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Robust autopilot design of uncertain bank-to-turn

missiles using state-space disturbance observers

Jun Yang∗, Wen-Hua Chen†, and Shihua Li∗

Abstract: Robust autopilot design for bank-to-turn (BTT) missiles under disturbances

and uncertainties is investigated in this paper using the disturbance observer concept. It is

well known that the BTT missile dynamics undergo a substantial changes during its flight.

In this disturbance observer based control setting, the influences caused by parameter vari-

ations are merged into disturbance terms and regarded as parts of the lumped disturbances.

Disturbance observers are employed to estimate the lumped disturbances and then a distur-

bance observer based robust control method is proposed in this paper to compensate the the

influences of parameter variations and the disturbances from the output channels. Similar to

the baseline LQR design, the disturbance observer based robust control is analysed and de-

signed using linear techniques. Very promising performance has been achieved for the BTT

missile as shown in simulation. It is demonstrated that disturbance observer based control

approach provides a simple, intuitive and practical solution for many challenging control

problems where systems are subject to significant external disturbances, and uncertainties

such as BTT missiles.

Keywords: bank-to-turn missiles; pitch/yaw autopilot; disturbance observer; “mis-

matched” disturbances/uncertainties; external disturbances; parameter variations.

1 Introduction

Due to the growing interest in missiles with long range, high maneuverability and precision,

the bank-to-turn (BTT) steering technique has become more and more popular as compared

with the traditional skid-to-turn (STT) method [1, 2]. By orienting the maximum aerody-

namic normal force to the desired direction rapidly with a substantially large roll rate, the

BTT missile exhibits many advantages over the STT missile, including high-lift, low-drag,
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air-intake, internal carriage and increased range [1, 3, 4, 5]. However, the structure config-

uration of the BTT missile has undergone significant changes to take its advantages. These

changes bring many challenges to autopilot designers, e.g., 1) the effects caused by time-

varying parameters are more severe as compared with the STT style, 2) the high roll rate and

the asymmetric structure will inevitably induce heavy nonlinear crossing couplings between

different channels, and 3) the input/output dynamic characteristics for certain channels are

nonminimum phase [1, 6].

To this end, autopilot design for BTT missiles has attracted extensive attentions, and

various strategies have been proposed. Based on the models obtained by approximate lin-

earization in given flight conditions or input/output feedback linearization technique, a few

elegant control methods including robust control [3], gain-scheduling control [7, 8], nonlin-

ear control [1], model predictive control [9], and switching control [10] have been employed

for advanced autopilot designs. These methods are conceptually simple and can improve

the performance from different aspects. However, difficult trade-off has to be made between

tracking performance, disturbance rejection and robustness against aerodynamic changes in

most of the above mentioned methods while others may not be able to take into account the

disturbance rejection property. These controllers may become sluggish when the missile

dynamics are highly nonlinear and undergo significant parameter perturbations as well as

strong external disturbances. To this end, developing active disturbance rejection approach

is of great importance for the missile autopilot design. It is well known that feedforward

control is an active approach in rejecting disturbances if the disturbance is measurable [11].

However, the uncertainties and disturbances in the missile systems are generally compli-

cated and unmeasurable, thus an effective solution is to develop disturbance estimation

techniques.

I plan to replace the above red part by the follow paragraph.

However, difficult trade-off is possibly required to be made between tracking perfor-

mance, disturbance rejection and robustness against aerodynamic changes in most of the

above mentioned methods. These controllers may exhibit unsatisfactory performances

when the missile dynamics are highly nonlinear and undergo significant parameter pertur-

bations as well as strong external disturbances. To this end, developing active disturbance

rejection approach is of great importance to improve the disturbance attenuation perfor-

mance of the missile autopilot.

