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Abstract

The standard approach to Bayesian inference is based on the assumption that the distribution of 

the data belongs to the chosen model class. However, even a small violation of this assumption can 

have a large impact on the outcome of a Bayesian procedure. We introduce a novel approach to 

Bayesian inference that improves robustness to small departures from the model: rather than 

conditioning on the event that the observed data are generated by the model, one conditions on the 

event that the model generates data close to the observed data, in a distributional sense. When 

closeness is defined in terms of relative entropy, the resulting “coarsened” posterior can be 

approximated by simply tempering the likelihood—that is, by raising the likelihood to a fractional 

power—thus, inference can usually be implemented via standard algorithms, and one can even 

obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, 

and we illustrate the approach with real and simulated data using mixture models and 

autoregressive models of unknown order.
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1 Introduction

In most applications, statistical models are idealizations that are known to provide only an 

approximation to the distribution of the observed data. One might hope that departures from 

the model, if sufficiently small, would not significantly impact inferences. Often this does 

seem to be the case, but sometimes inferences are sensitive to small perturbations away from 

the assumed model, especially if the sample size is large. This article focuses on the problem 

of defining alternatives to the usual likelihood function that are designed to be robust to a 

small amount of mismatch between the assumed model and the distribution of the observed 

data. Although the concepts are general, we concentrate on Bayesian approaches, using our 

modified likelihoods in place of the usual likelihood. We are focused on robustness to the 

form of the likelihood, in contrast to most previous work on robust Bayes which focuses on 

robustness to the choice of prior.

Instead of using the standard posterior obtained by conditioning on the event that the 

observed data are generated by the model—which is incorrect when there is a perturbation—

our approach is to condition on the event that the empirical distribution of the observed data 
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is close to the empirical distribution of data generated by the model, with respect to some 

discrepancy between probability measures. We refer to this as a coarsened posterior, or c-

posterior, for short. This corresponds to using a modified likelihood.

One can control the type of robustness exhibited by a c-posterior via the choice of 

discrepancy. For instance, robustness to outliers can be obtained by using a discrepancy that 

is not strongly affected by moving a small amount of probability mass to an outlying region 

(e.g., 1st Wasserstein distance). Alternatively, robustness to slight changes in the shape of 

the distribution—which is our primary interest in this paper—can be obtained by using a 

discrepancy that is tolerant of such changes, such as relative entropy.

It works out particularly well to use relative entropy (i.e., Kullback–Leibler divergence), 

since in this case the c-posterior can be approximated by the “power posterior” obtained by 

simply raising the likelihood to a certain fractional power. Consequently, one can usually do 

approximate inference using standard algorithms with no additional computational burden—

in fact, the mixing time of Markov chain Monte Carlo (MCMC) samplers will typically be 

improved, since the likelihood is tempered. Further, when using exponential families and 

conjugate priors, one can even obtain analytical expressions for quantities such as a 

robustified marginal likelihood.

The main novel contributions of the paper are: (1) introducing the idea of the c-posterior, (2) 

providing a calibration method for choosing an appropriate amount of coarsening, (3) 

empirically demonstrating how the c-posterior can easily be used to perform robust 

inference in a variety of examples, using real and simulated data, (4) establishing the 

asymptotic form of the c-posterior when certain limits are taken, (5) proving that the c-

posterior exhibits robustness to small perturbations from the assumed model (that is, 

robustness to the form of the likelihood), and (6) proving that the power posterior is a good 

approximation to the relative entropy c-posterior when n is either large or small relative to 

the amount of coarsening.

The paper is organized as follows. Section 2 introduces the coarsening approach and 

considers the case of relative entropy coarsening in detail. Section 3 uses a toy Bernoulli 

example to illustrate coarsening in the simplest possible setting, as well as to assess the 

accuracy of the power posterior approximation. Section 4 introduces a technique for 

choosing an appropriate amount of coarsening in a data-driven way. In Section 5, we 

demonstrate coarsening for mixture models and clustering, to obtain robustness to the form 

of the component distributions. We apply this to perform robust clustering of cells in flow 

cytometry datasets containing tens of thousands of multivariate data points. In Section 6, we 

demonstrate coarsening on autoregressive models of unknown order, performing inference 

for the model complexity in a way that is robust to perturbations. Section 7 discusses several 

frequently asked questions, and the supplementary material contains theoretical results, 

previous work, further discussion, and additional details.
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2 Method

For now, we assume an i.i.d. setting, but the approach generalizes to time series and 

regression (see Section 6 and Supplement S6). Suppose we have a model {Pθ : θ ∈ Θ} along 

with a prior ∏ on Θ, and suppose there is a point θI ∈ Θ representing the parameters of the 

idealized distribution of the data. The interpretation is that θI is the true state of nature about 

which one is interested in making inferences. Suppose there are some unobserved idealized 

data X1, …, X
n

∈ 𝒳 that are i.i.d. from PθI, and the observed data x1, …, x
n

∈ 𝒳 are a 

perturbed version of X1, …, Xn in the sense that d(P
X1:n

, P
x1:n

) < r for some discrepancy 

d(·, ·) and some r > 0, where P
x1:n

= 1
n

∑
i = 1
n

δ
x
i
 denotes the empirical distribution of x1:n = 

(x1, …, xn). Suppose x1, …, xn behave like i.i.d. samples from some Po, which we view as a 

perturbation of PθI. For intuition, consider the diagram in Figure 1.

