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ABSTRACT This paper proposes a robust position control scheme for a quadrotor UAV system under

uncertainties. The proposed control algorithms combine integral slidingmode and backstepping slidingmode

controllers in a double-loop control structure (i.e., inner-outer loop control). The design of the proposed

controller is divided into two subcontrollers, namely, attitude and position controllers for the quadrotor.

In this work, a nonsimplified six-degree-of-freedom quadrotor model is first established in the presence of

disturbances. Afterward, we develop a robust backstepping sliding mode controller for the attitude control

of the quadrotor. Next, a robust integral sliding mode controller is designed for the outer loop of the

quadrotor to ensure the position trajectory tracking capability in the presence of disturbances. The stability

and performance of the quadrotor is thoroughly investigated using Lyapunov stability analysis. Numerical

simulations demonstrate the effectiveness of the developed solutions for a quadrotor.

INDEX TERMS Backstepping control, sliding mode control, robustness, disturbance, quadrotor, unmanned

aerial vehicle (UAV), quadcopter.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have a wide range of

practical and innovative uses, ranging from military appli-

cations such as defense, exploration, military surveillance,

navigation, and safety inspections to civil applications such

as media, entertainment, journalism, agriculture, shipping,

and delivery. Around the globe, the number of applications

of quadrotor UAVs has been increasing over the last few

years in particular thanks to their precise maneuverability,

high robustness, and ability to fly in any directions, land

and take off in limited space, and hover precisely above the

desired target. Indeed, all these unique features make quadro-

tors particularly promising among currently emerging tech-

niques [1]. However, certain factors related to safety, security

and reliability limit what can be achieved with this technol-

ogy. For example, a high degree of autonomy of quadrotors

is an essential requirements for many quadrotor applica-

tions. Thus, designing an unmanned flight system, whether it

functions autonomously or nonautonomously (remotely con-

trolled from a ground station), often poses many engineering

challenges, including challenges related to sensor technology
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and hardware and software designs. Because a quadrotor

UAV is a very complex control system, such systems have

received considerable attention from researchers in the field

of automatic control.

The design of controllers for quadrotors faces at least

two formidable challenges from the perspective of control

theory. First, quadrotors are multiple-input multiple-output

(MIMO) unstable nonlinear systems. Such a control system is

coupled and under-actuated due to its six degrees of freedom

(DOFs) and four actuators. Second, quadrotors, like other

types of UAVs, are always subject to external and internal dis-

turbances, model uncertainty, and parametric perturbations.

To ensure the stability of quadrotors, robust controllers are

often developed to reduce the effects of disturbances and

uncertainties.

The development of effective control strategies for quadro-

tors has been extensively studied and applied in a diverse

range of applications for quadrotor applications. For sim-

plicity, quadrotors are initially linearized around preselected

equilibrium conditions. The operation point(s) of quadrotors

are usually chosen to be a hover point or any other tracking

point. As a result, various linear control algorithms such

as proportional-integral-derivative (PID) control [2]–[5],

proportional-derivative (PD) control [6], proportional plus
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second-order differentiator (PD2) control [7], and linear

quadratic regulator/Gaussian (LQR/LQG) control [8], have

been applied to achieve the control objectives. These tradi-

tional linear controllers for quadrotors, which involve linear

approximations of the system dynamics around single or

multiple operating points, are desirable in realistic autopi-

lot design. However, these methods face the drawback of

performance degradation when the aircraft deviates from its

designed operating points. Strictly speaking, the inherent

nonlinearity and strong coupling properties of a quadrotor

pose many limitations for these linear control strategies.

To overcome the limitations of linear strategies, a variety

of nonlinear algorithms have been proposed in the literature.

