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Abstract

We present a new bandwidth extension algorithm for convert-
ing narrowband telephone speech into wideband speech using a
transformation in the mel cepstral domain. Unlike previous ap-
proaches, the proposed method is designed specifically for band-
width extension of narrowband speech that has been corrupted
by environmental noise. We show that by exploiting previous re-
search in mel cepstrum feature enhancement, we can create a uni-
fied probabilistic framework under which the feature denoising
and bandwidth extension processes are tightly integrated using a
single shared statistical model. By doing so, we are able to both
denoise the observed narrowband speech and robustly extend its
bandwidth in a jointly optimal manner. A series of experiments
on clean and noise-corrupted narrowband speech is performed to
validate our approach.

1. Introduction
Speech transmitted over the telephony network is bandlimited
to frequencies between 300-3400 Hz. While limiting speech to
this bandwidth does not significantly reduce intelligibility, stud-
ies have shown that users prefer listening to wideband speech,
i.e. speech with a frequency range of 50-8000 Hz [1]. As a re-
sult, there has been a significant amount of research performed
recently aimed at enhancing the perceptual quality of narrowband
speech by estimating and then synthesizing the missing spectral
content in order to artificially extend its bandwidth, e.g. [2, 3].

Because the accuracy of the recovered spectral envelope is
particularly important to its subjective quality, most bandwidth
extension (BWE) research has focused on this problem. Almost
all methods in the literature operate using a codebook or a statisti-
cal model, e.g. GMM or HMM, to model different sound classes
of narrowband speech. Each codeword (or state) has an associ-
ated template representing the average spectral envelope of the
missing frequencies for that sound class. Such methods operate
by first estimating the mostly likely state or codeword for a par-
ticular speech frame, and then selecting (in a hard or soft manner)
the corresponding extended frequency template.

While these methods are able to perform BWE under ideal
conditions, no effort has been made to address the problem of
performing such procesing in the presence of additive noise. Yet,
as the number of mobile phone users continue to grow and peo-
ple make calls from a variety of environments, it is essential that
BWE algorithms perform robustly in noisy environments.

Performing BWE in noisy enviroments is problematic for
several reasons. For example, most BWE algorithms utilize LPC-
derived features, such as LPC-cepstra or LSF coefficients, to rep-
resent both the narrowband and the extended frequency spectral
envelopes in the codebooks or mixture models. However, be-
cause additive noise introduces zeros in the speech spectrum,
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orrupted speech is no longer well-represented by an all-
odel, and as a result, the BWE accuracy will degrade. In
n, because there is no way of modeling the effect of addi-
ise on LPC-based features directly, the noisy signal must
processed using a speech enhancement algorithm, prior
E. However, there is no way to know if the enhancement
ing is in fact optimal for the subsequent BWE processing.
this paper, we propose a new statistical method for spec-
elope extension using mel frequency cepstral coefficients
). Because the mel cepstra are derived directly from the

spectrum and not an all-pole spectral model, the relation-
tween speech and noise features is well-understood. In-
uch research in the speech recognition community has
on removing the effects of additive noise from MFCC

s. We exploit this work in order to create a new BWE
m for noisy speech in which narrowband envelope de-
and BWE are integrated in a unified probabilistic frame-

sing a common statistical model. We then demonstrate
ch an approach significantly outperforms the more con-
al approach of enhancing the noise-corrupted speech and
rforming BWE on the denoised speech in a variety of en-
ents and SNRs.

. MFCC-based bandwidth extension
section, we present a new algorithm for estimating the
nd spectral envelope from a narrowband observation us-
ansformation in the mel cepstral domain. Throughout this
we assume that the narrowband speech signal has been
led to match the sampling rate of the desired wideband

.

xtracting MFCCs from wideband and narrowband

efine |Z|2 as the power spectrum of a frame of speech de-
om a Short-Time Fourier Transform, the feature extraction
for generating MFCCs can be summarized as

z = C log(W|Z|2) (1)

W is the matrix of weighting coefficients of the mel fil-
and C is a DCT matrix. If the mel filters in W span

eband spectrum, i.e. 50-8000 Hz, then for narrowband
, we can use a reduced-row version of W which only in-
the mel filters between 300-3400 Hz. Of course, this re-
that a reduced-column DCT matrix be used as well.

arrowband-to-wideband MFCC transformation

define x to be a narrowband MFCC feature vector and
the corresponding wideband MFCC feature vector. Our

to estimate z from x, i.e. to compute E[z|x].



