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Identifying moving objects in a video sequence is a fundamental and critical task in many computer-vision applications. Back-
ground subtraction techniques are commonly used to separate foreground moving objects from the background. Most back-
ground subtraction techniques assume a single rate of adaptation, which is inadequate for complex scenes such as a traffic inter-
section where objects are moving at different and varying speeds. In this paper, we propose a foreground validation algorithm that
first builds a foreground mask using a slow-adapting Kalman filter, and then validates individual foreground pixels by a simple
moving object model built using both the foreground and background statistics as well as the frame difference. Ground-truth ex-
periments with urban traffic sequences show that our proposed algorithm significantly improves upon results using only Kalman
filter or frame-differencing, and outperforms other techniques based on mixture of Gaussians, median filter, and approximated
median filter.
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1. INTRODUCTION

Identifying moving objects in a video sequence is a funda-
mental and critical task in video surveillance, traffic moni-
toring and analysis, human detection and tracking, and ges-
ture recognition in human-machine interface. A common
approach to identifying the moving objects is background
subtraction, where each video frame is compared against a
reference or background model. Pixels in the current frame
that deviate significantly from the background are consid-
ered to be moving objects. These “foreground” pixels are
further processed for object localization and tracking. Since
background subtraction is often the first step in many com-
puter vision applications, it is important that the extracted
foreground pixels accurately correspond to the moving ob-
jects of interest. Requirements of a good background sub-
traction algorithm include fast adaptation to changes in envi-
ronment, robustness in detecting objects moving at different
speeds, and low implementation complexity.

At the heart of any background subtraction algorithm
is the construction of a statistical model that describes the
background state of each pixel. Different algorithms build the

background model differently, ranging from a single-state es-
timate based on median filter [1, 2, 3, 4, 5], Weiner filter [6],
or Kalman filter [7, 8, 9, 10, 11, 12], to a full density estima-
tion based on Gaussian mixture models [13, 14, 15, 16, 17,
18] or histograms [19]. All of these algorithms have a fixed
design parameter, typically the size of a frame buffer or a re-
cursive update parameter, that determines how adaptive the
model is to the change in pixel value. We argue that a fixed
parameter is inadequate for scenes such as a traffic intersec-
tion where objects move at a variety of speeds. We illustrate
this with an example.

The top plot in Figure 1a shows an example of how a pixel
changes its value throughout a period of time. It begins at
level 50, then moves to and stays at 150 for a long period
of time. A fast-adapting background subtraction algorithm
may output its background/foreground decision similar to
the middle plot in Figure 1a: it declares the pixel to be fore-
ground for a short period of time before absorbing the new
value as part of the background state. On the other hand, the
output decision from a slow-adapting algorithm, shown in
the bottom plot in Figure 1a, stays in foreground for a much
longer period.
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Figure 1: The top plot in (a) shows the changes of a pixel over time. The middle and bottom plots in (a) show the foreground/background
decisions of a fast-adapting and a slow-adapting background subtraction algorithm, respectively. (b) and (c) show two possible scenarios
that may correspond to the plots in (a) at time-step t0, t1, and t2. The top illustration in (b) shows an object moving to the right. The top
illustration in (c) shows another object that is stationary at t0 but starts to move to the right afterwards, revealing the background behind. The
middle illustrations show the foreground masks produced by a fast-adapting algorithm for the two scenarios at the same time-steps, and the
bottom illustrations show those of a slow-adapting algorithm. The dotted arrows indicate where the pixel values and foreground/background
decisions in (a) are sampled at the three time-steps.

The issue here is that depending on the particular situa-
tion, either of these algorithms can be wrong. One scenario
is shown in the top illustration in Figure 1b, where an object
of gray value 150 is moving slowly to the right over a back-
ground of gray value 50. The resulting foreground masks of
a fast-adapting and a slow-adapting algorithms are shown in
the middle and bottom illustrations. The slow-adapting al-
gorithm clearly produces better results as the fast-adapting
algorithm misses most parts of the moving object. The prob-
lem of a fast-adapting algorithm failing to detect the motion
of a homogeneous object is known as the aperture prob-
lem in computer vision [20]. Notice that both algorithms
leave a trail of erroneous foreground pixels behind the ob-
ject as their background models are temporarily corrupted
by it. Another possible scenario is shown in Figure 1c, where
an object of gray value 50, stationary at first, starts moving
and reveals a background of value 150. The fast-adapting
algorithm quickly absorbs the newly revealed background
value and correctly identifies the moving object. The slow-
adapting algorithm, however, leaves a ghost impression of the
object long after it is gone. These two scenarios demonstrate
that a single fixed rate of adaptation is not sufficient for ob-
jects moving at different and varying speeds.