Generally speaking, robust nonlinear techniques efficiently

increase the stability of the basin of attraction and achieve

acceptable performance under unpredictable changes in the

environment, enabling aggressive maneuvering and accurate

trajectory tracking. Nonlinear control techniques were ini-

tially considered in [9] and [10] to autonomously control the

vertical take-off and landing (VTOL) of a 3-DOF helicopter

and aircraft. The motion of a fixed-wing helicopter is con-

trolled through the force produced by varying the angular

speeds of two rotors: the main rotor and tail rotor. In con-

trast to a fixed-wing helicopter, a quadrotor has 6-DOF air-

frame dynamics and strong coupling of the yaw, pitch and

roll motions, which render the control design much more

challenging [11]. However, in some cases, the design of a

controller for a classical helicopter could be applied to a

quadrotor with some modifications and vice versa. Many

studies have considered multiple nonlinear controllers for

different autonomous control designs of quadrotors, such

as feedback linearization [12]–[15], dynamic inversion [16],

singular perturbation [17], sliding mode control [18]–[21],

backstepping [18], [22]–[28], and other related adaptive non-

linear controllers [10], [18], [29], [30]. Considering fault tol-

erant control (FTC), various nonlinear algorithms including

backstepping, sliding mode and adaptive FTC approaches for

quadrotor attitude and altitude tracking can be found in [31],

[32], and references therein.

In the context of nonlinear control, [13] was the first work

to propose a nonlinear controller for a quadrotor, in which

the authors designed a dynamic feedback controller based on

so-called exact feedback linearization for the position track-

ing of the quadrotor. Simulation of their proposed control

strategy showed acceptable performance even in the pres-

ence of external disturbances such as wind and turbulence.

Nonetheless, designing a controller using only the feedback

linearization approach requires an accurate model with stable

zero dynamic in order to cancel out nonlinear terms (see

[10], [33]). Thus, real-time implementation using a feedback

linearization controller is unfeasible since the zero dynamics

of a quadrotor are “marginally” stable, and it is difficult to

achieve an accurate model in practice due to the unavoidable

internal uncertainties such unmodeled dynamic uncertainties

and parametric uncertainties [10], [15]. Although the authors

of [13] utilized the simplified model of a quadrotor presented

in [9], they found that controlled quadrotor was sensitive to

sensor noise as well as modeling uncertainty. In this context,

dynamic inversion, presented in [16] and falling under the

definition of feedback linearization control to some sense,

can achieve satisfactory trajectory tracking only if the resid-

ual or internal dynamics are stable. This situation renders

the control design much more challenging in the presence

of marginally stable zero dynamics. Thus, if such a feedback

linearization approach is to be implemented in practice, then

it should be accompanied by another control technique, such

as neural networks or sliding mode control [14].

With recent dramatic developments in control strategies for

quadrotors, increasing attention has been paid to recent robust

control approaches such as sliding mode and backstepping

control. Generally speaking, a controller designed for quadro-

tors is divided into two subcontrollers: an attitude controller

(inner loop) and an altitude/position controller (outer loop).

For example, in [19], the authors proposed a slidingmode alti-

tude controller for a quadrotor in which they replaced the sign

function with a saturation function to significantly reduce the

effect of chattering. This work was extended in [20] by using

integral sliding mode altitude control for a quadrotor. In [21],

[34], the authors proposed an integral sliding mode controller

for the attitude control of a quadrotor system and a PID and

LQR controller for position control. A terminal sliding mode

position controller and a conventional sliding mode attitude

control were proposed in [35].

Some other researchers have also attempted the design of

backstepping controllers for quadrotor systems. For example,

[18], [24], [36] presented backstepping controllers for the

position control of the quadrotors. Nonetheless, most authors

have not considered uncertainties in their models and con-

troller designs. In a recent work [37], a robust backstepping

controller was successfully designed for the position control

of a quadrotor considering a specific type of uncertainty,

i.e., constant and maintained uncertainty. However, in many

existing works in the literature, backstepping controllers have

only been developed for the position (i.e., outer-loop) control

of quadrotors [18], [38]. According to the literature, it is very

important to focus more on the attitude control of a quadrotor

even when position control cannot be achieved.

Using this as a motivation, our paper presents a new robust

nonlinear control strategy for a quadrotor under uncertainties.

The design of the proposed controller is divided into two

subcontrollers: an attitude controller and a position controller.