If there was no perturbation, then we would simply use the standard posterior—that is, we 

would condition on the event that X1:n = x1:n—however, when there is a perturbation, using 

the standard posterior is incorrect. If there is a known, easy-to-model process by which x1:n 

is generated from X1:n, then we would simply augment the model to include this process—

however, this process is often unknown or highly complex.

An alternative is to condition on the event that d(P
X1:n

, P
x1:n

) < r. In other words, rather than 

the standard posterior π(θ | X1:n = x1:n), consider π θ ∣ d(P
X1:n

, P
x1:n

) < r . Since usually one 

will not have sufficient a priori knowledge to choose r, it makes sense to put a prior on it, say 

R ~ H, independently of θ and X1:n. Generalizing further, take a sequence of functions dn 

such that dn(X1:n, x1:n) ≥ 0 is some measure of the discrepancy between X1:n and x1:n.

Definition 2.1. We refer to π(θ | dn(X1:n, x1:n) < R) as a c-posterior.

To clarify the notation: if the prior ∏ has density π (with respect to some measure), then the 

c-posterior has density π(θ ∣ Z = 1) ∝ π(θ)ℙ(Z = 1 ∣ θ) where Z = 𝟙(d
n
(X1:n

, x1:n
) < R). In these 

expressions, x1:n is considered to be fixed, while X1:n and R are random variables; thus, the 

c-posterior is a function of x1:n, but not X1:n and R since they are integrated out. (We use 

𝟙( ⋅ ) to denote the indicator function: 𝟙(E) = 1 if E is true, and 𝟙(E) = 0 otherwise.) One can 

write the c-posterior as

π(θ ∣ dn(X1:n, x1:n) < R) ∝ π(θ)ℙ(dn(X1:n, x1:n) < R ∣ θ)

= π(θ)∫
𝒳n

G(dn(x1:n′ , x1:n))Pθ
n(dx1:n′ )

(2.1)

where G(r) = ℙ(R > r) and ∝ indicates proportionality with respect to θ. The intuitive 

interpretation is that, to use a rough analogy, this integral is like a convolution of P
θ
n (the 

distribution of X1:n given θ) with the “kernel” G(dn(X1:n, x1:n)). The factor 

ℙ(d
n
(X1:n

, x1:n
) < R ∣ θ) can be interpreted as a coarsened likelihood, or c-likelihood, 
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however, it does not necessarily correspond to a probability distribution on x1:n given θ. The 

c-posterior should not be interpreted as implying a model for x1:n given θ; indeed, a key 

advantage of the method is that it allows one to avoid explicitly specifying a robust model.

In Supplement S3.1, we derive the form of the c-posterior as n → ∞. Meanwhile, in 

Supplement S3.2, we show that under certain conditions, when n is fixed and the distribution 

of R converges to 0, the c-posterior converges to the standard posterior. In Supplement S3.3, 

we show that the c-posterior is robust to changes in Po that are small with respect to the 

chosen discrepancy d(·, ·). There are different types of robustness that may be desired, and 

the type of robustness exhibited by the c-posterior can be customized through the choice of 

d(·, ·). A few potential candidates for d(·, ·) would be Kolmogorov–Smirnov (in the 

univariate setting), Wasserstein, or a maximum mean discrepancy (Gretton et al., 2006). 

When Pθ and Po have densities with respect to a common measure, it is also possible to 

accommodate discrepancies between densities such as relative entropy, Hellinger distance, 

and various divergences—even though they may be undefined for empirical distributions—

by choosing dn(X1:n, x1:n) to be a consistent estimator of d(Pθ, Po).

In the examples, we focus on relative entropy and variations thereof as our choice of d(·, ·), 

due to several appealing properties. In particular, there is an approximation that makes it 

unnecessary to explicitly compute dn(X1:n, x1:n). We discuss this next.

2.1 Relative entropy c-posteriors

Suppose Po and Pθ (for all θ ∈ Θ) have densities po and pθ, respectively, with respect to 

some sigma-finite measure λ (e.g., Lebesgue measure, or counting measure on a discrete 

space). Define d(Pθ, Po) to be the relative entropy, also known as Kullback–Leibler 

divergence,

d(P
θ
, P

o
) = D(p

o
∥ p

θ
) = ∫ p

o
(x) log

p
o
(x)

p
θ
(x)

λ(dx) .

Suppose dn(X1:n, x1:n) is a consistent estimator of D(po∥pθ), and R ~ Exp(α). Then one 

obtains the following approximation to the relative entropy c-posterior:

π(θ ∣ dn(X1:n, x1:n) < R) ∝∼ π(θ) ∏
i = 1

n

pθ(xi)
ζ
n, (2.2)

where ∝∼ means “approximately proportional to”, i.e., the distribution on the left is 

approximately equal to the distribution proportional to the expression on the right, and

ζn =
1 n

1 n + 1 α
=

α

α + n
. (2.3)

The approximation in Equation 2.2 is good when either n ≫ α or n ≪ α (Corollary S3.4, 

Theorem S3.6), under mild conditions. Empirically we find that the approximation can be 

quite accurate (see Figure 2). It makes intuitive sense that the approximation would be good 
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in both the large-sample (n ≫ α) and small-sample (n ≪ α) regimes, when one considers the 

convolution representation in Equation 2.1. Also, note that ζn ≈ α/n when n ≫ α, whereas 

ζn ≈ 1 when n ≪ α, and ζn smoothly interpolates between these two regimes. For the 

motivation behind the particular form of the power ζn, see Supplement S5. Section 4 

introduces a technique for choosing α in a data-driven way.