By estimating and compensating the effects caused by disturbances/uncertainties, dis-
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turbance observer based control (DOBC) provides an active approach to handle system

disturbances and improve robustness [12, 13, 14, 15] in the presence of unmeasurable un-

certainties. In the past few decades, DOBC approaches have been successfully researched

and applied in various engineering fields including robotic systems [15, 16], position sys-

tems [17, 18], grinding systems [11, 19] and flight control systems [13, 14, 20, 21]. Com-

pared with other robust control schemes, DOBC approach has two distinct features. One

feature is that disturbance observer based compensation can be considered as a “patch” for

existing controllers which may have unsatisfactory disturbance attenuation and robustness

against uncertainties. The benefits of this are that there is no change to a baseline controller

which may have been widely used and developed for many years. The second feature is that

DOBC is not a worst-case based design. Most of the existing robust control methods are

worst-case based design, and have been criticized as being “over conservative”. In DOBC

approach, the nominal performance of the baseline controller is recovered in the absence of

disturbances or uncertainties.

In this paper, a disturbance observer based robust control (DOBRC) method is proposed

to solve the disturbance attenuation problem of the BTT missile system. In the BTT mis-

siles, the lumped disturbance torques caused by unmodeled dynamics, external winds, and

parameter variations may affect the states directly rather than through the input channels,

therefore don’t satisfy “matching” conditions [22]. Using the DOBRC method, autopilot

design of the BTT missile is carried out in this paper. The missile system under consid-

eration is subject to “mismatched” disturbances including not only external disturbances,

but also model uncertainties. The rest of the paper are organized as follows. The dynamic

models of pitch/yaw channels of BTT missile are described in Section 2. In Section 3, dis-

turbance observer design for BTT missile is investigated. The disturbance observer based

robust control method is presented for the autopilot design in Section 4. Using the pro-

posed method, simulation studies of the missile system are carried out in Section 5. The

conclusions are finally given in Section 6.

2 Pitch/yaw dynamic models of BTT missiles

Since the roll rate in the BTT missile is much larger than the pitch and yaw rates, the pitch

and yaw dynamics are severely interrupted by the roll dynamic. While the pitch and yaw

dynamics have relatively smaller effects on the roll channel. To this end, a widely used

method in the BTT missile is to design an autopilot for the pitch and yaw channels together,
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and design an autopilot for the roll channel separately [10, 23]. In this paper, only autopilot

design for pitch/yaw channels are considered as the roll channel design is relatively easy.

The pitch/yaw dynamic models of the BTT missile are taken from [10, 23], depicted by




ω̇z = −(a1 + e1)ωz + (e1a4 − a2)α + e1
57.3ωxβ

+(−e1a5 − a3)δz + Jx−Jy

57.3Jz
ωxωy + dωz

α̇ = ωz − 1
57.3ωxβ − a4α− a5δz + dα

ω̇y = −(b1 + e2)ωy + (e2b4 − b2)β − e2
57.3ωxα

+(e2b5 − b3)δy + Jz−Jx
57.3Jy

ωxωz + dωy

β̇ = ωy + 1
57.3ωxα− b4β − b5δy + dβ

nz = − b4vt
57.3gβ − b5vt

57.3g δy + dnz

ny = a4vt
57.3gα + a5vt

57.3g δz + dny

(1)

where ωx, ωy and ωz are roll, yaw, and pitch rates, respectively. Variables α and β represent

the angle-of-attack and the sideslip angle, while δy and δz are yaw and pitch control deflec-

tion angles, respectively. nz and ny denote the overloads on the normal and side direction.

dωz , dα, dωy , dβ , dnz ,dny denote external disturbances on each equation. Parameters Jx,

Jy, and Jz denote roll, yaw and pitch moments of inertia, respectively. vt and g are the

instantaneous speed and the gravity acceleration. Coefficients ai, bi(i = 1, 2, · · · , 5), e1

and e2 are aerodynamic parameters of the missile systems.

During the flight process of the missile, the aerodynamic parameters vary with the

change of the missile height and velocity. In addition, the parameter perturbations are very

complex, almost impossible to obtain their analytic forms. The aerodynamic parameters for

different operating points are taken from [10] and listed in Table 1.

