways.
First, as we have mentioned before, the cost of backproject-
ing sparse bead masks onto a 3D volume using ray-driven
backprojection ��cLLN� is a small fraction of the cost of
backprojecting nonsparse projections �cLLN�. Second, we are
able to exploit the structure of our iterative algorithm to
guarantee that the total cost of all the backprojections over
all the iterations is no more than 2�cLLN, regardless of how
many iterations are performed. This is achieved by avoiding
redundant operations. Between iterations, the change to the
bead masks is that they are sparsified by zeroing out pixels
corresponding to bead regions. Rather than sparsifying the
bead masks and then rebackprojecting all of them, we in-
stead subtract the contributions of the removed bead masks
from the existing volume image. To determine the computa-
tional cost, note that in the worst case, every bead region will
be first backprojected and then subtracted from the volume.
Using ray-driven backprojection, this results in a total cost
equivalent to two backprojections: 2�cLLN.

II.D. Registration of markers across modalities

The ICP method20 is widely used to register shapes in 3D.
It is a greedy algorithm that finds the rotation and translation
that best registers two sets of 3D points �x1 ,x2 ,x3 , . ,xM� and
�y1 ,y2 ,y3 , . ,yN�, i.e., it attempts to finds the rotation matrix
R and translation vector T that minimizes � j	�Ryj −T�
−xi�j�	2 �a greedy algorithm35 �p. 329� is one that makes lo-
cally optimal choices that might not necessarily lead to the
globally optimum solution�. In order to allow for missing
points and false positives in both the MR and XF marker
localization, the sum over j is performed not on all the mark-

ers but only on the L̃ best pairs of markers �we use L̃=10�.
During each iteration of the ICP algorithm, it first associates
each point yj with the closest point in the other set xi�j� and
then finds the optimal rotation and translation to minimize
the registration error. The ICP algorithm is guaranteed to find
a local minimum but not necessarily the global minimum.

In order to avoid local minimums, we modify the tradi-
tional algorithm as follows. We first run the ICP and check if
the resulting registration is good enough. If not, we rerun the
ICP with a perturbed starting guess. The criterion we use for
judging the goodness of the estimate is that a minimum num-
ber of beads �we use two� in each of the anterior and poste-
rior parts of the belt have been registered to within a certain
threshold �we use �=5 mm�. In other words, the registration
is good enough if at least two beads in each of the anterior
and posterior parts of the belt satisfy the condition that
	�Ryj −T�−xi�j�	��. The set of markers is automatically di-
vided into anterior and posterior by using the K-means clus-
tering algorithm.36 If the registration is not good enough, we
perturb the current solution of the ICP by associating a point
yj with, not the nearest point in the other set, but the second
nearest point. We rerun the ICP until the registration meets
the termination criteria stated above or the maximum number

of iterations is surpassed. Figure 9 shows the registration
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method in action. Figure 9�a� shows both sets of points: The
XF �small circles on the left� and MR �larger circles on the
right�. Figure 9�b� shows both sets after the MR points have
been registered to the XF ones. Notice that the XF set has a
false positive and therefore no MR counterpart.

II.E. Refining the registration

Now that the beads from the two modalities have been
registered, we perform a final refinement of the solution. We
�i� reduce the number of markers to a set in which we have
high confidence, �ii� exploit the knowledge of the MR local-
ization to refine the XF localization, and then �iii� perform a
final registration of the set of high-confidence beads.

For part �i�, we choose the two best registered beads in
each of the anterior and posterior subsets and then all the
remaining beads that fall below the �=5 mm threshold �i.e.,
	�Ryj −T�−xi�j�	���. For the rest of this process, we only use
these high-confidence beads.

The reason for part �ii� is that initial localization of the
beads from the XF data can be incorrect. This is due to the
inexact segmentation of the beads and the limited view-angle
range causing the backprojected volume to contain beads
that are stretched out in the general direction of the x rays
and therefore resulting in possibly incorrectly computed cen-
troids. Our strategy for refining this estimate is twofold.
First, we produce better bead masks of the XF projections
whose centers �i.e., 2D coordinates� can be more reliably
computed. Second, we analytically solve for the 3D coordi-
nates of the centers of the beads from the 2D coordinates of
their centers from their bead masks using the matrix P�� that
describes the projective geometry of the X-ray system. The
exact segmentation of the XF projection is more important
here than in the initial segmentation used for the backprojec-
tion because the error in computing the refined 3D centroid
of the bead is affected by the error in computing the 2D
centroid of its associated region in the bead mask. Further-
more, incorrectly identifying multiple beads as a single bead
can introduce errors in the associated 2D centroid.