A key feature of Equation 2.2 is that it enables one to approximate the c-posterior without 

explicitly computing the relative entropy estimates dn(X1:n, x1:n), which would normally 

involve computing a density estimate of po in order to handle the entropy term − ∫ po log po 

in D(po∥pθ). Since this entropy term is constant with respect to θ, it is absorbed into the 

constant of proportionality. Using an Exp(α) prior on R is not important for robustness 

(indeed, our theoretical results in Supplement S3 allow a very large class of distributions on 

R); choosing R ~ Exp(α) is only important for obtaining a computationally simple formula 

via cancellation of the entropy term.

Definition 2.2. Given ζ ∈ [0, 1], we refer to ∏
i = 1
n

p
θ
(x

i
)ζ as a power likelihood, and we 

refer to the distribution proportional to π(θ)∏
i = 1
n

p
θ
(x

i
)ζ as a power posterior.

Like the c-likelihood, the power likelihood should not be interpreted as implying a 

probability distribution on x1:n given θ. It should only be interpreted as an approximation to 

the c-likelihood, up to a constant of proportionality with respect to θ; see Equation S5.1. A 

useful interpretation of the power posterior is that it corresponds to adjusting the sample size 

from n to nζ, in the sense that the posterior will only be as concentrated as it would be if 

there were nζ samples.

Due to its simple form, inference using the power posterior is often easy, or at least, no 

harder than inference using the ordinary posterior. We discuss two commonly occurring 

cases: analytical solution in the case of exponential families with conjugate priors, and 

Gibbs sampling in the case of conditionally conjugate priors.

2.1.1 Power posterior with conjugate priors—When using exponential families 

with conjugate priors, one can often obtain analytical expressions for integrals with respect 

to the power posterior. Suppose pθ(x) = exp (θTs(x)−κ(θ)), where s(x) = (s1(x), …, sk(x))T 

are the sufficient statistics, and suppose π(θ) = πξ,ν(θ) where πξ,ν(θ) = exp (θTξ − νκ(θ) − 

ψ(ξ, ν)), noting that this defines a conjugate family. Then the power posterior is 

proportional to

πξ, ν(θ) ∏
i = 1

n

pθ(xi)
ζ
n ∝ exp θ

T
ξ + ζn∑

i

s(xi) − (ν + nζn)κ(θ) ∝ πξ
n
, ν

n
(θ), (2.4)

where ξ
n

= ξ + ζ
n

∑
i
s(x

i
) and νn = ν + nζn, and thus, the power posterior remains in the 

conjugate family.

For most conjugate families used in practice, simple analytical expressions are available for 

the log-normalization constant ψ(ξ, ν) as well as for many integrals with respect to πξ,ν(θ). 
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This enables one to obtain analytical expressions for many quantities of inferential interest 

under the power posterior, thus providing approximations to the corresponding quantities 

under the relative entropy c-posterior. For instance, one obtains a marginal power likelihood, 

∫
ϴ

π
ξ, ν

(θ)∏
i = 1
n

p
θ
(x

i
)
ζ
n
dθ = exp ψ(ξ

n
, ν

n
) − ψ(ξ, ν) , which can be used to compute robustified 

Bayes factors and posterior model probabilities. Such c-posterior summaries are robust to 

perturbations to Po that are small with respect to relative entropy, whereas usual Bayes 

factors and model probabilities can be very sensitive to such perturbations for large n 

(Supplement S4). In Section 3, we illustrate this approach in a toy example involving 

Bernoulli trials, and in Section 6, we use this approach to perform robust inference for the 

order of an autoregressive model.

2.1.2 MCMC on the power posterior—Often, it is desirable to place conditionally 

conjugate priors on the parameters—for instance, placing independent normal and inverse-

Wishart priors on the mean and covariance of a normal distribution. In such cases, one can 

easily use Gibbs sampling on the power posterior, because for each parameter given the 

others, we are back in the case of a conjugate prior, and thus the full conditionals belong to 

the conjugate family (just as in Equation 2.4). In Section 5, we use Gibbs sampling for 

robust inference in mixture models by employing a conditional power posterior. More 

generally, samples can be drawn from the power posterior by using Metropolis–Hastings 

MCMC, with the power likelihood in place of the usual likelihood.

The mixing performance of MCMC with the power posterior will often be better than with 

the standard posterior, since raising the likelihood to a fractional power (i.e., a power 

between 0 and 1) has the effect of flattening it, enabling the sampler to more easily move 

through the space, particularly when there are multiple modes and n is large. Indeed, raising 

the likelihood to a fractional power—also known as tempering—is sometimes done in more 

complex MCMC schemes in order to improve mixing.

3 Toy example: Perturbed Bernoulli trials

The purpose of this toy example is to illustrate the method in the simplest possible setting, 

and to assess the accuracy of the power posterior approximation in a situation where the 

exact c-posterior can be computed easily. Suppose X1, …, Xn i.i.d. ~ Bernoulli(θ) represent 

the outcomes of n replicates of a laboratory experiment, and the team of experimenters is 

interested in testing H0 : θ = 1/2 versus H1 : θ ≠ 1/2. The standard Bayesian approach is to 

define a prior probability for each hypothesis, say, ∏(H0) = ∏(H1) = 1/2, and define a prior 

density for θ in the case of H1, say, θ|H1 ~ Uniform(0, 1). Inference then proceeds based on 

the posterior probabilities of the hypotheses, ∏(H0|x1:n) and ∏(H1|x1:n) = 1 − ∏(H0|x1:n), 

where x1:n = (x1, …, xn). If the observed data x1, …, xn are sampled i.i.d. from Bernoulli(θ), 

then the posterior is guaranteed to converge to the correct answer, that is, 

∏(H0 ∣ x1:n
)a . s .𝟙(θ = 1 2) as n → ∞.