We assume that the observed narrowband feature vectors
were generated by a Gaussian mixture model (GMM). Thus, the
probability distribution p(x) can be written as

p(x) =
S∑

s=1

p(x|s)p(s) =

S∑
s=1

N (x; µs,Σs) p(s) (2)

where N (x; µs,Σs) is a Gaussian distribution with mean µs

and covariance Σs, p(s) is the prior probability for state s, and S
is the total number of Gaussians in the mixture. We assume that
Σs is a diagonal matrix. This model is trained from narrowband
training data using conventional EM.

We model the transformation from narrowband to wideband
feature vectors using a piecewise-linear transformation. More
specifically, we assume that

z = Asx + bs + e (3)

where p(e) = N (e; 0, I), and the transformation parameters
{As,bs} are dependent on the Gaussian mixture component s.

From Eq. (3), the conditional probability of z is

p(z|x, s) = N (z;Asx + bs, I) = N (
z;A′

sx
′, I

)
(4)

where A′
s = [As bs], and x′ = [x 1]T .

The transformation parameters {A′
1 . . .A′

S} are learned us-
ing a corpus of stereo training data in which each narrowband
feature vector xt has a corresponding wideband feature vector
zt. For each state s, the ML estimate of A′

s is given by

A′
s =

(
T∑

t=1

p(s|xt)ztx
′T
t

) (
T∑

t=1

p(s|xt)x
′
tx

′T
t

)−1

(5)

The derivation, which is quite straightforward, is omitted here for
brevity. Eq. (5) can be interpreted as a soft-decision least-squares
estimate of A′

s.

2.3. Bandwidth extension of the spectral envelope

Using Eq. (2) and Eq. (4), we can compute E[z|x] as

E[z|x] =

S∑
s=1

∫
zp(z, s|x)dz

=
S∑

s=1

p(s|x)

∫
zp(z|x, s)

=

S∑
s=1

p(s|x)A′
sx

′ (6)

where the state posterior probability p(s|x) is computed from the
GMM as

p(s|x) =
p(x|s)p(s)∑S

s′=1 p(x|s′)p(s′)
(7)

Once the wideband cepstral vector ẑ = E[z|x] has been esti-
mated, we can perform a series of inverse transformations to gen-
erate the corresponding wideband spectral envelope. If we define
SZ to be the smooth spectral envelope corresponding to a power
spectrum |Z|2, then we can generate an estimate the wideband
envelope as

ŜZ = W† exp(C†ẑ) (8)

where W† and C† are the pseudoinverses of W and C, respec-
tively. The segment or segments of the spectrum missing from
the original narrowband speech can then be extracted from ŜZ .
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section, we describe how the BWE algorithm described in
vious section can be extended to perform BWE on noise-
ed speech.

n overview of MFCC feature enhancement

ssume that the speech and noise are uncorrelated, then the
nd speech are additive in power spectrum domain as

|Y|2 = |X|2 + |N|2 + ε (9)

ε is a zero-mean random variable that models the contri-
of the cross-terms. If we assume ε can be neglected, it can

n through algebraic manipulation [4] that in the MFCC
, this relationship becomes

y = x + C log(1 + exp(C†(n − x)))

= x + f(x,n) (10)

x, y and n are the MFCC vectors for the clean speech,
orrupted speech, and the noise, respectively. Thus, the
epstrum y is related to the clean cepstrum x by an addi-
s f which is a non-linear function of the speech and noise
.
e relationship defined in Eq. (10) has been widely used
peech recognition community as the basis of a family of
enhancement (FE) algorithms, e.g. [4, 5]. While the de-
these techniques vary, the majority operate under an EM
ork utilizing a prior speech model, e.g. a GMM or HMM,
iterative Vector Taylor Series (VTS) approximation algo-
At each iteration, a VTS expansion is used to linearize f,
n compute the ML estimate of the posterior distributions
idden variables x and n. The means of these distributions
n used as the VTS expansion point for the next iteration.
cess is repeated until convergence. At this point, a MMSE
e of the clean cepstral vector is generated as

E[x|y] =

S∑
s=1

p(s|y)

∫
xp(x|y, s)dx (11)

p(s|y) is the state posterior distribution, and p(x|y, s) is
sian that represents the state-conditional posterior distri-
of the clean cepstra. While the details of these algorithms
ond the scope of this paper, we will demonstrate how the
tions in Eq. (11) can be used to tightly integrate any of
lgorithms with the BWE algorithm described in the pre-
ection. The will enable us to perform robust bandwidth
on on noise-corrupted speech.