To produce a better bead mask of the XF projection, we
first create a MIP of the 3D MR volume at the equivalent
orientation of the XF projection. Figure 10 shows an ex-
ample of how the MR MIP is used to create a more reliable

FIG. 9. Registration. �a� The two sets of markers before the ICP is applied.
�b� The two sets of correctly registered markers after the application of the
ICP.
bead mask of the XF projection. Figure 10�a� shows a detail
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of the MR MIP. Note that in creating the MIPs, we only
consider voxels in the regions of the beads of interest, i.e.,
we interpolate along rays within the 3D MR volume only in
the neighborhood of the high-confidence beads. This is not
only computationally efficient but can create reliable 2D
boundaries of the beads even when the beads appear over-
lapping in the 2D XF projection. By operating on voxels in
the locality of the bead of interest, the problem of obstruction
by another bead is avoided. Overlaid in Fig. 10�a� are the
boundaries of the beads �dashed black lines� computed from
the 3D MR volume. The arrows points to two beads which
appear partially overlapped by each other in the 2D projec-
tion image but whose boundaries have been successfully de-
tected. We use these reliable boundaries as templates, over-
lay them on the edge map of the XF projection, using the
procedure described in Sec. II C 4 �and Fig. 7� to generate a
better bead mask for the XF projection. In particular, we
displace the template boundary to the nearest edge in the
edge map. In Fig. 10�b�, the edge map of the XF projection is
shown in gray and the template boundary is shown by the
black line. Figure 10�c� shows the underlying XF projection
image with the successfully detected bead boundary over-
laid. For comparison, the original bead boundary, computed
by the method described in Sec. II C 1, is shown by the
dotted gray line. Observe that the original boundary falsely
includes a second bead within the bead boundary because of
the obstruction problem but the newer method correctly seg-
ments the bead of interest. The original boundary would have
resulted in an incorrect estimate of the 2D centroid of the
bead shadow.

For part �iii� of registration refinement, we simply register
the set of bead centroids of the high-confidence beads
�x1 ,x2 ,x3 , . ,xM� computed from the MR volume, as de-
scribed in Sec. II B, with the refined set of corresponding
bead centroids �y1 ,y2 ,y3 , . ,yM� that is computed by the
method described above. Since the two sets are exactly the
same size and are matched to each other, we can directly
apply the SVD-based method of Arun et al.37 to compute the
optimal rigid-body transformation.

II.F. Experiments

The method was implemented on an XFM system using a

FIG. 10. Refining the segmentation of XF projections. �a� The boundaries of
the beads �dashed black lines� that have been computed from the MR vol-
ume, overlaid on a MIP of the MR volume. �b� Detail of the corresponding
edge mask of the XF projection. �c� Correctly segmented bead outline �solid
black line� found using a template from the MR data. Compare to the origi-
nally incorrectly segmented bead outline �lighter gray line�.
1.5 T clinical MR scanner �Espree; Siemens Medical Sys-
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tems, Erlangen, Germany� and a single-plane XF system
�Axiom Artis; Siemens Medical Systems, Erlangen, Ger-
many�. Several experiments, in phantoms and in vivo, were
conducted as described below. All animal experiments pre-
sented in this paper were approved by the NHLBI Animal
Care and Use Committee.

II.F.1. Measuring distortions due to nonlinear MR
gradients

Yu et al.38 reported that the nonlinearity of the MR gradi-
ent can cause the MR image to be spatially distorted and
consequently introduce significant errors in cross-modal reg-
istration. To measure the effect of this distortion, a phantom
experiment was conducted. Six markers, each a toroid-
shaped bead filled with iodinated contrast and Gd measuring
about 15 mm�15 mm�5 mm in volume with a 5 mm di-
ameter hole �Beekley, Bristol, CT�, were mounted on the
surface of a spherical Plexiglas phantom �Siemens Medical
Systems, Erlangen, Germany� of diameter 250 mm and filled
with water. This phantom was imaged in 3D under CT, with
a voxel size of 0.5 mm using a 320-slice clinical CT scanner
�Aquilion One: Toshiba Medical Systems, Tokyo, Japan� and
under MRI, with a voxel size of 1.9�1.9�1.6 mm using
the MR scanner that is used in the remainder of this paper.
The MR image was reconstructed in the three different ways
provided by the native Siemens reconstruction software:
Without gradient distortion correction, with distortion correc-
tion in 2D, and with distortion correction in 3D.