In reality, however, it is likely that the observed data do not exactly follow the assumed 

model. For instance, some of the experiments may have been conducted under slightly 
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different conditions than others (such as at different times or by different researchers), or 

some of the outcomes may be corrupted due to human error in carrying out the experiment.

A natural choice of discrepancy is the relative entropy between the empirical distributions of 

x1:n and X1:n, D(p
x

∥ p
X

) = ∑
i = 0
1

p
x
(i) log(p

x
(i) p

X
(i)), where p

x
(1) = x‒ and p

x
(0) = 1 − x‒ in 

this example. This leads us to consider the following coarsened posterior for inferences 

about H0 and H1:

∏(H0 ∣ D(px ∥ pX) < R), (3.1)

where R ~ Exp(α). How should we choose α? If we have no a priori knowledge of the size 

of perturbation to expect, then we can use the calibration curve technique in Section 4. 

Otherwise, in this example, we can interpret the neighborhood size r in terms of Euclidean 

distance via the chi-squared approximation to relative entropy, D(p ∥ q) ≈ 1
2 χ

2(p, q) (see 

Prop. S5.1). In particular, when X
‒

≈ 1 2 we have D(p
x

∥ p
X

) ≈ 2 ∣ x‒ − X
‒

∣2. Thus, if we 

expect that the perturbation will shift the sample mean by no more than ε or so when H0 : θ 
= 1/2 is true, then it makes sense to choose α so that 𝔼R ≈ 2ε

2. Since 𝔼R = 1 α, this 

suggests using α = 1/(2ε2).

In this toy example, the c-posterior in Equation 3.1 can be computed exactly (see 

Supplement S7.1), however, in more complex cases, an approximation is needed. The power 

likelihood approximation from Section 2.1, when applied to this example, yields

∏ H0 ∣ D(px ∥ pX) < R) ≈ 1 1 + 2
nζ

n
B(1 + nζnx‒, 1 + nζn(1 − x‒)) (3.2)

where ζn = α/(α + n) and B(a, b) is the beta function (Supplement S7.1). Comparing this to 

the standard posterior,

∏ H0 ∣ X1:n = x1:n) = 1 (1 + 2n
B(1 + nx‒, 1 + n(1 − x‒)) , (3.3)

note that the only difference is that n has been replaced by nζn.

To illustrate numerically, suppose we would like to be robust to perturbations affecting x‒ by 

roughly ε = 0.02 when H0 is true. As described above, this corresponds to α = 1/(2·0.022) = 

1250. Now, suppose that in reality H0 is indeed true (i.e., the true distribution is PθI = 

Bernoulli(θI) where θI = 0.5), and the data are perturbed in such a way that x1, …, xn behave 

like i.i.d. samples from Bernoulli(θo) where θo = 0.51 (i.e., the observed data distribution is 

Po = Bernoulli(θo)). Figure 2 (top left) shows the probability of H0 under the standard 

posterior, the exact c-posterior, and the approximate c-posterior (Equations 3.3, 3.1, and 3.2, 

respectively), for increasing values of the sample size n.

When n is small, there is not enough power to distinguish between 0.5 and 0.51, so the 

standard posterior favors H0 at first (due to the Bartlett–Lindley effect), but as n increases, 

eventually the posterior probability of H0 goes to 0. (So, when n is large, the standard 
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posterior is not robust to this perturbation.) The c-posterior behaves the same way as the 

standard posterior when n is small, but as n increases, the c-posterior probability of H0 

remains high, as desired—thus, the c-posterior remains robust for large n. The approximate 

c-posterior is so close to the exact c-posterior that the plots are visually indistinguishable.

What if the departure from H0 is significantly larger than our chosen tolerance of ε = 0.02? 

Does the c-posterior more strongly favor H1 in such cases, as it should? Indeed, it does. 

Figure 2 (bottom left) shows the results when θo = 0.56. In this case, the c-posterior behaves 

more like the standard posterior, favoring H1 when n is sufficiently large.

4 Calibration curve technique for choosing α
If we have no a priori basis for choosing α, then the following graphical criterion can help to 

make a data-driven choice. Let f(α) be a measure of fit to the data and let g(α) be a measure 

of effective complexity—specifically, we use the posterior expected log likelihood for f(α), 

and posterior expected model complexity for g(α). As α ranges from 0 to ∞, (g(α), f(α)) 

traces out a curve in ℝ2, and the technique is to choose a point on this curve that achieves a 

good fit with low complexity.

To illustrate on the toy Bernoulli example, we define f(α) = ∫ (log p(x1:n|θ))∏α(dθ|x1:n) to 

quantify fit to the data and g(α) = ∏α(H1|x1:n) to quantify effective complexity, where 

∏α(dθ|x1:n) ∝ p(x1:n|θ)ζn∏(dθ) is the power posterior; see Supplement S7.1 for formulas. 