Since the roll rate is much larger than the pitch and yaw rates, it is reasonable to take

ωx as a parameter of the pitch/yaw models [23] and the following linear model is obtained

by reformulating Eq.(1) as




ẋ = Ax + Buu + Bddx

y = Cx + Duu + Dddy

(2)

with matrices

A =




−a1 − e1 e1a4 − a2
(Jx−Jy)ωx

57.3Jz

e1ωx
57.3

1 −a4 0 −ωx
57.3

(Jz−Jx)ωx

57.3Jy

−e2ωx
57.3 −b1 − e2 e2b4 − b2

0 ωx
57.3 1 −b4




(3)
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Table 1: Aerodynamic parameters of a BTT missile for different operating points

Operating points t1(4.4s) t2(11.7s) t3(19.5s) t4(23s)

a1 1.593 1.485 1.269 1.130

a2 260.559 266.415 196.737 137.385

a3 185.488 182.532 176.932 160.894

a4 1.506 1.295 1.169 1.130

a5 0.298 0.243 0.217 0.191

b1 1.655 1.502 1.269 1.130

b2 39.988 -24.627 -31.452 -41.425

b3 159.974 170.532 182.030 184.093

b4 0.771 0.652 0.680 0.691

b5 0.254 0.191 0.188 0.182

e1 0.285 0.192 0.147 0.118

e2 0.295 0.195 0.147 0.118

Bu =




−e1a5 − a3 0

−a5 0

0 e2b5 − b3

0 −b5




(4)

C =


 0 0 0 −b4vt

57.3g

0 a4vt
57.3g 0 0


 (5)

Du =


 0 −b5vt

57.3g

a5vt
57.3g 0


 (6)

Bd = I4×4, Dd = I2×2, the state vector x = [ωz α ωy β]T , the control input u = [δz δy]T ,

the output y = [nz ny]T , the external disturbances on states dx = [dωz dα dωy dβ]T and

outputs dy = [dnz dny ]T .

The autopilot design objective is to achieve a good overload tracking performance ac-

cording to the guidance commands as well as robustness against external disturbances and

model uncertainties caused by parameter variations. In addition, from the viewpoint of en-

gineering practice, the sideslip angle should be restricted as |β| < 5 deg and the actuator

deflection angles should be limited within a region |δmax| ≤ 21 deg [24].
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3 Disturbance observers

In the framework of the disturbance observer technique, not only external disturbances but

also the influence caused by model uncertainties can be estimated and attenuated. To facil-

itate this, the model (2) is rewritten as




ẋ = Anx + Bnu + Blddlx

y = Cnx + Dnu + Dlddly

(7)

where An, Bn, Cn and Dn are system matrices in the nominal case, dlx and dly denote

the lumped disturbances on states and outputs. Letting Bld = I4×4 and Dld = I2×2 and

comparing (2) with (7) yields

dlx = Bddx + (A− An)x + (B− Bn)u (8)

dly = Dddy + (C− Cn)x + (D− Dn)u (9)

The lumped disturbances consist of external disturbances and internal disturbances caused

by model uncertainties. Disturbance observers are now designed to estimate the distur-

bances dlx and dly using the input, output and state information. The estimate of dly can be

obtained from the second equation in (7), described by

d̂ly = y− Cnx− Dnu (10)

Combining (7) with (10), the estimation error edly
can be obtained as

edly
= d̂ly − dly = 0 (11)

Assumption 1: Suppose that the lumped disturbances dlx varies slowly relative to the

observer dynamics and has constant steady-state values lim
t→∞ ḋlx(t) = 0 or lim

t→∞ dlx(t) =

dlxs.

Remark 1: The results in this paper are based on Assumption 1. However, it is shown

that the method is also feasible for fast time-varying disturbances [15].

Remark 2: In the presence of uncertainties, the lumped disturbances would be a function

of the states, which can be reasonably estimated if the disturbance observer dynamics are

faster than that of the closed-loop system. The same argument for the state observer based

control methods is valid.