The centers of the markers were identified in all four vol-
ume images �one CT volume image and three MR volume
images� using the method described in Sec. II B. In all four
cases, the centers of the six markers in the volume images
were correctly identified and visually verified. The set of
CT-derived marker centers was paired with each of the three
MR-derived marker centers. The two sets of markers were
registered to each other and the registration errors were com-
puted by measuring the distance between the corresponding
pairs of markers after registration. The mean and maximum
registration errors over all six markers were computed.

II.F.2. In vivo experiments

The algorithm was tested on data from 35 separate in vivo
experiments conducted over a span of 20 months. Distortion
correction �in 2D� provided by the Siemens MR image re-
construction software was used on the MR image data. The
angular range of the X-ray projections was approximately
60° �between 54° and 61°� in all the experiments, except for
one experiment for which the range was 180°. In each ex-
periment, there were between 13 and 16 beads used. The
fully automatic method successfully localized the beads in
MR and XF and registered the two sets in all the experi-
ments. The automatic registration was repeated twice for
each data set: In run A, the full set of projections �numbering
between 16 and 20� was used and in run B, only 10 projec-
tions �automatically chosen to be uniformly distributed

within the original set� were used.
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The error of the XF localization alone was automatically
computed. This was done by measuring the consistency of
the 3D bead location across projections. The error of a par-
ticular 3D bead coordinate relative to a particular projection
can be quantified by computing the perpendicular distance
between the 3D coordinate of the center of the bead, com-
puted by the localization method, and the ray that passes
through the X-ray source and the center of the corresponding
bead region in the projection image �as long as the bead
region corresponds to a single bead�. The RMS of this num-
ber over all projections that see this bead represents the error
of the XF localization method in identifying this bead. This
number was averaged for all the high-confidence beads in the
35 experiments. To judge fairly between run A and run B, for
each experiment, only the beads common to both runs were
used. Furthermore, in both runs, the error was computed over
all the projections, even though the XF bead localization in
run B was performed using only ten projections.

A leave-one-out approach was also used to measure the
XF bead localization error. For each bead, the set of its cor-
responding bead regions, each from a separate projection,
was considered. For each of these M bead regions, the 3D
coordinate of the bead was computed from the remaining
M −1 bead regions. Then the error of this 3D coordinate
relative to the left-out bead region was computed as above.
This error was averaged over all bead regions. Only those
beads that had more than two corresponding bead regions
were used as the computation of the 3D coordinate requires
at least two projections.

Finally, the average error of the registration between the
two point sets in each experiment was computed. In each of
the 35 experiments, the registration was performed using the
eight best beads in that experiment. We chose eight beads in
order to allow for the motion of some of beads between
modalities and yet maintain an overdetermined registration
problem. The eight best beads were chosen by first perform-
ing the rigid-body registration of all the refined high-
confidence beads and then picking the best beads on the
basis of the error between corresponding pairs �i.e., MR and
XF� of registered beads. The eight beads were chosen, for the
reasons described in Sec. II D, as the two best beads from
each of the anterior and posterior parts of the belt and the
four best of the remaining beads. For each experiment, the
error of the registration was computed over both the eight
best beads and over all the high-confidence beads.

II.F.3. XF localization with fewer projections

In order to demonstrate the effect of reducing the number
of XF projections on the localization of the markers, in each
of the 35 experiments we reran the XF localization using a
reduced numbers of X-ray projections �numbering four to ten
projections�. The reduced set of projections was automati-
cally chosen to be as uniformly distributed within the origi-
nal set as possible. The number of correctly localized beads
in each experiment was determined by comparing the output
of the XF localization method to the gold-standard set of

beads for that particular experiment. The gold-standard set of
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beads was formed by first considering the set formed from
the union of the sets of markers identified from multiple
subsets of projections. �The unions of multiple sets, rather
than just the single set of markers identified by the full set of
projections, were used in order to avoid the unlikely case in
which a marker that is identified in one of the sets is not
identified by the full set of projections�. False positives were
manually removed from the gold-standard set after visual
verification upon reprojection onto the XF projections. Cor-
rectly identified beads were those that were less than 5 mm
from a bead in the gold-standard set of beads. For a fixed
number of projections the mean, standard deviation, mini-
mum, and maximum �over the 35 experiments� of the num-
ber of correctly identified and false-positive beads were com-
puted.