The above example also illustrates that it is impossible
to determine the correct rate of adaptation by just consider-
ing the causal history of a single pixel. In this paper, we pro-
pose a novel algorithm that first builds a foreground mask
based on a slow-adapting algorithm, and then validates in-
dividual foreground pixels by a simple moving object model

built using both the foreground and background statistics as
well as a fast-adapting algorithm. Our primary focus is on
detecting moving vehicles and pedestrians in urban traffic
video taken during day time. This would help us to track
the objects in the video, enabling us to build models of nor-
mal activity at a scene, and detect anomalous events. These
models could include the number of vehicles, the paths fol-
lowed by the vehicles, their speed, and so forth. This paper
is organized as follows: we describe the proposed algorithm
in Section 2 and contrast it with related work in Section 3.
We apply our proposed algorithm and other background
subtraction techniques on a set of urban traffic video se-
quences. Results of subjective evaluations and objective per-
formance measurements with respect to a ground-truth are
presented in Section 4. In Section 5, we conclude the paper
by discussing limitations of our algorithm and possible fu-
ture work.

2. PROPOSED ALGORITHM

This section describes our proposed algorithm for validat-
ing a foreground mask computed by a slow-adapting back-
ground subtraction algorithm. Figure 2 shows the schematic
diagram of our algorithm. The output is a binary foreground
mask Ft at time t with Ft(p) = 1 indicating a foreground
pixel detected at location p. There are three inputs to the al-
gorithm: (1) It is the video frame at time t; (2) Pt is the binary
foreground mask from a slow-adapting background subtrac-
tion algorithm; (3) Dt denotes the foreground mask obtained
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Figure 2: Structure of the data validation module.

by thresholding on the normal statistics of the difference be-
tween It and It−1, that is, Dt(p) = 1 if

∣

∣It(p)− It−1(p)− µd
∣

∣

σd
> Td, (1)

and zero otherwise. µd and σd are the mean and the standard
deviation of It(q)− It−1(q) for all spatial locations q. Frame-
differencing is the ultimate fast-adapting background sub-
traction algorithm. Even though it suffers from severe aper-
ture problem, we choose frame-differencing because it leaves
only a short foreground trail behind a moving object as its
memory does not extend beyond the previous frame. There
are five key components in our algorithm: blob formation,
core object identification, background histogram creation,
object histogram creation, and object extension. Their func-
tions are explained in the following sections.

2.1. Blob formation

In blob formation, all the foreground pixels in Pt are grouped
into disconnected blobs B0

t ,B1
t , . . . ,BN

t based on the assump-
tion that each foreground pixel is connected to all of its eight
adjacent foreground pixels [20]. A blob may contain (1) no
object, (2) part of a moving object, (3) a single moving ob-
ject with possible foreground trail, and (4) multiple moving
objects. The first case corresponds to the foreground ghost
as explained in Section 1. The second case is likely the re-
sult of the aperture problem. Since Pt is computed by a slow-
adapting algorithm, the aperture problem occurs only when
an object is starting to move. Most blobs fall into the third
case of a single object. The last case of multiple objects oc-
cur when multiple vehicles start moving after a traffic light
has turned green. We ignore the last case as the large blob is
likely to break down into multiple single-object blobs once
the traffic disperses. The main goals of our algorithm are (1)
to eliminate all the ghost blobs, (2) to maintain the partial-
object blobs so that they can grow to contain the full objects,

and (3) to produce better localization for single-object blobs
by removing any foreground trail. We accomplish these goals
by validating each blob with the frame-difference mask Dt in
the core object identification module.