In this paper, we develop a robust backstepping sliding mode

controller for the attitude control of the quadrotor and an

integral sliding mode controller to ensure the position trajec-

tory tracking capability of the quadrotor in the presence of

external disturbances. The main contributions of this paper

are summarized as follows:

1) A nonsimplified 6-DOF dynamic model of a quadrotor

based on the Newton–Euler formula with additive esti-

mated internal and external disturbances is established.

2) A robust nonlinear controller, namely, a backstep-

ping sliding mode controller, is designed for the inner
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control loop (i.e., attitude control) of the quadrotor in

order to achieve hover stability.

3) A robust integral sliding mode controller is designed

the outer control loop (i.e., position control) of the

quadrotor to generate the desired Euler angles.

4) Based on the hierarchical control scheme, the designed

controllers correspond to a rotational controller and a

translational controller and their stability is validated

by the Lyapunov stability theorem. More precisely,

the proposed controllers can overcome the effect of

disturbance.

5) The proposed theoretical results are validated by

presenting the simulation results for the quadrotor

model ender the influence of internal and external

disturbances. The necessity of the developed robust

controllers is clearly shown.

To the best of our knowledge, this is the first work in the liter-

ature that uses a robust backstepping sliding mode controller

for the attitude control of a quadrotor and a robust integral

sliding mode controller for the position control.

The rest of this paper is organized as follows. The 6-DOF

dynamic model is developed in Section II. Afterward, the

robust backstepping sliding mode controller for the attitude

control of the quadrotor is designed in Section III.A., and

the robust integral sliding mode controller is developed in

Section III.B. Numerical simulations are presented to demon-

strate the effectiveness of the developed solutions for a

quadrotor in Section IV. Conclusions and future work are

discussed in Section V.

II. QUADROTOR MODEL

The Newton-Euler equations of motion are commonly used

to model quadrotors with respect to two observational frames

of reference: the body-fixed frame and the inertial frame. The

body-fixed frame, which is denoted by ΣFB , is attached to

the center of mass of the quadrotor. Let ΣFG represent the

inertial frame, with p = [x, y, z]T denoting the Euclidean

position of the quadrotor w.r.t. ΣFG . The attitude of the

quadrotor is denoted by η = [φ, θ, ψ]T , in which |φ| < π
2
,

|θ | < π
2
, and |ψ | < π . The associated angular veloc-

ity is denoted by ξ = [p, q, r]T . The dynamic model of

the quadrotor includes the linear translational velocity υ =

[υx , υy, υz]T .

The rotation matrix from ΣFB to ΣFG is obtained as

follows:

R(η) =





cψcθ cψ sθ sφ − cφsψ cφcψ sθ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sθ cθ sφ cφcθ





where φ, θ and ψ denote the Euler angles of roll, pitch, and

yaw, respectively, with c(∗) = cos (∗) and s(∗) = sin (∗).

In particular, R(η) is a special orthogonal SO(3) matrix such

that R(η)−1 = R(η)T and det
(

R(η)
)

= 1, given that R(η)
is invertible.

Consider η, ξ , p and υ; the perturbed model of

the quadrotor system can be described by the following

equations:

η̇ = R−1

T
(η) ξ (1a)

ξ̇ = f1(η, ξ) + 1f
I
(t) + J

P

−1τη (1b)

ṗ = υ (1c)

υ̇ = f2(υ) − gz
3

+ 1f
O
(t) + R

T
(η)

uth

m
z
3

(1d)

y = p (1e)

where XT =
[

ηT , ξT , pT ,υT
]

∈ R
12 is the state vector, y is

the output vector, Jp = diag
{

Jx , Jy , Jz
}

represents the coef-

ficients of the rotary inertia, τη =
[

τφ, τθ , τψ
]T

denotes the

moments in the body-fixed frame, g denotes the acceleration

due to gravity, z3 = [0, 0, 1]T , uth denotes the total thrust,

m denotes the mass of the quadrotor and R
T
(η) is the matrix

relating the rotation angles η to the angular velocity ξ and is

described as

R
T
(η) =





1 0 −sθ
0 cφ cθ sφ
0 −sφ cθcφ



 , (2)