tegrating BWE with feature enhancement

uld like to estimate the clean wideband cepstral vector z
noisy narrowband vector y. We will show how using the
MM for both feature enhancement and bandwidth exten-
ables us to do so. We refer to this method as Feature-
ed BWE (FE-BWE). Using the GMM in Eq. (2), we can
the MMSE estimate as



E[z|y] =

S∑
s=1

∫
z

(∫
p(z,x, s|y)dx

)
dz (12)

Notice that rather than relying on a point estimate of the narrow-
band clean cepstral vector x̂, we marginalize over all values of
x. This will make the solution much more robust to estimation
errors. Using Bayes’ rule, we can rewrite Eq. (12) as

E[z|y] =
S∑

s=1

p(s|y)

∫
z

(∫
p(z,x|y, s)dx

)
dz (13)

=
S∑

s=1

p(s|y)

∫
zp(z|y, s)dz (14)

All that remains is to compute the state posterior distribu-
tion p(s|y) and the state-conditional distribution p(z|y, s) in
Eq. (14). Because both feature enhancement and bandwidth
extension are performed with the same GMM, it is clear from
Eq. (11) that p(s|y) can be obtained directly from the output of
the feature enhancement algorithm. To estimate the parameters
of p(z|y, s), we first rewrite the joint posterior probability of z
and x in Eq. (13) as

p(z,x|y, s) = p(z|x,y, s)p(x|y, s) (15)

= p(x|z,y, s)p(z|y, s) (16)

The first term on the right side of Eq. (15) can be simplified to
p(z|x, s) because given x, y provides no additional information
about z. Thus, this is simply the wideband cepstra conditional
probability distribution in Eq. (4). The second term p(x|y, s) is
the state-conditional posterior distribution generated by the fea-
ture enhancement algorithm, as shown in Eq. (11). Since both of
these terms are Gaussian, the two expressions in Eq. (16) must
also be Gaussian. We can therefore find their parameters through
algebraic manipulation. Thus, it can be shown that if the posterior
distribution of x in Eq. (11) is expressed as

p(x|y, s) = N (x; νs,Φs) (17)

then p(z|y, s) can be expressed as

p(z|y, s) = N
(
z;A′

sν
′
s,A

T
s ΦsAs + I

)
(18)

Finally, by substituting Eq. (18) into Eq. (14), we can now
write the final expression for the expected value as

ẑ = E[z|y] =

S∑
s=1

p(s|y)A′
sν

′
s (19)

The extended spectral envelope ŜZ can then be generated
from ẑ as described in Section 2.3.

3.3. Noise reduction of the narrowband envelope

As discussed in Section 2.3, ẑ represents the entire spectral en-
velope, not just the extended frequency segment. As a result, it
can be used to denoise the observed narrowband speech in the
following manner. From y and ẑ, we can generate the the noisy
and estimated clean spectral envelopes, SY and ŜZ , respectively,
using Eq. (8). The narrowband frequencies can then be extracted
from these envelopes to create a Wiener filter to denoise the nar-
rowband speech. This filter can be expressed as

H = ŜZ/SY (20)
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|Ẑ|2 = H|Y|2 (21)

. Generating a wideband waveform
e wideband speech envelope has been estimated, we can
e the wideband waveform using a conventional BWE ap-
. We used the method proposed in [2]. The denoised and
d power spectrum is converted to the LPC domain. The
d narrowband signal is then passed through the LPC filter
in the narrowband excitation signal which is then mod-
high-pass filtered, and then combined with the original
on. This now-wideband excitation is then used to drive
C synthesis filter to generate the wideband speech. Other
s of generating bandwidth extended speech from a given
d spectral envelope estimate may also be used.