2.2. Core object identification

The core object identification module first eliminates all the
blobs that do not contain any foreground pixels from Dt .
This step removes all the ghost blobs which produce no sig-
nificant frame differences as there are no moving objects in
them. The module then computes a core object Oi

t for each
of the remaining blobs Bi

t . O
i
t is defined as follows:

Oi
t = bounding ellipse

{

p : p ∈ Bi
t , Dt(p) = 1

}

∩ Bi
t . (2)

We illustrate our definition of Oi
t using a single moving ob-

ject as shown in Figure 3a. The blob contains both the ob-
ject and its foreground trail. The frame-difference mask Dt

captures the front part of the object and the small area trail-
ing the object, but completely ignores the rest of the fore-
ground trail of the blob. Taking advantage of the shape of a
typical vehicle, we assume that the object is contained within
the bounding ellipse of all the foreground pixels from Dt in-
side the blob. The key idea is that we can use the bound-
ing ellipse to exclude most of the foreground trail from the
blob. The bounding ellipse is computed by first calculating
its two foci and orientation based on the first- and second-
order moments of the foreground pixels in Dt [21], and then
increasing the length of its major axis until it contains all
the foreground pixels. Finally, we output the intersection be-
tween the bounding ellipse and the blob shown in Figure 3b
as the core object Oi

t.

2.3. Background histogram creation

Our experience with urban traffic sequences indicates that
most moving objects can be adequately represented by their
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Figure 3: (a) The bounding ellipse is defined by the frame-difference foreground pixels within the blob; (b) the intersection of the bounding
ellipse and the blob identifies the core object Oi

t ; (c) the bounding ellipse may fail to include the full object emerging from occlusion; (d) the
intersection of the core objects at time t − 1 and t is used for estimating the object histogram.

corresponding core objects. Nevertheless, there are situations
where the core object captures only a small portion of the en-
tire moving object. Consider the example of a vehicle emerg-
ing from an occlusion as shown in Figure 3c. Even though the
blob may contain the entire moving object, the foreground
pixels from Dt are present only in the front, resulting in a
small core object Oi

t covering that part of the object. The ob-
ject extension module in Figure 2 is responsible for thrusting
back some of the blob pixels outside Oi

t back into foreground.
For every pixel p in Bi

t outside Oi
t, the object extension mod-

ule declares p to be foreground if p is more likely to be part of
the core object Oi

t than part of the background. This process
is explained in more detail in Section 2.4. The module thus
needs to estimate the probability density functions (PDF) of
both the background and the object.

To estimate the background PDF, we first parti-
tion the current video frame into M rectangular regions
R1,R2, . . . ,RM . Then, for each region R j , we compute a back-

ground histogram h
j
t for all the pixels in R j that are not part

of Pt , that is,

h
j
t (s) =

∣

∣

{

p : p ∈ R j , Pt(p) = 0, It(p) = s
}
∣

∣

∣

∣

{

p : p ∈ R j , Pt(p) = 0
}
∣

∣

(3)

for j = 1, 2, . . . ,M. In our implementation, we partition It
into M = 64 identical rectangular regions.

2.4. Object histogram creation and object extension

To build the object histogram, we notice from Figure 3b that
the core object Oi

t, as defined in (2), may contain pixels that
are not part of the object. It is shown in [6] that the only
pixels guaranteed to be part of the object are pixels from It−1

that are foreground in both Dt and Dt−1. Based on our ex-
perience, this approach does not always produce sufficient
number of pixels to reliably estimate the object histogram.
Instead, for each core object Oi

t , we first identify the corre-
sponding core object at time t − 1, which we denote as Oi

t−1.
We accomplish this by finding the core object at time t − 1
that has the biggest overlap with Oi

t. Then, we compute the
intersection between Oi

t and Oi
t−1 and build the histogram of

the pixels from It−1 under this intersection. This procedure
is illustrated in Figure 3d. The object histogram g it for core
object Oi

t can now be defined as follows:

g it(s) =

∣

∣

{

p : p ∈ Oi
t ∩Oi

t−1, It−1(p) = s
}
∣

∣

∣

∣

{

p : p ∈ Oi
t ∩Oi

t−1

}
∣

∣

. (4)
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Combining the histograms from (3) and (4), the object ex-
tension module defines the object extension Ei

t as those pix-
els within Bi

t but outside Oi
t that are more likely to be part of

the core object than of the background:

Ei
t =

{

p : p ∈ Bi
t \O

i
t, g

i
t

(

It(p)
)

≥ h
j
t

(

It(p)
)

with p ∈ R j
}

.
(5)

The final output mask Ft is simply the union of all the core
objects Oi

t and the object extensions Ei
t.