II.F.4. Retrospectively reduced set of markers

In order to demonstrate the effect of reducing the number
of fiducial markers, we performed the automatic registration
using a retrospectively reduced number of beads. We reran
the registration to mimic the effect of using half the number
of fiducial markers �i.e., a total of eight markers; four each
from the anterior and posterior subsets�. We used an auto-
mated method, described below, that chose this reduced set
in a partially randomized manner. This method allows for the
inclusion of false positives and false negatives �i.e., missing
beads� and tries to ensure that the reduced set of beads form
an asymmetric arrangement and are well-separated. The
asymmetric, well-separated arrangement is chosen to reduce
the probability that the ICP avoids local minima. If the re-
duced set of beads were chosen assuming a purely uniform
probability distribution, the resulting arrangement might be
highly symmetric and closely spaced. We believe that this
would be an unrealistic simulation of an experiment con-
ducted with a �prospectively� reduced set of markers, as in
that case we would have complete freedom in choosing the
arrangement of the markers.

We reran the registration using the reduced set and com-
pared the error to the original registration computed from the
high-confidence beads as described in Sec. III B. The regis-
tration was successful in all 35 experiments. Note that in

applying the ICP, we did not use L̃=10 �Sec. II D� as when
we used the full set of markers but instead used a range of

L’s between L̃=4 and L̃=8 and automatically chose the cor-
rect registration as the one that produced the largest number
of matched pairs of beads �a matched pair of beads was
categorized as one in which the Euclidean distance between
the pair was less than a threshold of 10 mm�. The rigid-body
transformations computed from registering the reduced set of
beads were applied to the high-confidence beads from the
full sets and the error calculated.

The simple automated method to choose the reduced sub-
set of beads is as follows. The input of the method is the
complete combined set of registered X-ray and MR beads
found by the methods described in Secs. II B–II D. The
beads are split into anterior and posterior sets using K-means

36
clustering. Using a threshold of 15 mm �to allow for sub-
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stantial motion between modalities�, we categorize the beads
as matched between modalities or unmatched �i.e., in the
case when one of the modalities has a missing bead or a false
positive�. Notice from Fig. 9 that the beads in each of the
anterior and posterior subsets lies in a gridlike pattern on a
rectangular plane that is oriented roughly in a coronal plane.
We perform principal component analysis on the sagittal and
axial coordinates of the markers. The first principal compo-
nent vector can be assumed to correspond to the lengthwise
direction of the rectangle. We then set up four anchor points
in an asymmetric pattern �the four corners of a trapezoidal-
like shape whose base is along the sagittal direction� in the
sagittal-axial plane using the first principal component vector
and its perpendicular. This pattern is then randomly flipped
�i.e., multiplied by a discrete uniformly distributed random
number that is either �1 or 1� in the axial direction about the
center of mass of the �anterior or posterior� subset. The re-
duced set of beads is simply the set of beads that are closest
to the four anchor points. If the closest bead to an anchor
point is a matched pair of beads, then a bead from each
modality is added to the reduced set. If the closest bead is an
unmatched bead, then only that bead is added to the reduced
set. Consequently, the reduced sets include both false posi-
tives and false negatives and beads that have undergone mo-
tion �i.e., less than 15 mm� between modalities.

II.F.5. Target registration error in a static phantom

In order to measure the error of registering a target be-
tween the two modalities, a simple phantom made of plastic
was constructed to mimic a human torso. Two static targets,
each a toroid-shaped bead filled with iodinated contrast and
Gd measuring about 15 mm�15 mm�5 mm in volume
with a 5 mm diameter hole �Beekley, Bristol, CT�, were
mounted inside the phantom to mimic a structure within the
torso in the region of the heart. The belt of beads was fixed to
the phantom. As described in Sec. II B, a T1-weighted 3D
MR volume image �with voxels of dimensions 1.88 mm
�1.88 mm�1.6 mm� was collected. The phantom was
moved to the XF system and 20 low-power X-ray projections
�with an angular range of 60°� were collected. The automatic
registration experiment was performed twice. First, with all
20 projections �run a� and then with only 10 projections �i.e.,
every alternate projection, run B�.

The target registration error was computed in each run.
First the 3D coordinates of the target was computed under
X-ray. The X-ray bead localization algorithm automatically
identified the 3D coordinates of the target. In order to get a
more accurate target registration error, we refined the esti-
mate of the 3D coordinate of the targets alone by ensuring
that the 2D coordinates of the target centers corresponded to
the center of the toroid in the X-ray projections by simple
image processing �thresholding and centroid computation�
followed by a visual inspection of the X-ray projections of
the target. The 3D coordinates of the targets computed from
this refined estimate of the X-ray data was then transformed
to the MR coordinate system using the automatically com-

puted registration from each run. To allow for the motion of
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some of the beads between modalities, the final rigid-body
transformation was computed, as in Sec. II F 2, using the
eight best beads. The true 3D coordinates of the target in the
MR image was computed by picking a subimage of 15
�15�15 voxels surrounding the transformed target coordi-
nates and finding the centroid of this subimage.