5. Experimental results
the effectiveness of the proposed BWE algorithm, we
ed a series of experiments on clean and noise-corrupted

band speech. To train the GMM and the narrowband-to-
nd transformation parameters, we utilized the training set
e WSJ0 corpus [6], which consists of 12 hours of wide-
ean speech from 84 different speakers. To create a paral-
owband corpus, the speech was downsampled to 8 kHz,
according to the G.712 telephony channel specification,
n upsampled back to 16 kHz. Wideband features were
by extracting 64-dim log mel spectral vectors from the

spectrum, and then converting these to 19-dim cepstra, in-
c0. The narrowband cepstral vectors were created by ex-
45-dim log mel spectra (using mel filters 4-48) and then

ing these to 13-dim cepstra, including c0. We used feature
with higher dimensionality than typically used in feature

ion for speech recognition in order to retain more detail in
ctral envelope. The narrowband cepstra were used to train

with 256 densities using conventional EM. The transfor-
parameters were then trained according to Eq. (5).
first evaluated the proposed BWE algorithm on clean nar-
d speech. A test corpus of telephone speech was created
12 utterances selected at random from the WSJ0 test set.
were 8 speakers (5 male, 3 female) with 14 utterances
hese utterances were converted to narrowband speech in

nner described above. For each utterance, BWE was per-
to estimate the spectral envelope for both the low and high
cy regions missing from telephone speech.
evaluate the performance of the algorithm, we computed

an RMS log spectral distortion (RMS-LSD) of the smooth
spectral envelopes between the original wideband speech
the bandwidth-extended speech ŜZ over the extended fre-
s. RMS-LSD is defined as

D =

√
1

ω2 − ω1

∫ ω2

ω1

∣∣∣10 log10 |SZ/ŜZ |
∣∣∣2 dω (22)

{ω1, ω2} represents the frequency range of interest. The
are shown in Table 1. Although differences in test data
irect comparisons difficult, the performance of the pro-

FCC-based BWE algorithm on clean speech is compa-
that of other state-of-the-art algorithms in the literature.

le also shows that applying FE-BWE on clean speech re-
a negligible change in performance.



RMS Log Spectral Low Freq High Freq
Distortion (dB) (50-300 Hz) (3.4-8 kHz)

BWE 3.39 7.30
FE-BWE 3.49 7.41

Table 1: Spectral distortion of the extended spectral envelopes
obtained using the proposed BWE and FE-BWE algorithms on
clean narrowband speech.

To evaluate the FE-BWE algorithm on noisy speech, the nar-
rowband test set was mixed with samples of noise from the Au-
rora 2 corpus [7]. The noises represented 8 environments: airport,
babble, car, exhibition hall, restaurant, street, subway, and train.
For each environment, test sets were created at SNRs between 0
and 25 dB.

We compared three different methods of BWE on noisy
speech. First, BWE was performed directly on the noisy speech.
In the second case, the speech was first enhanced using conven-
tional Wiener filtering, followed by BWE. This is equivalent to
performing BWE on a point estimate of the clean speech. Fi-
nally, we performed the proposed FE-BWE algorithm. We used
the Zero Variance Model (ZVM) feature enhancement algorithm
[5] to generate the required posterior distributions. These distri-
butions were then used in Eq. (19) to estimate the clean wideband
cepstral vector and the resulting spectral envelope. The segment
of the envelope spanning the narrowband frequencies was used
to denoise the narrowband envelope and the portion that lay out-
side this region was used as the estimate of the extended envelope.
The resulting performance, averaged over all noise environments,
is shown shown as a function of SNR in Figures 1 and 2. Figure 1
shows the spectral distortion of the denoised narrowband enve-
lope while Figure 2 shows that of the high frequency extended
envelope.

As the figures show, enhancing the speech prior to perform-
ing BWE results in minimal improvement over BWE processing
on the noisy speech directly. On the other hand, the proposed
FE-BWE algorithm results in significantly less distortion in both
the observed narrowband spectral envelope and the extended high
frequency envelope. Similar performance was seen in the exten-
sion of the low frequencies as well.

6. Conclusion
In this paper, we have presented a new algorithm for robust band-
width extension of narrowband speech that has been corrupted
by additive noise. The bandwidth extension algorithm utilizes
a GMM trained on narrowband speech and a state-conditional
affine transformation in the MFCC domain to transform the nar-
rowband spectral envelope into a wideband spectral envelope.
The accuracy of the proposed algorithm on clean narrowband
speech is comparable to that of other state-of-the-art BWE al-
gorithms. Unlike other methods, however, we showed how this
algorithm can be tightly integrated with an MFCC-based fea-
ture enhancement algorithm using a common speech model and
a unified statistical framework. Through a series of experiments
on noise-corrupted narrowband speech, we showed that the pro-
posed feature-enhanced bandwidth extension (FE-BWE) algo-
rithm significantly outperforms a more conventional enhance-
then-extend approach. A true noise-robust BWE algorithm must
also robustly handle the effects of additive noise in the excitation
signal. This is the focus of our future work.
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