For system (7), the following observer is designed to estimate the disturbances dlx





ż = −L(z + Lx)− L(Anx + Bnu)

d̂lx = z + Lx
(12)
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where d̂lx is the estimate of the lumped disturbance on the states dlx, z is an auxiliary vector

and L is the observer gain matrix to be designed.

Lemma 1 [25]: Consider system (7) under the lumped disturbances which satisfy As-

sumption 1. The estimates of the disturbance observer (12) asymptotically tracks the

lumped disturbances if the observer gain matrix L is chosen such that −L is a Hurwitz

matrix.

Proof: The disturbance estimation error of the DOB (12) is defined as

edlx
= d̂lx − dlx (13)

Combining (7), (12) with (13) gives

ėdlx
= ˙̂dlx − ḋlx

= ż + Lẋ− ḋlx

= −Ld̂lx − L(Anx + Bnu)

+L(Anx + Bnu + dlx)− ḋlx

= −L(d̂lx − dlx)− ḋlx = −Ledlx
− ḋlx

(14)

Since all eigenvalues of matrix −L are in the left hand side of the complex plane, Eq. (14)

is asymptotically stable. This implies that the estimate of DOB can track the disturbances

asymptotically under the condition that lim
t→∞ ḋlx(t) = 04×1. ¤

Since Bn 6= I4×4, Dn 6= I2×2, it can be found from Eq.(7) that the disturbances and

uncertainties are “mismatched” ones. The existing DOBC methods are not applicable in

such a case.

It should be pointed out that the “mismatched” disturbances can not be attenuated from

the state equations generally. In this paper, based on the disturbance estimate of DOB, the

composite control law like u = Kxx+Kdd̂ is designed and we attempt to find an appropriate

Kd to assure that the disturbances can be removed from the output channel in steady-state.

4 Disturbance observer based robust control

4.1 Feedback control design

In the proposed composite DOBRC method, any feedback controller which can stabilize

system (7) and provide adequate overload tracking performance in the absence of distur-

bances and uncertainties can be adopted. The classical linear quadratic regulator (LQR) is

considered as the baseline autopilot design for the BTT missiles. The penalty matrices Q
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and R in the cost function of LQR are selected as

Q =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, R =


 70 0

0 70


 (15)

The corresponding LQR feedback gain is obtained as

Kx =


 0.097 −0.278 0.004 −0.066

0.004 −0.086 0.125 0.405


 (16)

As shown in Figs. 2-4, a satisfactory step response is obtained (at the beginning of the

responses).

4.2 Stability analysis of the closed-loop system

Different from all previous DOBC methods, our new DOBRC law for system (7) is designed

as

u = Kxx + Kdd̂ (17)

where Kd = [Kdx Kdy], and d̂ = [d̂lx d̂ly]T .

Assumption 2: The lumped disturbances satisfy that dlx, dly and ḋlx are bounded.

Lemma 2 [25]: Suppose that Assumption 2 is satisfied. The closed-loop system con-

sisting of the plant (7), the DOB (12) and the composite control law (17) is bounded-input-

bounded-output (BIBO) stable if the feedback control gain Kx and the observer gain matrix

L are selected such that 1) the system (7) in the absence of disturbances under control law

u = Kxx is asymptotically stable, and 2) the disturbance estimate by DOB can track the

disturbance asymptotically.

Proof: Combining system (7) with the DOBRC law (17) and disturbance observers

(10)-(13), the closed-loop system is obtained as



ẋ

ėdlx

ėdly




=




An + BnKx BnKdx BnKdy

O −L O

O O O







x

edlx

edly




+




I4×4 + BnKdx BnKdy O

O O −I4×4

O O O







dlx

dly

ḋlx




(18)
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Considering the condition edly
= 0 for all t ≥ 0 in (11), the closed-loop system in (18)

reduces to 
 ẋ

ėdlx


 =


 An + BnKx BnKdx

O −L





 x

edlx




+


 I4×4 + BnKdx O

O −I4×4





 dlx

ḋlx




(19)

Conditions 1) and 2) imply that both An + BnKx and −L are Hurwitz matrices. To this

end, it can be proved that

 An + BnKx BnKdx

O −L




is also a Hurwitz matrix.