II.F.6. Target registration in vivo

Two in vivo �porcine� experiments were conducted to
validate the automatic registration. In each experiment a
T1-weighted 3D MR image �with voxel size 2.3�2.3
�1.6 mm� and 20 low-power X-ray projections �with an
angular range of 60°� were collected. The rigid-body regis-
tration between the coordinate systems of the two imaging
modalities was automatically computed, as described in Sec.
II. Only ten X-ray projections were used for the X-ray local-
ization.

The targets were chosen to be small metallic structures on
an interventional device, while the device was present inside
the heart of the animal and subject to cardiac motion. The
devices used were an Amplatzer muscular VSD occluder in
the first experiment and an ASD occluder in the second ex-
periment �both from AGA Medical Corp., Minneapolis,
MN�. The 3D coordinates of the target in the X-ray coordi-
nate system were determined from two sets of fluoroscopic
cine images, each set at a fixed view angle. Each set was
collected while the animal was subject to a breath-hold using
a respirator. ECG information was used to sort the images
according to cardiac phase. The coordinates of the targets
during a heart cycle were computed semiautomatically, using
simple image processing �peak finding�, and verified visu-
ally. The 3D coordinates of the target over the whole heart
cycle were computed from the two sets of 2D coordinates.

Under MR, 2D cine slices corresponding to a full heart
cycle and containing the target were collected. To validate

TABLE I. Summary of results of 35 in vivo experiments.

Number of projections

Number of beads registered with high confiden

Min Max Median

All �16–20� 10 16 14
10 10 16 13

TABLE II. Summary of XFM registration errors. In a
beads. The registration error was then computed in tw
the high-confidence beads.

Number of projections

Error computed
eight best beads

Mean�1 sd Mi

All �16–20� 1.16�0.52 0.0
10 1.18�0.56 0.2
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the registration, the 3D coordinates of the targets were trans-
formed to the MR coordinate system, using the previously
computed rigid-body registration parameters, and displayed.
ECG information was used to synchronize the heart-phase of
the images from the two data sets.

III. RESULTS

III.A. Measuring distortions due to nonlinear
gradients

For the experiment described in Sec. II F 1 the mean reg-
istration errors were 4.78, 0.97, and 0.48 mm, respectively,
for the no-distortion correction, 2D-distortion-correction and
3D-distortion-correction cases. The maximum registration
errors in the three cases were 5.03, 1.79, and 0.74 mm, re-
spectively. It was concluded that errors in spatial distortion in
the distortion-corrected images �i.e., the latter two cases�
were sufficiently small for XFM.

III.B. In vivo experiments

The results of the in vivo experiments, performed as de-
scribed in Sec. II F 2, are listed in Tables I and II for both run
A �all projections� and run B �ten projections�. The number
of high-confidence beads was between 10 and 16 with a me-
dian of 14 in run A and was between 10 and 16 with a
median of 13 in run B. The mean of the XF localization error
was 0.32 mm in run A and 0.43 mm in run B. The mean
leave-one-out error of the XF localization was 0.43 and 0.47
mm for runs A and B, respectively. Table II lists the error of
registration between the two sets of beads. While the regis-
tration was performed using only the eight best beads in each
experiment, the error was computed for both those eight
beads and all the high-confidence beads. When averaged
over the eight best beads alone, the error was 1.2 mm in both

Marker localization error under X-ray
�mm�

RMS error per bead Leave-one-out error per bead region

Mean�1 sd Min Max Mean�1 sd Min Max

0.32�0.19 0.00 1.70 0.43�0.32 0.01 5.20
0.43�0.49 0.00 6.95 0.47�0.34 0.00 3.17

ses, registration was performed using the best eight
ys: First, over the best eight beads and then over all

�
Error computed over all

high-confidence beads �mm�

Max Mean�1 sd Min Max

3.18 1.50�0.87 0.07 6.26
3.53 1.52�0.94 0.27 5.78
ce
ll ca
o wa
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�mm
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run A and run B and when averaged over all the high-
confidence beads, the error was 1.5 mm.