Figure 2 shows the resulting calibration curves for three datasets of size n = 106, generated 

(i) when H0 is true and there is no perturbation (θo = 0.5), (ii) when H0 is true and there is a 

small perturbation (θo = 0.51), and (iii) when H1 is true and distance from 0.5 is large (θo = 

0.75). In each case, the curve goes from lower fit to higher fit as α increases. The distinction 

between “small” and “large” distance depends on the choice of prior—e.g., θo = 0.51 is 

close to 0.5 relative to typical samples from our prior of θ|H1 ~ Uniform(0, 1).

The three calibration curves in Figure 2 illustrate common patterns. Case (i): When there is 

no perturbation from H0, the best fit is obtained with very low complexity at the terminus α 
= ∞. This suggests choosing α = ∞, which would make the c-posterior concentrate at the 

true value in this case. Case (ii): When there is a small perturbation from H0 (θo = 0.51), the 

fit increases dramatically at first while maintaining low complexity, then the curve reaches a 

cusp at α ≈ 2500 and levels off, with more modest increases in fit at the cost of greater 

complexity. This suggests choosing α ≈ 2500. The curve sits near the cusp for a large range 

of α values from around 1200 to 4000, e.g., the blue dot indicates α = 1250, our a priori 

choice. Any value of α in this range yields similar results (e.g., see Figure 2 bottom right 

compared to top left). Case (iii): When the distance from H0 is very large (θo = 0.75), there 

is no cusp in the curve, and a good fit can only be obtained at higher complexity. This curve 

suggests choosing α = ∞, in which case the c-posterior would concentrate at H1. This 

makes sense since the distance from H0 is so large that explaining it by a perturbation is 

implausible. Thus, the calibration curve can help decide how much coarsening is needed, if 

any.
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5 Mixture models and clustering

Consider a finite mixture model, X1, …, X
n

∣ w, φ i . i . d . ∼ ∑
i = 1
K

w
i
f
φ

i
(x) with mixture 

weights w, component parameters φ, and family of component distributions (fϕ : ϕ ∈ Φ). For 

the prior, suppose w ~ Dirichlet(γ1, …, γK) and φ1, …, φK i.i.d. ~ H. When γi = c/K, this 

model approximates a Dirichlet process mixture as K → ∞ (Ishwaran and Zarepour, 2002). 

Mixture models of this form are widely used for clustering.

However, this type of model is not robust to misspecification of the family of component 

distributions. This has negative consequences in practice, since one might reasonably expect 

the observed data x1, …, xn to come from a finite mixture, but it is usually unreasonable to 

expect the component distributions to have a known parametric form. We illustrate how 

coarsening enables one to perform inference in a way that is robust to misspecification of the 

form of the component distributions.

We approximate the relative entropy c-posterior using the power posterior, defined as 

π
α
(w, φ ∣ x1:n

) ∝ π(w, φ)∏
j = 1
n ∑

i = 1
K

w
i
f
φ

i
(x

j
)

ζ
n
 where ζn = α/(α + n). The standard MCMC 

algorithms for mixture models use data augmentation with latent variables z1, …, zn ∈ {1, 

…, K} indicating which component each datapoint comes from, but the power likelihood 

rules out direct application of these algorithms. Antoniano-Villalobos and Walker (2013) 

developed an auxiliary variable algorithm for mixture model power posteriors, or reversible 

jump MCMC could be used (Green, 1995).

Here, we explore two algorithms: (a) a conditional coarsening algorithm and (b) an 

importance sampling algorithm for the power posterior. The conditional coarsening 

algorithm scales well, is easy to implement, and yields results similar to (but not exactly the 

same as) the power posterior. It is identical to the standard data augmentation algorithm for 

mixtures, except that the updates to w and φ use a power likelihood.

Algorithm 5.1 (Conditional coarsening for mixture models).

• Input: x1, …, xn. Output: Samples of w, φ, and component assignments z1, …, 

zn.

• Initialize w ~ Dirichlet(γ1, …, γK) and φ1, …, φK i.i.d. ~ H.

• For iteration t = 1, …, T:

1. For j = 1, …, n: sample z
j

∼ Categorical(w) where w
i

∝ w
i
f
φ

i
(x

j
).

2. Sample w ∼ Dirichlet(γ 1, …, γ
K

) where γ
i

= γ
i
+ ζ

n
∑

j = 1
n 𝟙(z

j
= i).

3.
For i = 1, …, K : sample φi ~ q where q(φ

i
) ∝ π(φ

i
)∏

j: z
j

= i
f
φ

i
(x

j
)
ζ
n, or 

make some other update to φi that leaves q invariant.
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See Supplement S7.2 for the motivation behind the algorithm. In some cases, Algorithm 5.1 

has difficulty escaping from local optima in which one cluster needs to be split into two or 

more clusters. Therefore, we add the following step between steps 1 and 2, to escape from 

these local optima during an initialization period that is discarded along with the burn-in. Let 

S and Tinit be positive integers. Define N
i
(z) = ∑

j = 1
n 𝟙(z

j
= i) and k(z) = ∑

i = 1
K 𝟙(N

i
(z) > 0).

1.5. (Periodic random splits) If t < Tinit and t is a multiple of S, then randomly split each of 

the K − k(z) largest clusters into two clusters.

More precisely, let σ such that Nσ1 (z) ≥ ⋯ ≥ NσΚ(z), and let K′ = k(z). Then, for i = 1, …, 

min{K′, K − K′}: for each j such that zj = σi, update zj ~ Uniform{σi, σi+K′}.