Moreover, Assumption 2 implies that the inputs of the closed-loop system (19) dlx and

ḋlx are bounded. This completes the proof that the outputs of the closed-loop system are

bounded. ¤

Lemma 3 [25]: Suppose that Both Assumption 1 and 2 are satisfied. The state vector x

converges to a constant vector xs = −(An + BnKx)−1(I4×4 + BnKx)dlxs asymptotically

if the feedback control gain Kx and the observer gain matrix L are selected such that 1)

the system (7) in the absence of disturbances under control law u = Kxx is asymptotically

stable, and 2) the disturbance estimate by DOB can track the disturbance asymptotically.

Proof: Define the state error as

ex = x− xs (20)

Combining (19) and (20), the closed-loop system is given by


 ėx

ėdlx


 =


 An + BnKx BnKdx

O −L





 ex

edlx




+


 I4×4 + BnKdx O

O −I4×4





 dlx − dlxs

ḋlx




(21)

Similar with the proof of Lemma 2, it can be proved that the system matrix of (21) is

Hurwitz. Assumption 1 implies that lim
t→∞ ḋlx(t) = 0 and lim

t→∞ [dlx(t)− dlxs] = 0. To this

end, the closed-loop system governed by (21) is asymptotically stable. This implies that

lim
t→∞ ex(t) = 0. This completes the proof. ¤
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4.3 Design of the disturbance compensation gain

The main contribution of this work is investigating how to design the disturbance com-

pensation gain Kd such that the effects caused by the “mismatched” disturbances can be

attenuated from the output channels asymptotically.

Theorem 1: Suppose that disturbances in system (7) satisfy Assumption 1 and 2, and

the feedback control gain Kx and the observer gain matrix L are selected such that An +

BnKx and −L are Hurwitz matrices. The disturbances applied on the system (7) can be

asymptotically attenuated from the output channel by the newly designed DOBRC law (17)

if the disturbance compensation gains in Kd are selected as

Kdx = [Dn − (Cn + DnKx)(An + BnKx)−1Bn]−1

×(Cn + DnKx)(An + BnKx)−1Bld

(22)

Kdy = −[Dn − (Cn + DnKx)(An + BnKx)−1Bn]−1Dld (23)

Proof: By substituting the control law (17) into system (7), the state is expressed as

x = (An + BnKx)−1
[
ẋ− BnKdd̂− Blddlx

]
(24)

Combining (7), (22), (23), with (24) gives

y = (Cn + DnKx)(An + BnKx)−1ẋ

+(Dn − (Cn + DnKx)(An + BnKx)−1Bn)Kdd̂

−(Cn + DnKx)(An + BnKx)−1Blddlx + Dlddly

= (Cn + DnKx)(An + BnKx)−1ẋ+

(Cn + DnKx)(An + BnKx)−1Bldedlx
− Dldedly

(25)

According to Lemma 3, it can be concluded that

lim
t→∞ ẋ(t) = 0, lim

t→∞ edlx
(t) = 0 (26)

It can be deduced form (11), (25) and (26) that

lim
t→∞ y(t) = 0 (27)

¤

Remark 3: Note that the disturbance compensation gain Kd in (22) and (23) is a general

case and suitable for both “matched” and “mismatched” disturbances. In “matched” case,

i.e., Bn = Bld and Dn = Dld = 0, it can be obtained from (22) and (23) that the disturbance
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compensation gain is reduced to Kdx = −I and Kdy = O which is the particular form in

the previous literature [14, 15].

In our work, the observer gain matrix in DOB (12) is selected as

L =




50 0 0 0

0 50 0 0

0 0 50 0

0 0 0 50




(28)

The disturbance compensation gains can also be calculated by Eqs. (22) and (23), given

as

Kdx =


 0.007 0.099 0.001 0.052

−0.001 −0.047 0.007 0.129


 (29)

Kdy =


 −0.516 0.450

−0.332 −0.528


 (30)

The control structure of the proposed DOBRC for the BTT missile system is shown in

Fig. 1.
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Figure 1: Block diagram of the proposed DOBRC method for the BTT missile system.