Figure 11 shows the resulting fused image from one of the
experiments. The colored contours, representing the aorta
�red�, left ventricular epicardium �green�, left ventricular en-
docardium �blue�, and right ventricular endocardium �yel-
low�, extracted from the MR image are displayed on the
grayscale XF projection image. The process of creating the
contours from the MR image is outside the scope of this
paper, but details can be found in the work of Ratanayak et
al.12 Notice that the contours line up with the faint shadow of
the heart in the XF image.

III.C. XF localization with fewer projections

The results for the experiments, in which XF localization
is performed with a reduced number of projections as de-
scribed in Sec. II F 3, are listed in Table III. Table III lists the
mean, standard deviation, minimum, and maximum number
of correctly identified beads and false positives. The number
of projections was varied from four to ten in each of the 35
experiments. As the number of projections is decreased, the
number of correctly identified beads generally decreases and
the number of false positives increases.

FIG. 11. Fused XFM image. The rigid registration parameters found using
our method are used to overlay information from the MR data onto the XF
projection. The contours, representing tissue boundaries, are extracted from
the MR volume image.

TABLE III. Success of bead identification vs number

Number of projections 10 9

Number of
correct beads

Mean�sd 13.8�1.8 13.6�1.7
Min 10 10
Max 16 16

Number of
false positives

Mean�sd 0.9�1.1 0.7�0.8
Min 0 0
Max 5 3
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III.D. Retrospectively reduced set of markers

The error in registering a retrospectively reduced set of
markers was computed as described in Sec. II F 4. The mean
registration error �computed over all the beads as described
in Sec. III and II� increased from 1.2 to 1.6 mm. Note that
this reduced set of beads has no more than eight beads. The
standard deviation, minimum, and maximum of the registra-
tion error was 1.1, 0.1, and 10.8 mm, respectively.

III.E. Target registration error in a static phantom

Figure 12�a� shows one of these X-ray projections with
the targets identified by the dashed squares and their centers
identified by black dots. Figures 12�b� and 12�c� show details
of MIPs of the 3D MR volume image in the coronal and
axial directions. The number of high-confidence beads was
13 in run A and 12 in run B. The 15�15�15 voxels sub-
images whose centroids are used to find the locations of the
targets in MR are denoted by the dashed white squares in
Figs. 12�b� and 12�c�. The coordinates of these targets in the
MR system are denoted by the white x’s in Fig. 12�b� and
12�c�. The coordinates of the targets transformed from the
X-ray frame are shown by the white +’s. Figure 12 corre-
sponds to run B in which only ten projections were used. The
target registration errors for the two targets were 1.6 and 2.2
mm for run A and 1.9 and 2.4 mm for run B. As can be seen
in Figs. 12�b� and 12�c�, these differences are on the order of
the size of the MR voxel �i.e., 1.9�1.9�1.6 mm3, and
whose longest diagonal is, therefore, 3.1 mm�.

III.F. Target registration in vivo

Figure 13 shows images from the experiments. Figures
13�a� and 13�b� show, from the first and second experiment,
respectively, an X-ray projection image with the location of
the targets marked by the black circles. Figures 13�c� and
13�d� show, from the first and second experiment, respec-
tively, a MR slice containing the target. While the targets are
visible with high resolution under X-ray, under MRI the tar-
gets produce a magnetic susceptibility artifact �caused by
distortions of the magnetic field� and are visible as extended
dark regions. Since the targets do not appear sharp under
MRI and are inherently spatially distorted, an exact compu-
tation of TRE is impossible, but in both experiments the
transformed coordinates of the targets �marked by the white
circles� are seen to lie in the region of the susceptibility
artifacts. In Figs. 13�c� and 13�d�, the transformed coordi-

ojections.
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nates of the targets can be seen to lie within 0 and 3 pixel
units of the susceptibility artifact, which, using the MR im-
age pixel size of 1.56 mm, is between 0 and 4.7 mm within
the 2D plane.

IV. DISCUSSION

We have demonstrated the fully automatic registration be-
tween MR and X-ray imaging systems using external fiducial
markers. The robustness of the method has been demon-
strated by its 100% success rate in 35 in vivo experiments.
The most challenging part of the method is identifying the
3D locations of the fiducial markers from a small number of