In this model, we assume that f1 : R
3 × R

3 → R
3 and

f2 : R
3 → R

3 are sufficiently smooth vector fields on X,

which are given by

f1 (η, ξ) = −J−1
p

(

fg(ξ ) + fa(η, ξ) + S(ξ ) Jpξ
)

(3a)

f2 (υ) = −
1

m
dpυ (3b)

where dp = diag
{

dx , dy , dz
}

denotes the air drag coefficients,

S(ξ) is a skew-symmetric matrix expressed as

S(ξ) =





0 −r q

r 0 −p

−q p 0



 .

and fg(ξ ) and fa(η, ξ ) are the gyroscopic effect and aerody-

namic friction torques, respectively:

fg(ξ ) = S(ξ)[i = 1]4
∑

(−1)i+1 Jiωiz3 (4a)

fa(η, ξ ) = dηR
−1

T
(η) ξ (4b)

where Ji ∈ R and ωi ∈ R denote the moment of inertia and

the angular velocity (in rad/sec), respectively, provided by

motor i for all i = {1, 2, 3, 4} and dη = diag
{

dφ, dθ , dψ
}

denotes the aerodynamic drag coefficients.

The control signal will be constructed in the following

section using the thrust uth given by uth = b
∑4

i=1 ω
2
i and

the torque τη given by

τη =





τφ
τθ
τψ



 =





lb
(

ω2
4 − ω2

2

)

lb
(

ω2
3 − ω2

1

)

k
(

ω2
2 + ω2

4 − ω2
1 − ω2

3

)



 (5)

where bω2
i denotes the lift force provided by motor i; the

parameters b and k are positive constants that denote the

effects of the drag force, the shape and number of blades and

the pitch angle; and l denotes the distance between the motor

and the center of gravity.
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FIGURE 1. The schematic configuration of a quadrotor with the origin of
the body-fixed frame and the inertia frame.

Remark 1: In control theory, the robustness of a con-

trol system is often defined in relation to disturbances and

uncertainties. Thus, robust controllers should be designed to

behave ‘‘robustly’’ under the estimated matched/unmatched

disturbances and uncertainties [33], [39]. In this way, the sta-

bility of a closed-loop control system in the presence of

the existing disturbances can be guaranteed. To emphasize

the novelty of this work, we here discuss the differences

between the proposed work and the one published in [18]

in terms of the quadrotor modeling. In [18], the authors

designed their controllers without considering the estimated

uncertainties or disturbances in the model (see Eqs. (1)-(8),

(9), and (11) in [18]). Thus, neither the regular sliding mode

controller in the inner loop nor the backstepping sliding

mode controller in the outer loop was developed to behave

robustly in the presence of disturbances or model uncertain-

ties. In this paper, we fill this gap by proposing nonlinear

controllers that are developed based on nonlinear control

strategies to behave robustly under the estimated internal

and external disturbances. Unlike in [18], we incorporate

the estimated internal and external disturbances i.e., 1f
I
(t)

and 1f
O
(t), respectively, in (1), into the quadrotor model.

Our controllers are developed to behave robustly under these

disturbances.

III. ATTITUDE AND POSITION CONTROLLER DESIGN

In this section, a feedback control system with a two-loop

form, i.e. an inner loop and an outer loop, is designed for

position trajectory tracking. First, a backstepping sliding

mode controller is presented for the inner loop to ensure the

trajectory tracking capability of φ and θ along the desired roll

and pitch angle trajectories φd , and θd , respectively. Next,

the outer loop, i.e., the so-called position control subsystem,

is designed using robust integral sliding mode control. This

controller is mainly designed to overcome the effect of dis-

turbances and generate

1) the desired roll and pitch angle trajectories (φd , andθd ),

and

2) the thrust control signal (uth ).

A. ATTITUDE CONTROL PROBLEM STATEMENT

Consider the perturbed inner-loop subsystem represented by

(1a) and (1b), where 1f
I
(t) : R → R

3 denotes the pertur-

bation introduced into the inner-loop system due to noise and

discretization. The system is said to be free of perturbation

if 1f
I
(t) = 0. The following assumptions are adopted when

designing the quadrotor control system.