To evaluate how closely the conditional coarsening algorithm approximates the power 

posterior, we also consider an importance sampling (IS) algorithm; see Supplement S7.2.

5.1 Simulation example: Perturbed mixture of Gaussians

To demonstrate robustness to the form of the component distributions, we apply a univariate 

Gaussian mixture model to data from a perturbed Gaussian mixture. We generate the 

observed data by starting with a true (idealized) distribution P
θ

I
= ∑

i = 1

k0
w0i

𝒩(μ0i
, σ0i

2 ), 

simulating a perturbation Po by taking a random draw of a Dirichlet process mixture with 

base distribution PθI, concentration parameter 500, and 𝒩(0, 0.252) components, and then 

sampling x1, …, xn i.i.d. ~ Po. We illustrate with two examples: (a) a two-component 

mixture with μ0 = (−2, 2), σ0 = (.7, .8), and w0 = (.5, .5), and (b) a four-component mixture 

with μ0 = (−3.5, 0, 3, 6), σ0 = (.8, .4, .5, .5), and w0 = (.25, .3, .25, .2); see Figure 3.

For the model parameters, we use K = 20, γ1 = ⋯ = γK = 0.5/K, and define the prior H on 

the component means and variances as μ
i

∼ 𝒩(m, ℓ−1) and σ
i
2 ∼ InverseGamma(a, b)

independently with m = 0, ℓ = 1/52, a = 1, and b = 1, where the component densities are 

f
μ

i
, σ

i
2(x) = 𝒩(x ∣ μ

i
, σ

i
2). To implement Algorithm 5.1, we define φ

i
= (μ

i
, σ

i
2) and for step 3 of 

the algorithm, we use power-likelihood Gibbs updates to μi and σ
i
2, specifically:

3. For i = 1, …, K, sample

• μ
i

∼ 𝒩(m, ℓ−1) where ℓ = ℓ + ζ
n
N

i
(z) σ

i
2, m = (mℓ + ζ

n
∑

j: z
j

= i
x

j
σ

i
2) ℓ, and

• σ
i
2 ∼ InverseGamma(a , b ) where a = a + 1

2ζ
n
N

i
(z) and 

b = b + 1
2ζ

n
∑

j: z
j

= i
(x

j
− μ

i
)2.

Recall that N
i
(z) = ∑

j = 1
n 𝟙(z

j
= i). In each run of Algorithm 5.1, we use T = 104 iterations 

with a burn-in period of Tburn = 1000. Periodic random splits (step 1.5) are performed using 

S = 10 and Tinit = 500. Samples from the standard posterior are obtained by setting ζn to 1. 

For coarsening, we use ζn = α/(α + n) with α chosen as follows.
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In this type of model, posterior samples often have one or more tiny “extra” clusters. To 

focus on the larger clusters, we use the statistic k2 %(z) = ∑
i = 1
K 𝟙(N

i
(z) > 0.02n) (i.e., the 

number of clusters with more than 2% of the points) to quantify the number of nonnegligible 

clusters, for a given assignment vector z. To choose α, we plot the calibration curve with 

f (α) = 1
∣ 𝒯 ∣ ∑

t ∈ 𝒯 log p(x1:n
∣ w

(t), φ
(t)) to assess fit (where p(x

j
∣ w, φ) = ∑

i = 1
K

w
i
f
φ

i
(x

j
)) and 

g(α) = 1
∣ 𝒯 ∣ ∑

t ∈ 𝒯k2 %(z(t)) to assess effective complexity, where (w(t), φ(t), z(t)) for t = 1, …, 

T are the posterior samples obtained using Algorithm 5.1, and 𝒯 = Tburn + 1, …, T .

Figure 3(a,b) shows the calibration curves for the k0 = 2 and k0 = 4 examples, with n = 104 

data points. In both examples, there is a clear cusp at a point of good fit and low complexity. 

In the k0 = 2 example, the curve is near the cusp when α is around 800 to 1000, and the tip 

is at α ≈ 800; thus, we choose α = 800 in this example. In the k0 = 4 example, a wide range 

of α values from 800 to 2000 are near the cusp, with the tip at α ≈ 2000; thus, we pick α = 

2000 in this case.

To assess performance, for both the two- and four-component examples, for each n ∈ {200, 

1000, 5000, 10000, 20000}, we generated five independent datasets of size n. On each 

dataset, for the standard posterior and for conditional coarsening, Algorithm 5.1 was run 

using the settings above. The IS algorithm was also run using the same settings, and yielded 

results similar to conditional coarsening; see Supplement S7.2.

In each of Figure 3(a) and (b), the middle row shows the mixture density ∑
i = 1
K

w
i
f

μ
i
, σ

i
2(x)

and the individual weighted components w
i
f

μ
i
, σ

i
2(x) for typical posterior samples when n = 

20000. Samples from the standard posterior more closely fit the perturbed distribution Po, 

and they have several more nonnegligible components than the true mixture PθI. Meanwhile, 

typical samples using the coarsened approach more closely match the true mixture PθI in 

terms of the number of nonnegligible components, as well as the weights, locations, and 

scales of the components.

The bottom row in each of Figure 3(a) and (b) shows the posterior on k2% (the number of 

clusters containing more than 2% of the points), averaged over the five datasets. The 

standard posterior tends to introduce more clusters as n increases, in order to fit the observed 

data distribution Po. Meanwhile, the coarsened approach shows strong support for the true 

number of nonnegligible clusters, no matter how large n becomes.