FIG. 12. Phantom experiment to measure target registration error. �a� Rep-
resentative X-ray projection. The centroids of the fiducial markers are
marked by the white x’s and the targets are marked by black dashed squares.
Detail of MIPs of the MR volume �b� along the transverse direction and �c�
the coronal direction, showing the two targets �within the dashed white
boxes�. The white x’s mark the true centroid of the targets in the MR image
and the white +’s mark the location of the centroids that have been trans-
formed from the X-ray coordinate system using the registration parameters
computed by our automatic method.
X-ray projections. The high accuracy of this method was
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demonstrated by quantifying the consistency of the com-
puted 3D locations relative to their 3D projections. The av-
erage RMS error of under 0.4 mm and the average leave-
one-out error of under 0.5 mm validate both the accuracy of
the reconstruction method and the distortion correction
method11 used to correct spatial distortions in the image in-
tensifier projection images. The backprojection-based X-ray
localization method makes no assumptions about the con-
figuration of the beads or the view angles of the projections.
Using backprojection also allows for beads that overlap with
each other on an XF projection, and result in multibead re-
gions as seen in Fig. 3, to still be successfully identified.
Using a nonmatching method for localization avoids the
problem of matching beads from erroneously segmented pro-
jections.

The clinically acceptable accuracy of the registration de-
pends on the particular procedure performed. For VSD clo-
sure, the accuracy depends on the size of the VSD, which
can range in diameter from a few mm to a few cm. A regis-
tration accuracy of 5 mm would be acceptable for the major-
ity of such VSDs. Rhode et al.19 specify an acceptable accu-
racy of 5 mm for cardiac electrophysiological procedures.
The TREs in the static phantom experiment presented in Sec.
II F 5 are less than 2.4 mm. The initial results from in vivo
experiments, presented in Sec. III F and Fig. 13, display reg-
istration errors in the plane of the MR slice of under 5 mm.
As demonstrated in Sec. III A, using 3D instead of 2D-
distortion correction on the MR localization volume image
will likely reduce errors further.

We have demonstrated that the X-ray marker localization
method is sufficiently robust when using ten low-power
X-ray projections. This represents 1.2 �Gy of total absorbed
radiation dose which is an extremely small fraction
��0.1%� of the total radiation39 that the patient is exposed to
during a typical interventional procedure. Table III shows

FIG. 13. In vivo target registration experiment. �a� Target �closure device� in
X-ray projection. �b� Target in X-ray projection. �c� Target from �a� trans-
formed into MR coordinates and overlaid on slice. �d� Target from �b� trans-
formed into MR coordinates and overlaid on slice.
that reducing the number of projections increases errors in
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X-ray marker localization because the likelihood of a marker
falling outside the field of view of a particular projection
increases. If a small number of projections, say six, were
used, the XF marker localization and registration would be
successful in the majority of cases but the likelihood of fail-
ure would increase. If a small number of projections were
used along with a larger number of markers, the registration
would likely fail more often. This is because even though the
number of correctly identified makers would increase, the
number of false positives would likely increase more be-
cause the false-positive-elimination test described in Fig. 7
and Sec. II C 4 would fail more often because of the in-
creased number of bead regions per projection.

The localization uncertainty from XF projections depends
on the geometry of the system and the range of view angles
used. The geometry of X-ray system �the size and resolution
of the XF detector and distance from the X-ray source� re-
sults in an uncertainty of about 	=0.5 mm perpendicular to
the projection direction at isocenter. The localization uncer-
tainty along the direction of the central projection is approxi-
mately 	 /sin�� /2�, where � is the full range of view angles.
For 6=60° that we use, the uncertainty in the projection
direction is about 1 mm and is therefore sufficient. While the
angular range could be decreased further without resulting in
unacceptable localization uncertainty, the reason for using
the full 60° range is the limited field of view of the XF
detector �which has a side length of 330 mm�. Reducing the
view-angle range would make it more likely that some mark-
ers would fall outside the field of view of all the projections.
From Fig. 9, it may be observed that lateral views are likely
to contain many overlapping markers as the markers lie on
roughly coronal planes. Consequently, we align the central
XF view along the anterior-posterior direction.

The advantage of using the relatively large number of
fiducial markers, as we do, is that the redundancy in the
system makes the ICP registration more robust and allows
for the motion of a small number of these beads during the
transfer between imaging modalities. While the markers have
been deliberately placed far apart from each other in order to
minimize obstruction, when a marker does obstruct an im-
portant region of the anatomy, the view angle of the projec-
tion can be slightly modified to reveal the region. If a smaller
number of markers were to be used, the strategy to efficiently
place them would be to �a� place them such that they did not
obstruct structures of interest, even adapting the arrangement
to typical views used in a particular procedure, and to �b� use
an asymmetric pattern in order that the iterative closest point
method avoids local minimums. In Sec. III D, we have dem-
onstrated that the modalities can be successfully registered
with a smaller number of markers. While the likelihood of
failure in registration increases as the number of markers is
greatly reduced, the results presented in Secs. III B and III D
suggest that using about eight to ten markers from the cur-
rent marker configuration would be sufficient in the vast ma-
jority of cases. If smaller markers were used, the methods
described here could be used with only minor modifications

of parameters �such as the thresholds related to the size of
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the markers used in localizing in MR and XF� as long as the
MR image had a sufficiently small voxel size.