Assumption 1: The desired reference signals ηd and its

first and second derivatives, i.e., η̇d and η̈d , are bounded

and available online. Moreover, the disturbance 1f
I
(t) is

bounded such that
∥

∥1f
I
(t)

∥

∥ < γI for some known γI .

Assumption 2: In this work, we considered only matched

disturbance for ease of analysis.

Our first objective is to develop a robust controller

for the attitude control system such that η and ξ in (1)

track the desired reference signals ηd =
[

φd , θd , ψd
]T

and ξd =
[

pd , qd , rd
]T
, respectively, in the presence of the

perturbation 1f
I
(t). The tracking errors of the inner-loop

control system are as follows:

ηe = ηd − η

ξ e = ξd − ξ

= R
T
(ηd ) η̇d − ξ

where ηd can be obtained from the outer loop (to be discussed

later) and the desired reference signal ξd can be precisely

estimated as

ξd = R
T
(ηd ) η̇d (6)

using (1a). The change of variables eT
I

=
[

ηeT ξ eT
]

in (1a)

and (1b) yields

η̇e = η̇d − R−1

T
(η)ξd + R−1

T
(η)ξ e (7a)

ξ̇
e

= ξ̇
d

− f1(η, ξ ) − 1f
I
(t) + u

I
(7b)

where

uI = −J−1τη (8)

denotes the attitude controller to be designed. Let

uI = ub
I
+ us

I
(9)

where ub
I
and us

I
represent for backstepping and robust sliding

mode controllers, respectively.
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1) BACKSTEPPING CONTROLLER FOR STABILIZING A

PERTURBATION-FREE INNER-LOOP SUBSYSTEM

Let us design a backstepping controller ub
I
for the case

of a perturbation-free inner-loop subsystem by substituting

1f
I
(t) = us

I
= 0 into (7) such that

η̇e = η̇d − R−1

T
(η)ξd + R−1

T
(η)ξ e (10a)

ξ̇
e

= ξ̇
d

− f1(η, ξ ) + ub
I

(10b)

where

ξ̇
e
= ξ̇

e
+ 1f

I
(t)−us

I
. (11)

This can be referred to as the nominal inner-loop tracking

error.

Clearly, ξ e in (10a) is the virtual input control that can be

used to stabilize ηd . The desired stabilizing function can be

selected as follows:

8 = ξd − R
T
(η) ̺ (12)

where

̺ = Ŵηe + η̇d (13)

in which Ŵ ∈ R
3×3 is a designed positive definite matrix.

The stabilizing function given in (12) is selected by replac-

ing ξ e with 8 in (10a), i.e.,

1η̇e = η̇d − R−1

T
(η)ξd + R−1

T
(η)

(

ξd − R
T
(η)

)

̺

= η̇d −̺

= −Ŵηe

which shows that the origin ηe = 0 is globally exponentially

stable. Furthermore, using (6) and (12), it can be shown that

8|ηe=0
= ξd − R

T
(ηd ) η̇d = 0. (14)

Now let us define a new variable

ϕe 1= ξ e − 8 (15)

and transform (10) into (ηe,ϕe) coordinates such that

η̇e = −ηe + R−1

T
(η)ϕe (16a)

ϕ̇e = ξ̇
d

− f1(η, ξ ) − 8̇ + ub
I

(16b)

where

8̇ = ξ̇
d

− ṘT (η)̺ − R
T
(η) ˙̺ (17)

with ˙̺ = Ŵη̇e + η̈d and

ṘT (η) =





0 0 −θ̇cθ
0 −φ̇sφ −θ̇sθ sφ + φ̇cθcφ
0 −φ̇cφ −θ̇sθcφ − φ̇cθ sφ



 . (18)

Taking V
b

I
= 1

2
ηeTηe + 1

2
ϕeTϕe as a composite Lyapunov

function (LF), we obtain

V̇ = ηeT η̇e + ϕeT ϕ̇e

= −‖ηe‖2 + ηeTR
T

−1
(η)ϕe + ϕeT ϕ̇e

= −‖ηe‖2 + ϕeT
(

R−1

T
(η)Tηe + ϕ̇e

)

Considering (16b) and (17), taking

ub
I

= 8̇ + f1(η, ξ ) − R
T

−1(η)Tηe − ξ̇
d

− ϕe (19)

yields V̇
b

I
= −

(

‖ηe‖2 + ‖ϕe‖2
)

< 0.