In summary, when there is a perturbation, the coarsened approach yields more accurate 

inferences for the true (unperturbed) mixture parameters.

5.2 Application: Robust clustering for flow cytometry

Flow cytometry is a high-throughput technology for measuring the properties of individual 

cells in a sample of biological material. Typically, in each sample, tens of thousands of 

individual cells are measured with respect to around 3 to 20 properties. In flow cytometry 
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data, cells from distinct populations tend to fall into clusters; see Figure 4. Discovery and 

characterization of cell populations by clustering is one of the primary tasks performed with 

this type of data. Traditionally, this clustering is performed manually by defining piecewise 

linear boundaries between regions; this is known as “gating”. Since manual gating is labor 

intensive and subjective, several automated clustering algorithms have been developed, and 

the Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) 

challenges were established to evaluate the performance of these methods on benchmark 

datasets for which ground truth clusters have been determined by manual gating 

(Aghaeepour et al., 2013).

We consider 12 of these benchmark datasets, originally from a longitudinal study of graft-

versus-host disease (GvHD) in patients undergoing blood or marrow transplantation 

(Brinkman et al., 2007). Each dataset corresponds to one blood draw from one patient. The 

objective of the study was to understand how various cell populations differed between 

patients who developed GvHD and patients who did not. Separating distinct populations of 

cells is the first step in the analysis of these data.

The difficulty is that the populations are not well-approximated by any parametric 

distribution, and further, the number of populations is not known in advance. Consequently, 

using a model such as a mixture of Gaussians yields poor results, since many Gaussians are 

needed to fit each population; see Figure 4 (row 2). Some previous algorithms for flow 

cytometry have dealt with this problem by performing a post hoc step in which multiple 

clusters are grouped together (Finak et al., 2009; Aghaeepour et al., 2011). Ideally, one 

would use a nonparametric model for each of the component distributions, but this would be 

computationally intensive due to the large number of multivariate data points in each 

sample.

We explore a coarsening approach to robust clustering for flow cytometry data, using a 

multivariate Gaussian mixture model. For the model parameters, in the same notation as at 

the beginning of Section 5, we use K = 20, γ1 = ⋯ = γK = 0.5/K, and component parameter 

priors μ
i

∼ 𝒩(m, L
−1) and Λi ~ Wishart(V, ν) independently, where the component densities 

are f
μ

i
, Λ

i
(x) = 𝒩(x ∣ μ

i
, Λ

i
−1) for x ∈ ℝd. We set the hyperparameters in a data-dependent 

way: given input data x1, …, x
n

∈ ℝd, we choose prior mean m = 1
n

∑
j = 1
n

x
j
, prior precision 

matrix L = 1
n

∑
j = 1
n (x

j
− m)(x

j
− m)T

−1
, degrees of freedom ν = d, and scale matrix V = L/

ν. Algorithm 5.1 is implemented by defining φi = (μi, Λi) and using power-likelihood Gibbs 

updates to μi and Λi for step 3 of the algorithm:

3. For i = 1, …, K, sample

• μ
i

∼ 𝒩(m, L
−1) where L = L + ζ

n
N

i
(z)Λ

i
, m = L

−1(Lm + ζ
n
Λ

i
∑

j: z
j

= i
x

j
), and

• Λ
i

∼ Wishart(V , ν ) where ν = ν + ζ
n
N

i
(z), 

V
−1 = V

−1 + ζ
n
∑

j: z
j

= i
(x

j
− μ

i
)(x

j
− μ

i
)T.
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In each iteration of the algorithm, we compute z
j
∗ = argmax

i
w

i
f

μ
i
, Λ

i
(x

j
) for j = 1, …, n, the 

most likely component assignments based on the parameter values at that iteration.

In each run of Algorithm 5.1, we use T = 4000, Tburn = 2000, S = 10, and Tinit = 400. Setting 

ζn to 1 yields the standard posterior, and for coarsening we use ζn = α/(α + n). To choose α, 

we split the data into a training set (datasets 1–6) and a test set (datasets 7–12). The 

performance metric used in FlowCAP-I is F-measure, a similarity score between any two 

partitions 𝒜 and ℬ of {1, …, N}, defined as

F(𝒜, ℬ) = ∑
A ∈ 𝒜

∣ A ∣
N

max
B ∈ ℬ

2 ∣ A ∩ B ∣
∣ A ∣ + ∣ B ∣

.

For a range of α values, for each training dataset, we run Algorithm 5.1 and at each iteration 

we compute F(𝒜, ℬ) with 𝒜 as the manual ground truth and ℬ as the partition induced by 

z*. In each dataset, a small fraction of cells were not labeled by the human expert; these 

unlabeled cells are included when running the algorithm, and excluded when computing the 

F-measure. Figure 5 shows the average F-measure for each of these runs, excluding burn-in. 

Averaging over the six training datasets, the best performance is obtained at α = 200; thus, 

we set α = 200 to evaluate performance on the test datasets.

Table 1 shows the average F-measures on the test set (datasets 7–12), using the same 

algorithm settings as above, comparing z* against ground truth as before. The standard 

posterior performs very poorly, whereas the coarsening results are comparable to the best 

performance obtained by algorithms tailored to flow cytometry clustering (Aghaeepour et 

al., 2013). Of datasets 7–12, coarsening has the most difficulty on 7, but interestingly, if we 

increase α to 500, then the F-measure increases to 0.937 and the resulting cluster 

assignments closely resemble the ground truth; see Figure 6. This suggests that even better 

performance may be possible with an improved method of choosing α for each dataset.