In order to minimize the movement of the markers, a
specialized table system �Miyabi, Siemens Medical Systems,
Erlangen, Germany� is used. It allows the subject to be trans-
ferred between the MRI scanner and the X-ray system with-
out leaving the table. Furthermore, the belt is constructed
from elastic and placed securely on the subject’s torso. If the
belt does shift relative to the patient, it can be detected by the
misregistration of the MRI contours and corresponding
anatomy in XF. If necessary, a left ventriculogram could be
performed to adjust the registration. Other possible ways of
detecting and compensating for this motion could be to fix
markers directly to locations on the skin surface, as sug-
gested by Rhode et al.,19 and to use the relative motion of the
markers on the belt and the skin to correct for the shift.

One challenge in translating this technique to humans
would be to deal with respiratory motion. In the in vivo ex-
periments, we have presented, in which the animal is on a
respirator, the movement of the beads during respiration has
not been observed to be significant. In human patients, res-
piratory gated or breath-hold acquisitions can be used for the
bead localization scans, so that the initial registration is done
with images acquired at the same respiratory cycle for each
modality. Work is currently underway to incorporate motion
correction into XFM. On the other hand, performing XFM in
humans will present the opportunity to place the external
fiducial markers more securely by using the shoulders of
human patient as an additional anchor for the belt of beads.
In XF, the location of the human patient’s arms is sometimes
altered during the procedure which has the potential to cause
the markers to move. But as long as the patient’s arms are in
the same position under both MR and XF for the marker
localization scans, the registration will be unaffected.

The method was implemented, with minimal optimization
of code, in MATLAB, on a PC �3.2 GHz Pentium D with 3.5
GB of RAM�. The typical time taken for the whole method,
using ten X-ray projections, was between 1 and 2 min. This
time was divided among the various components of the
method as follows. The MR marker localization takes about
1.0 s, the XF marker localization takes about 90 s, and the
registration between the two data sets takes about 0.1 s and
fine-tuning the registration takes 15 s �with about 10 s spent
on simulating a MIP from a MR volume�. The XF marker
localization, the most time-consuming operation, spent its
time on average as follows: 7 s on the dewarping �distortion
correction� of the ten X-ray images, 18 s on the processing of
the XF images to produce bead masks, and about 60 s on the
iterative backprojection-based algorithm. The time taken by
iterative algorithm varies depending on the particular experi-
ment. It can take tens of seconds less or more in time de-
pending on the number of iterations it needs and the number
of false positives it needs to eliminate. The use of ray-driven
backprojection produces a speedup of about 5� in the actual
backprojection but there is also an overhead in initially com-
puting the reduced number of voxels of the volume to back-
project onto, which takes about 20 s in the current implemen-

tation.
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As the automatic registration is performed only once dur-
ing the interventional procedure, these run times are not ex-
cessive but there is room for optimization of the code and
speedups. The runtimes can be reduced if implemented on
parallel processors. In the X-ray localization method, both
the distortion correction and the creation of the bead masks
can be parallelized by operating separately on individual pro-
jections, giving an order of magnitude potential reduction in
runtime. Much work40 has been done on using parallel pro-
cessors to reduce the cost of backprojection by orders of
magnitude. In our case, memory requirements, and conse-
quently runtime, can be further reduced by using 8-bit inte-
gers instead of doubles when performing the backprojection,
as our method is unaffected by limiting the voxel values in
the backprojected to small integers �because the maximum
voxel value is less than the number of projections used�.

V. CONCLUSIONS

We have presented a fully automatic method, which uses
a set of external fiducial markers strapped to the subject’s
torso, to register a roadmap MR image to an X-ray fluoros-
copy system. The advantages of using external markers in-
clude its noninvasiveness, the ability to resolve patient mo-
tion relative to the table, no requirement for any extra
hardware, and the ability to use it when the MR and X-ray
systems do not share a suite. We have demonstrated the ro-
bustness of the registration method in more than 35 in vivo
experiments using a conventional image intensifier X-ray
system. We have further computed the target registration er-
ror of the method in a phantom to be less than 2.4 mm. The
method allows us to use fewer X-ray projections and a
smaller number of fiducial markers than previously used.
Further work is underway to incorporate cardiac and respi-
ratory motion into XFM.
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