Remark 2: This result shows that the origin ηe = ϕe = 0
in (16) is asymptotically stable. Since ϕe = 0 and 8|

ηe
=

0 = 0 as per (14), we conclude that the origin ξ e = 0 is also

asymptotically stable.

2) ROBUST SLIDING MODE CONTROLLER FOR AN

INNER-LOOP SUBSYSTEM WITH UNCERTAINTY

Given that the desired output should track ηd and ξd ,

we define the inner-loop sliding surface in the error space as

fo1lows:

s
I
=

[

ηe

ξ e

]

(20)

where s
I

∈ R
6. Clearly, on the sliding surface s

I
= 0,

the trajectory is governed by ηe = ξ e = 0. Taking the time

derivative of the sliding manifold in (20) yields

ṡI =

[

η̇e

ξ̇ e

]

(21)

Consider the LF V = 1
2
sT
I
s
I
, which implies that

V̇ = s
T

I
ṡ
I

(22)

Considering the backstepping controller and substituting (21)

into (22) yields

V̇ = V̇ (ηe, ξ e) + ξ e
T ˙̂
ξ e (23)

where V̇ (ηe, ξ e) = ηeT η̇e + ξ eT ξ̇ e and
˙̂
ξ e = us

I
− 1f

I (t).

Given that V̇ (ηe, ξ e) → 0 as shown in Remark 2, this leads

to the following inequality:

V̇ < −ξ e
T

(

1 f
I (t)− us

I

)

(24)

Consider

us
I

= −βI Sgn
(

ξ e
)

(25)

where Sgn
(

ξ e
)

=
[

sgn (pe) sgn (qe) sgn (re)
]T and βI is

the constant to be designed to ensure the robustness of the

attitude controller. Substituting (25) into (24) yields

V̇ < −ξ e
T

1f
I (t) − βI

∥

∥ξ e
∥

∥

1

<
∥

∥ξ e
∥

∥

(

ξ1 − βI
)

< 0, ∀ βI > ξ1 > 0 (26)

since
∥

∥ξ e
∥

∥

1
≥

∥

∥ξ e
∥

∥

p
for any p > 1.

Remark 3: The inner-loop controller (9), consists of two

parts: backstepping defined in (19) and sliding mode

controller defined in (25). In the first part of the inner-

loop controller, we designed backstepping to stabilize the
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FIGURE 2. Block diagram for the quadrotor control structure.

disturbance-free inner-loop quadrotor sub-system. In the sec-

ond part, the sliding mode control is designed to work

robustly together with backstepping controller against the

disturbance. Thus, the proposed inner-loop controller does

not have to switch between both backstepping and sliding

mode controllers and; therefore, it does not need to have any

disturbance detection mechanism.

B. POSITION SUBSYSTEM PROBLEM STATEMENT

Consider the perturbed outer-loop subsystem introduced in

(1c) and (1d), where 1f0(t) : R
12 → R

3 denotes the

perturbation introduced into the system due to noise and

discretization.

The following assumption is adopted when designing the

quadrotor control system.

Assumption 3: The desired output pd and its first and sec-

ond derivatives, i.e., ṗ
def
= υ and p̈d

def
= υ̇d , are bounded

and available online. Moreover, the uncertainty 1f0(t) is

bounded such that
∥

∥1f0(t)
∥

∥ < γ2 for some known γ2.

1) STABILIZING THE OUTER LOOP

The main control objective is to design an outer-loop control

system with a robust controller such that p and υ in (1c) and

(1d) track the desired outputs pd and υd , respectively. The

tracking errors of the outer-loop control system are, therefore,

expressed as: pe = pd − p and υe = υd − υ.