3. RELATED WORK

In this section, we review related work in background mod-
eling and foreground validation. We first summarize some
of the representative schemes for background modeling. A
more detailed exposition can be found in [22]. We classify
background modeling algorithms into nonrecursive and re-
cursive techniques. A nonrecursive technique maintains a
buffer of video frames and uses a sliding-window approach
for background estimation. In order to keep a long history
with low storage requirement, video frames can be stored
into the buffer at a frame rate r lower than the input rate.
The most commonly used nonrecursive technique is median
filtering [1, 2, 3, 4, 5]. The background estimate is defined
to be the median at each pixel location of all the frames in
the buffer. Wiener filter is used in [6], where the filter coef-
ficients are estimated at each frame time based on the sam-
ple covariances. Unlike median filter or Wiener filter which
produce a single background estimate, Elgammal et al. [19]
build a background PDF using a Gaussian kernel estimator.
The advantage of using a full density function over a single
estimate is the ability to handle multi modal background dis-
tribution. Examples of multi modal background include pix-
els from moving leaves of a tree or pixels near high-contrast
edges which flicker under small camera movement.

Recursive techniques recursively update a single back-
ground model and do not store a buffer of video frames. The
two simplest recursive techniques are approximated median
filter [23, 24] and Kalman filter [7, 8, 9, 10, 11, 12]. Approx-
imated median filter increments a running estimate of the
median by one if the input pixel is larger than the estimate,
and decrements by one if the opposite is true. Kalman filter
is a widely used recursive technique for tracking linear dy-
namical systems under Gaussian noise. Many different ver-
sions have been proposed for background modeling, differ-
ing mainly in the state spaces they use for tracking. We pro-
vide a brief description of the popular scheme used in [7]:
the internal state at pixel location p of the Kalman filter is
described by the background intensity St(p) and its temporal
derivative S′t(p), which are recursively updated as follows:

[

St(p)
S′t(p)

]

=A ·

[

St−1(p)
S′t−1(p)

]

+ K ·

(

It(p)−H · A ·

[

St−1(p)
S′t−1(p)

])

.

(6)

Matrix A describes the background dynamics and H is the
measurement matrix. The Kalman gain matrix K switches

between a slow adaptation rate α1 and a fast adaptation rate
α2 > α1 based on the feedback of the foreground mask Ft−1:

K =

[

α1

α1

]

if Ft−1(p) = 1,

[

α2

α2

]

otherwise. (7)

Another popular recursive technique is the mixture of Gaus-
sian (MoG), which tracks the background distribution as a
linear sum of K Gaussian component densities [13, 14, 15,
16, 17, 18]. If the new input pixel It(p) is close to one of the
Gaussian components, the mean and the standard deviation
of that component is updated. Otherwise, the least probable
one is deleted and a new component is added, centered at
It(p) [14]. The weights of all the components are decayed at
a rate of (1−α), except for the weight of the updated compo-
nent which is incremented by α. To determine which com-
ponents correspond to the background, all components are
first ranked by the ratios between their weights and standard
deviations. Then, the first N components that satisfy the fol-
lowing criterion are declared to be the background compo-
nents:

iN
∑

k=i1

ωk,t ≥ Γ, (8)

where ωk,i1 , . . . ,ωk,iM are the weights of the components af-
ter ranking, and Γ > 0 is the weight threshold. It is declared
as background if it is within D times the standard deviation
from the mean of any one of the background components.

It should be noted that any one of the above-mentioned
background modeling algorithms can be used to generate the
slow-adapting mask in our proposed algorithm. As described
in Section 4, we use Kalman filter in our system primarily
because of its simplicity.

Many foreground validation techniques have also been
proposed in the literature. Some of them incorporate knowl-
edge from the high-level applications such as tracking [9, 25],
or use extra information such as depth [25, 26] to improve
the background model. Optical flow is also commonly used
to detect ghost blobs [5, 27]. In contrast to these approaches,
our algorithm does not rely on any external information
and uses the much simpler frame-differencing for ghost-blob
removal. Algorithms have also been proposed to combine
multiple background models running at different adaptation
rates [12, 19]. However, the combination is done by a sim-
ple conjunction at the pixel level, rather than at the blob
level as in our algorithm. Pixel-level combination might lead
to the aperture problem as the fast-adapting algorithm can
fail to detect slow-moving objects. Blob-level processing has
been proposed in [6] for foreground validation. Similar to
our algorithm, [6] builds core objects based on the inter-
section of a slow-adapting mask and the frame-difference
mask, and grows the core objects using object histograms
and connected component grouping. Nevertheless, lacklus-
ter results are reported in [6] because, by growing the core
objects from a waving tree, the blob-level processing turns
part of the sky into foreground. There are three key differ-
ences between our proposed algorithm and that proposed in
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Table 1: Background modeling schemes and their parameters.