5 Simulation studies

In this section, both external disturbances and model uncertainties are considered to show

the effectiveness of the proposed DOBRC methods. In the simulation, it is supposed that
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the missile travels with a velocity of vt = 1000 m/s and a roll rate of ωx = 400 deg/s. To

demonstrate the efficiency of the proposed method in improving external disturbance rejec-

tion performance and robustness against model uncertainties, the baseline LQR controller

is employed for the purpose of comparison.

5.1 External disturbance rejection performance

Suppose that step external disturbances are imposed on each equation in (1), actually, dωz =

dα = dωy = dβ = 4 and dnz = dny = 1 at t = 2 sec. The output responses and input

profiles of the pitch/yaw channels under the proposed DOBRC method are shown in Figs. 2

and 3, respectively. The corresponding responses of the states are shown in Fig. 4.
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Figure 2: Output responses in the presence of external disturbances under the proposed

DOBRC (solid line) and the LQR (dashed line): (a) normal overload, nz; (b) side overload,

ny. The reference signals are denoted by dotted lines.
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Figure 3: Input time histories in the presence of external disturbances under the proposed

DOBRC (solid line) and the LQR (dashed line): (a) pitch actuator deflection, δz; (b) yaw

actuator deflection, δy.
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Figure 4: State responses in the presence of external disturbances under the proposed DO-

BRC (solid line) and the LQR (dashed line): (a) pitch rate, ωz; (b) angle of attack, α; (c)

yaw rate, ωy; (d) sideslip angle, β.

As shown in Figs. 2-4, in the first two seconds, the control performance under the

proposed method recovered to that under the baseline LQR controller since there are no

disturbances during this time period. It can be observed from Figs. 2-4 that, when the dis-

turbances appear, the feedforward part of the proposed method which serving as a “patch”

to the baseline controller becomes active in rejecting the disturbances, while the baseline

LQR controller fails to effectively counteract the disturbances. This implies that the nomi-

nal performance of the proposed method is preserved in the absence of the external distur-

bances. In the presence of the “mismathced” external disturbances, an excellent disturbance

rejection as indicated by a short settling time and offset-free in steady state exhibits by the

proposed DOBRC approach. Therefore a good disturbance rejection ability is achieved

without sacrificing the nominal performance, which is one of the major advantages of the

proposed method. Furthermore, Fig. 3 shows that the actuator deflection angles are within

the allowable regions and no excessive control energy is required.
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5.2 Robustness against model uncertainties

As listed in Table 1, the aerodynamic parameters are time-varying during the missile flies.

To representing the continuous changes of the real missile dynamics during its flight, a linear

transition of the parameters from one operating points to another happens [26] is adopted.

For instance, aerodynamic parameters ai(t), i = 1, 2, · · · , 5, are expressed as

ai(t) =





ai(t1), (0 ≤ t < t1),

ai(tj−1) + ai(tj)−ai(tj−1)
tj−tj−1

(t− tj−1),

(tj−1 ≤ t < tj (j = 2, 3, · · · , 7)).

(31)

The parameters bi(t), i = 1, 2, · · · , 5, and ei(t), i = 1, 2, change in a similar form with the

time as described by the formula (31).

In the presence of such model uncertainties caused by time-varying parameters, the

response curves of the outputs, inputs and states under the baseline LQR design and the

DOBRC approach are compared in Figs. 5, 6 and 7, respectively.
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Figure 5: Output responses in the presence of model uncertainties under the proposed DO-

BRC (solid line) and the LQR (dashed line): (a) normal overload, nz; (b) side overload, ny.

The reference signals are denoted by dotted lines.