The change of variables eo =

[

pe

υe

]

in (1c) and (1d) yields

ṗe = υe (27a)

υ̇e = p̈d − υ̇e (27b)

If we assume that the desired ψd , that is the desired yaw

(ψ), is provided along with the waypoints, then we have the

remaining desired inputs, i.e., the roll φd , the pitch θd , and

the total torque uT , to reconstruct the control. Let

uo = col
(

φd , θd , uT

)

(28)

denote the robust control inputs for perturbed outer loop that

is to be designed.

Let us define the outer-loop sliding-surface function as

follows:

so = α1
∫ t
−∞ pedτ + α2p

e + ṗe (29)

where α1 and α2 are selected to be positive constants. Taking

time derivative of the sliding manifold in (29) and using (27b)

yields

ṡo = α1p
e + α2ṗ

e + p̈e (30a)

= α1p
e + α2υ

e + υ̇e (30b)

= E (p, υ) − 1f
O
(t) − R(η)z

3
uT (30c)

where uT =
u
th

m
and

E (p, υ) = α1p
e + α2υ

e + p̈d + gz
3

− f
2
(υ) (31)

For the equivalent sliding mode control, where ˙so = 0, and

given that α1 and α2 are positive definite matrices, it is easy to

show that (30a) satisfies the following Hurwitz polynomial:

λ2+α2λ+α1 = 0. Therefore, the position error will converge

to zero under the appropriate control design.

Let

R(η)z
3
uT = Ê(p,υ) (32)

with Ê(p,υ) defined as

Ê(p,υ)
1
=





ε1
ε2
ε3



 = E (p, υ) + βo Sgn (so) (33)

where βo is the constant to be designed to ensure robustness in

the outer loop. Assume that the desired yaw (ψd in assump-

tion 1) is provided along with the waypoints. Under this
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FIGURE 3. The performance of the tracking trajectory for perturbation-free control systems.

assumption, (32) basically consists of three equations with

three manipulated inputs, i.e., the desired roll φd , the desired

pitch θd , and uT , which can be found by solving (32). After

simple algebraic computations, the following equations are

obtained:

φd = arcsin







ε1sψd − ε2cψd

∥

∥

∥
Ê(p, υ)

∥

∥

∥

2






(34a)

θd = arctan

(

ε1cψd + ε2sψd

ε3

)

(34b)

Substituting (34) into (32) yields z
3
uT = R(ηd)

T
Ê(p,υ)

since R(ηd)
−1

= R(ηd)
T
. Equivalently,

uT =





cφd cψd sθd + sψd sφd

sθd sψd cφd − cψd sφd

cφd cθd





T

Ê(p,υ). (35)

If βo is selected such that

βo ≥ γ2 >
∥

∥1f
O
(t)

∥

∥ (36)

then it is easy then to show that s
T

o ṡo < 0 holds.

Remark 4: To emphasize the novelty of this work, we here

present the major differences between our work and the one

published in [18] in terms of control structure. The work [18]

proposed a backstepping sliding mode control technique for

the outer loop to achieve position trajectory tracking for a

quadrotor. They first developed a regular sliding mode con-

troller for the attitude subsystem (inner loop) to guarantee fast

convergence of the Euler angles. Then, the backstepping slid-

ing mode control technique was applied for position control

(outer loop) to generate the desired attitude (Euler angles).

By contrast, in our work, we develop a robust backstepping

slidingmode controller for the inner loop and a robust integral

sliding mode controller for the outer loop.
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FIGURE 4. The performance of the tracking trajectory for the perturbed control system.

Remark 5: In future work, it may be of interest to con-

sider replacing (29) with the recent integral or adaptive

sliding mode laws augmented with neural network proposed

in [40]–[45].

IV. SIMULATION

Here, the performance of the proposed control strategy is

illustrated through extensive numerical simulations using

MATLAB/Simulink. In this study, we consider the quadrotor

model given in (1)-(5) with the identified parameters given

in Table 1 and zero initial conditions for all states, i.e. η =

ξ = p = υ = 0.