Schemes Fixed parameters Test parameter

Frame-differencing (FD) None Foreground threshold Td

Approximated median filter (AMF) None Foreground threshold T

Kalman filter (KF) α1 = 0.001, α2 = 0.05 Foreground threshold Tk

Median filter (MF)
Buffer size L = 9

Foreground threshold T
Buffer sampling rate r = 10 frame/s

Number of components K = 3

Adaptation rate α = 0.05

Mixture of Gaussian (MoG) Weight threshold Γ = 0.25 Deviation threshold D

Initial variance σ2
o = 36

Initial weight ωo = 0.1

[6]. First, in our proposed algorithm, the object growing is
confined within the slow-adapting mask, thus limiting the
amount of false-positives the algorithm can introduce. Sec-
ond, we use both the object histogram and the background
histogram to achieve reliable object growing. Finally, using a
bounding ellipse as a first-order approximation to the object
leads to a significant speedup as it already accounts for most
of the foreground pixels.

To summarize, the main advantages of our validation al-
gorithm over others in the literature are

(1) our algorithm has low complexity as it does not rely on
information from other sensory sources or from so-
phisticated computer-vision algorithms. It also mini-
mizes the complex blob processing steps by making as-
sumptions about the general shape of the foreground
objects,

(2) our algorithm achieves good object localization by uti-
lizing both foreground and background statistics in
combining the slow-adapting blobs with the frame-
difference foreground masks.

4. EXPERIMENTAL RESULTS

In this section, we compare the performance of our proposed
algorithm with other algorithms in the literature. We ap-
ply the background subtraction algorithms to luminance se-
quences only. For preprocessing, we first apply a three-frame
temporal erosion to the test sequence, that is, we replace It
with the minimum of It−1, It, and It+1. This step can reduce
temporal camera noise and mitigate the effect of snowfall
present in one of our test sequences. Such an erosion step
is also effective in removing rainfall because raindrops tend
to be much brighter than the surrounding background [28].
On the other hand, this step does not affect the performance
of moving object extraction under normal weather condition
because typical object movements are much slower and last
much longer than the short transient distortion introduced
by the erosion. Afterwards, a 3 × 3 spatial Gaussian filter is
used to reduce spatial camera noise.

Even though our proposed algorithm can work with any
slow-adapting background subtraction algorithm, we have
chosen Kalman filter as described in Section 3 for its sim-

plicity in implementation. To propagate the validation re-
sults to future frames, we use the output mask Ft from the
foreground validation for feedback in the Kalman filter. The
parameters of the Kalman filter are set as follows [7]:

A =

[

1 0.7

0 0.7

]

, H =

[

1 0
]

,

α1 = 0.001, α2 = 0.05.

(9)

Similar to the frame-difference thresholding in (1), Pt(p) = 1
if

∣

∣It(p)− St(p)− µk
∣

∣

σk
> Tk, (10)

where St(p) is the internal state of the Kalman filter, and µk
and σk are the mean and the standard deviation of It(q) −
St(q) for all spatial locations q in the frame. In our experi-
ments, we set the frame-difference foreground threshold Td

to be 2, and vary the Kalman filter foreground thresholdTk to
show the trade-off between false-positives and false-negatives
in foreground detection.

The set of algorithms used for comparison includes
frame-differencing (FD), approximated median filter
(AMF), Kalman filter without validation (KF), median filter
(MF), and mixture of Gaussian (MoG). Based on our earlier
work in [22], we have selected particular values for the
parameters in these algorithms that perform well in our test
sequences. These fixed parameters are listed in Table 1. The
most sensitive parameter in each algorithm is used as the test
parameter to show the trade-off between false-positives and
false-negatives.