At time t = 1 second, a step command is applied on the side overload. Again both

the baseline LQR controller and the proposed DOBRC cope with this quite well. Due to

the coupling between the pitch and yaw channels, a quite significant normal acceleration

is generated but the LQR and DOBRC regulate the normal acceleration to zero as required

quite quickly. As the missile undergoes continuous change of its dynamics, gradually a large

error has been built up in LQR design, which indicates that the LQR has a good robustness

when the model error is within a certain range but poor performance even instability may

be experienced in the presence of a quite substantial uncertainty. In contrast, the DOBRC
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Figure 6: Input time histories in the presence of model uncertainties under the proposed

DOBRC (solid line) and the LQR (dashed line): (a) pitch actuator deflection, δz; (b) yaw

actuator deflection, δy.

approach exhibits an excellent robustness performance. It can be observed from Fig. 5

that the output responses can precisely track the reference commands during the whole

missile flight regardless of the substantial changes of its parameters. To achieve this, as

shown in Fig. 6, the pitch control δz continuously varies to compensate the influence of

the parameter variations. Fig. 7 shows that the yaw rate ωy experiences a large change

during the flight, which may be caused by severe aerodynamic parameter perturbations. It

shall be highlighted that the sideslip angle and the actuator deflections are well within the

specified ranges. Therefore, it is concluded from this simulation exercise that the baseline

LQR controller exhibits unsatisfactory control performance in this case, while the proposed

method achieves surprisingly promising robustness against model uncertainties caused by

substantial parameter variations. The proposed DORBC method provides a promising way

to improve the robustness of the baseline controller without resorting to a high gain design

as in many robust control methods.

6 Conclusion

Using a newly proposed disturbance observer based robust control method, the disturbance

attenuation problem of a BTT missile has been investigated in this paper. The “disturbance”

under consideration is a general concept which may include both external disturbances and

internal disturbances caused by parameter variations. In this setting, the disturbance gener-

ally does not satisfy the “matching” condition, i.e., the disturbances enter the system with

different channels from the control inputs. A new DOBRC method has been proposed
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Figure 7: State responses in the presence of model uncertainties under the proposed DO-

BRC (solid line) and the LQR (dashed line): (a) pitch rate, ωz; (b) angle of attack, α; (c)

yaw rate, ωy; (d) sideslip angle, β.

for the BTT missile to improve its disturbance attenuation and in particular the robustness

against the substantial variations of the parameters during the flight. It should be pointed

out that the proposed method is very easy for practical implementation since only linear

analysis and synthesis approaches are employed. The simulation results have demonstrated

that very promising disturbance attenuation and strong robustness have been achieved by

the proposed disturbance observer based approach. The results in this paper show that the

disturbance observer based control technique provides a very promising, practical solution

for challenging control problems with large uncertainties and significant external distur-

banc. Its concept is quite intuitive and practical without resorting to high gain, nonlinear

control theory, or other complicated mathematical tools.
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APPENDIX

Notation
ai, bi(i = 1, · · · , 5), e1, e2 aerodynamic parameters of the missile systems

A, Bu, Bd, C, Du, Dd system matrixes of the missile plant

An, Bn, Bld, Cn, Dn, Dld system matrixes of the nominal missile model

dx, dy external disturbance vectors on states and outputs

dlx, dly lumped disturbances on states and outputs

d̂lx, d̂ly estimates of the lumped disturbances on states and outputs

dωz , dα, dωy , dβ external disturbances on states

dnz , dny external disturbances on outputs

edlx
, edly

estimation errors of the lumped disturbances on states and outputs

g gravity acceleration

I identity matrix with appropriate dimensions

Jx, Jy, Jz roll,yaw and pitch moments of inertia

Kdx , Kdy disturbance compensation gains for the state and output parts

Kx feedback control gain

L gain matrix of the disturbance observer

ny, nz overloads on the side and normal directions

O zero matrix with appropriate dimensions

vt instantaneous speed of the missile

z auxiliary vector of the disturbance observer

α angle-of-attack

β sideslip angle

δy, δz yaw and pitch control deflection angles

ωx, ωy, ωz roll, yaw, and pitch angular rates
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