A. SIMULATION RESULTS

The two controllers, i.e., the inner-loop backstepping-based

sliding mode controller defined in (9), (19) and (25) and the

TABLE 1. Quadrotor model parameters.

outer-loop integral sliding mode defined in (28), (34) and

(35), are applied to validate the robustness and trajectory

tracking performance of the proposed scheme. The desired

trajectory is chosen to be

pd =





(1 + t) cos(0.5t)

(4 + 0.1t) sin(0.5t)

1 + 0.5t





and the desired yaw is initially set to zero, i.e., ψd = 0. It is

obvious that pd = [1, 0, 1] at t = 0. Thus, the mission of the
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FIGURE 5. The performance of the tracking trajectory for the quadrotor control system with wind disturbances.

quadrotor is to start from the origin [0, 0, 0] and to proceed

to [1, 0, 1].

To explore the effectiveness of our proposed controller,

the following three scenarios are considered. Each simulation

lasts for 30 seconds.

Scenario I: In this scenario, numerical simulations are

carried out for the perturbation-free case (trajectory tracking

with the designed parameters given in Table 2). As shown

in the table, the parameters of the robust controllers, i.e., βI
in (25) and βo in (33), are designed to be small as possi-

ble. The performance of the proposed tracking control strat-

egy is illustrated in Fig. 3. The three-dimensional path (see

Fig. 3.(a)) shows that when the proposed scheme is applied,

the quadrotor successfully achieves the desired waypoint

tracking with very low control effort (see Fig. 3.(d)). It is

obvious that the velocity vector is directed toward the desired

path. Fig. 3.(a) and (b) demonstrate that the transition time

TABLE 2. Controller parameters.

required to move from the origin [0, 0, 0] to [1, 0, 1] is less

than one second, with less that 10% overshoot (see zd and z

in Fig. 3.(b) and the thrust uth in Fig. 3.(d)).

Scenario II: In this scenario, we consider trajectory track-

ing with uncertainty with the designed parameters given

in Table 2. The perturbation comes from high-frequency

additive white Gaussian noise (
∥

∥1fI
∥

∥

∞
=

∥

∥1fo
∥

∥

∞
= 1),

which is added to the feedback signals from the noisy
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communication channels that connect the ground station to

the onboard processor or is generated by the undesirable

weather conditions (e.g., external wind gusts) and directly

affects the center of mass of the body.

As shown in Table 2, the robust property of the proposed

scheme is activated when the parameters, βI in (25) and βo in

(33), are designed to satisfy the stability conditions given in

(26) and (36), respectively. The performance of the proposed

tracking control strategy is depicted in Fig. 4. The three-

dimensional path in Fig. 4.(a) and the actual position response

in Fig. 4.(b) show that the proposed scheme succeeds in

tracking the desired tracking with a very small tracking error

and little deviation to the left and right in the X-Y plane.

Scenario III: In this scenario, we consider trajectory track-

ing with wind disturbances. The designed parameters of the

proposed controllers are given in Table 2. The perturbation

comes from wind gust with varying wind speed less than

2m/s, that is directly applied to the vx , vy and vz-axises. The

considered wind guest in this scenario results in
∥

∥1fI
∥

∥

∞
= 1

and
∥

∥1fo
∥

∥

∞
= 2.

As shown in Table 2, the parameters βI in (25) and βo
in (33), are designed to satisfy the stability conditions given

in (26) and (36), respectively. The performance of the pro-

posed tracking control strategy is depicted in Fig. 5. The

three-dimensional path in Fig. 5.(a) shows that the proposed

scheme succeeds in tracking the desired tracking with a small

tracking error and little deviation to the left and right in the

X-Y plane. The peak position errors in the steady state are

pe ≈ [0.5, 1.9, 0.05]T as shown in Fig. 5.(b).

V. CONCLUSION

In this paper, robust nonlinear control strategies for a quadro-

tor subject to uncertainties have been presented. The pro-

posed control algorithm, which combines integral sliding

mode and backstepping sliding mode controllers in a double-

loop control structure, effectively ensures the trajectory track-

ing capability for the desired position. The stability and

performance of the quadrotor control system has been thor-

oughly investigated through Lyapunov stability analysis.

Numerical simulations demonstrate the effectiveness of the

developed solutions for a quadrotor. The simulation results

demonstrate that the proposed control algorithm effectively

controls the quadrotor system and achieves the desired spec-

ifications even under sever uncertainties.
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