4.1. Test sequences

We have selected four publicly available urban traffic video
sequences from the website maintained by KOGS/IAKS, Uni-
versitaet Karlsruhe.1 A sample frame from each sequence is
shown in the first row of Figure 4. The first sequence is called

1The URL is http://i21www.ira.uka.de/image sequences. All sequences
are copyrighted by H.-H. Nagel of KOGS/IAKS Universitaet Karlsruhe.

http://i21www.ira.uka.de/image_sequences
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(a) (b) (c) (d)

Figure 4: Sample frames and the corresponding ground-truth frames from the four test sequences: (a) Bright, (b) Fog, (c) Snow, and (d)
Busy.

“Bright,” which is 1500 frames long showing a traffic in-
tersection in bright daylight. The second sequence is called
“Fog,” which is 300 frames long showing the same traffic in-
tersection in heavy fog. The third sequence “Snow” is also
300 frames long and shows the intersection while snowing.
Fog and Snow were originally in color; we have first con-
verted them into luminance and discarded the chroma chan-
nels. The first three sequences all have low to moderate traf-
fic, and contain “stop-and-go” traffic—vehicles come to a
stop in front of a red light and start moving once the light
turns green. The last sequence “Busy” is 300 frames long.
It shows a busy intersection with the majority of the vehicle
traffic flowing from the top left corner to the right side.

4.2. Evaluation

In order to have a quantitative evaluation of the performance,
we have selected ten frames at regular intervals from each test

sequence, and manually highlighted all the moving objects in
them. These “ground-truth” frames are selected from the lat-
ter part of each of the test sequences2to minimize the effect
of the initial adaptation of the algorithms. This sampling rate
allows the vehicles to move a reasonable distance, making
each ground-truth frame sufficiently different from others.
In the manual annotation, we highlight only the pixels be-
longing to vehicles and pedestrians that are actually moving
at that frame. Since we do not use any shadow suppression
scheme in our comparison, we also include the shadow pix-
els cast by moving objects. The ground-truth frames show-
ing only the moving objects are shown in the second row of
Figure 4.

We use two information retrieval measurements, recall
and precision, to quantify how well each algorithm matches
the ground-truth [29]. They are defined in our context as fol-
lows:

Recall =
Number of foreground pixels correctly identified by the algorithm

Number of foreground pixels in ground-truth
,

Precision =
Number of foreground pixels correctly identified by the algorithm

Number of foreground pixels detected by the algorithm
.

(11)

Recall and precision values are both within the range of 0
and 1. When applied to the entire sequence, the recall and
precision reported are averages over all the measured frames.
Typically, there is a trade-off between recall and precision—
recall usually increases with the number of foreground pixels
detected, which in turn may lead to a decrease in precision.
A good background algorithm should attain as high a recall
value as possible without sacrificing precision.

By varying the testing parameter of each algorithm, we

obtain the precision-recall (PR) curves for the test sequences

as shown in Figures 5a, 5b, 5c, and 5d. Notice that the PR

curves of all the nonrecursive techniques (FD, AMF, MF)

2The ground-truth frames are selected from the last 1000 frames in the
Bright sequence, and the last 200 frames in the remaining three sequences.
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Figure 5: Precision-recall plots for (a) Bright, (b) Fog, (c) Snow, and (d) Busy.

are almost continuous over the entire range of recall values,
while those from the recursive ones (MoG, KF, proposed) are
discrete, occupying shorter ranges of recall. The reason is that
nonrecursive techniques do not have a feedback loop so that
it is possible to run the simulation once and compute the pre-
cision and the recall for any test parameter value. Recursive
techniques require a separate simulation for each different
test parameter value, and thus we only obtain results at a few
operating points.

Figure 5a shows the results of the sequence Bright. The
worst performer is FD and the best performer, at least for re-

call above 60%, is our proposed algorithm. Our proposed al-
gorithm shares a similar shape with KF but has a much better
precision. MoG outperforms the proposed algorithm at low
recall primarily because MoG can adapt its threshold for each
pixel individually, while our proposed algorithm relies on
the global standard deviation. As some of the ground-truth
frames have only a few moving objects, the global standard
deviation becomes quite small. This turns some of the back-
ground pixels into foreground erroneously and thus lowers
the precision values. The PR curves of Fog in Figure 5b fol-
low a similar trend as those in Figure 5a.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Foreground images identified by various algorithms showing a moving car and a pedestrian in sequence Bright. (a) FD, (b) AMF,
(c) KF, (d) MF, (e)MoG, and (f) proposed.

(a) (b) (c) (d) (e) (f)

Figure 7: Foreground images identified by various algorithms showing a car that starts to move after being stationary for awhile in sequence
Snow. (a) FD, (b) AMF, (c) KF, (d) MF, (e)MoG, and (f) proposed.

Figure 5c shows that our proposed algorithm signifi-
cantly outperforms all the other schemes in the sequence
Snow. This can be explained by the two thresholds Td and
Tk used in our proposed algorithm. The Snow sequence is
very noisy and all other algorithms need high foreground
thresholds to prevent excessive false foreground, thus result-
ing in low recall values. On the other hand, our proposed
algorithm can use a small threshold Tk in the Kalman filter
to get good coverage of the moving objects, but uses a large
frame-difference threshold Td for building the correct shapes
of the objects and removing the ghost foreground blobs.

In the final sequence Busy, our proposed algorithm per-
forms worse than MoG and MF for recall values above 60%.
This reversal of performance is due to the large number of
moving objects clustered together in Busy. At high recall val-
ues, the foreground threshold of the Kalman filter is small,
creating a large blob that contains many moving objects. The
resulting bounding ellipse is not able to eliminate any of the
false foreground between vehicles, leading to a low precision
value.

We further illustrate the differences between the al-
gorithms using two sets of extracted foreground images
in Figures 6 and 7. The corresponding original images
are shown in Figure 8. Figure 6 is extracted from Bright
showing a car moving to the left and a pedestrian walk-
ing to the right. FD is noisy and captures only fragments
of the car due to the aperture problem. Both AMF and
KF leave a foreground trail behind each moving object
as their background states are corrupted. MF, MoG, and
the proposed algorithm produce similar results. Figure 7
is extracted from Snow showing a car starting to move
to the bottom after being stationary for a long time.
AMF, KF, and MF leave a ghost foreground behind the
moving car. MoG is less problematic but still has much
noise. FD and the proposed algorithm have no ghost at
all. Only the proposed algorithm produces an almost per-
fect localization of the car. Notice that even the low-
contrast windshield is captured due to the two thresh-
olds used in the proposed algorithm as explained ear-
lier.
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(a) (b)

Figure 8: (a) and (b) show the original images corresponding to the foreground masks in Figures 6 and 7.

5. CONCLUSIONS

In this paper, we have introduced a new algorithm to validate
foreground regions or blobs captured by a slow-adapting
background subtraction algorithm. By comparing the blobs
with bounding ellipses formed by frame-difference fore-
ground pixels, the algorithm can eliminate false foreground
trails and ghost blobs that do not contain any moving object.
Better object localization under occlusion is accomplished by
extending the ellipses using the object and background pixel
distributions. Ground-truth experiments with urban traffic
sequences have shown that our proposed algorithm produces
performances that are comparable or better than other back-
ground subtraction techniques.

Our proposed algorithm, however, has a number of lim-
itations. First, the use of bounding ellipses may not be ap-
propriate for complex-shaped objects such as human beings.
Second, we use frame-differencing as it produces minimal
false foreground trails behind objects. This assumption may
not hold if the input video frame rate is very low. Third, our
algorithm relies on the object and background pixel distribu-
tions to determine the shape of the foreground objects. If the
distributions are not estimated correctly due to lack of sam-
ples, or the objects and the foreground have similar pixel dis-
tributions, the results will be adversely affected. This problem
may be mitigated by extending the time window to incorpo-
rate more data as well as using features other than pure pixel
intensities. Fourth, in Section 4, we have tested a large range
of threshold values and identified the appropriate operating
points for our algorithm. In a real system, the thresholds
must be automatically adjusted based on the environment.
We are currently investigating techniques to adjust thresh-
olds automatically by validating the output with an a priori
statistical model of foreground objects. Finally, as described
in Section 4.2, the proposed algorithm does not perform well
when there are multiple moving objects close to each other.
We are currently improving our algorithm by building mul-
tiple ellipses to identify moving objects and using the back-
ground distribution to identify the background area among
them. We will include additional sequences taken under dif-
ferent conditions, as well as additional ground-truth frames,

to test how well these enhancements perform in real traffic
sequences.
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