6 Autoregressive models of unknown order

In this section, we apply the c-posterior to perform inference for the order of an 

autoregressive model in a way that is robust to misspecification of the structure of the model, 

such as time-varying noise. This demonstrates how the robustified marginal likelihood can 

be computed in closed form when using conjugate priors, and provides some insight into 

why coarsening works. Consider an AR(k) model, that is, a kth-order autoregressive model: 

X
t

= ∑ℓ = 1
k

θℓX
t − ℓ + ε

t
 for t = 1, …, n, where ε1, …, ε

n
i . i . d . ∼ 𝒩(0, σ

2) and Xt = 0 for t ≤ 

0. Let π(k) be a prior on the order k, let θ1, …, θ
k

∣ k i . i . d . ∼ 𝒩(0, σ0
2), and for simplicity, 

assume σ2 is known.

To obtain robustness to perturbations that are small with respect to relative entropy rate, we 

employ a c-posterior for time-series (see Supplement S6.1 for details). Since θ|k has been 

given a conjugate prior, we can analytically compute the resulting marginal power likelihood 

as described in Section 2.1.1 with power ζn = α/(α + n),
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L
α

(k; x1:n
) ≔ ∫

ℝk
p(x1:n

∣ θ, k)
ζ
n
π(θ ∣ k)dθ

= ∫
ℝk ∏

t = 1

n

𝒩(x
t

∣ ∑
ℓ = 1

k

θℓx
t − ℓ, σ

2)

ζ
n

𝒩(θ ∣ 0, σ0
2

I
k × k

)dθ

=
exp(

1
2

ζ
n
2
v
T

Λ
−1

v)

σ0
k ∣ Λ ∣

1 2
𝒩(x1:n

∣ 0, σ
2

I
n × n

)
ζ
n

where Λ = ζ
n
M + σ0

−2
I
k × k

, M
ij

= ∑
t = 1
n

x
t − i

x
t − j

σ
2, v

i
= ∑

t = 1
n

x
t
x

t − i
σ

2, and xt = 0 for t 

≤ 0. This, in turn, can be used to compute a robustified posterior on the model order k, 

defined as πα(k|x1:n) ∝ Lα(k; x1:n)π(k).

To demonstrate empirically, we generate data from a process that is close to AR(4) but 

exhibits time-varying noise that cannot be captured by the model:

xt = ∑
ℓ = 1

4

θℓxt − ℓ + εt +
1
2

sin t (6.1)

where θ = (1/4, 1/4, −1/4, 1/4), ε
t

i . i . d . ∼ 𝒩(0, 1), and xt = 0 for t ≤ 0. We apply the model 

above to such data, and compare the standard Bayesian approach to the coarsened approach. 

For the model parameters, we set σ2 = 1 to match the true value, we set σ0
2 = 1, and we use a 

Geometric(0.1) prior on k (i.e., π(k) = 0.9k0.1 for k ∈ {0, 1, 2, …}).

To choose α, we use the calibration technique described in Section 4. Specifically, for a 

range of α values, we compute f (α) = ∑
k

(log p(x1:n
∣ k))π

α
(k ∣ x1:n

) as a measure of fit to the 

data (noting that log p(x1:n|k) = log L∞(k; x1:n)), and g(α) = ∑
k

kπ
α
(k ∣ x1:n

) as a measure of 

effective complexity. Figure 7 (top right) shows the resulting calibration curve, for a dataset 

of size n = 104. The fit increases sharply until a cusp is reached at α ≈ 250, whereupon the 

curve levels off; in fact, a wide range of α values from around 200 to 600 are very near the 

cusp. This suggests choosing α = 250.

Figure 7 (rows 2–5) compares the standard posterior to the c-posterior with α = 250, as n 

increases. Due to the misspecification, the standard posterior puts its mass on values of k 

much greater than the true value of 4, when n gets sufficiently large. Meanwhile, the c-

posterior stabilizes to a distribution on k favoring k = 4. When n < α, the standard and 

coarsened approaches yield similar results, but as n grows larger they differ markedly.

This pattern is typical of the log marginal likelihood when comparing models of increasing 

complexity. From the Laplace approximation, we see that more complex models are 

penalized via a term of the form − 1
2 t

k
 log n where tk is the dimension of the parameter for 

model k (see Supplement S4), e.g., tk = k for the AR(k) model above. This penalty is visible 

in the linear decline exhibited in the n = 100 plot. As n increases, this complexity penalty 
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increases proportionally to only log n, and thus it becomes overwhelmed by the main term of 

order n involving the log likelihood at the maximum likelihood estimator within model k. 

When n is sufficiently large, the following pattern emerges, as seen in the n = 10000 plot for 

the standard approach: for model complexity values k that are too small, there is a clear lack 

of fit, and as k increases the log marginal likelihood increases rapidly until the model can 

fairly closely approximate the data distribution, at which point it plateaus, increasing only 

slightly after that as only fine grain improvements can be made.

From this perspective, the reason why the coarsened marginal likelihood “works” is that 

when n is large, it maintains a balance between the model complexity penalty and the main 

log-likelihood term.

7 Discussion

The c-posterior approach has a number of appealing features. It has a compelling 

justification—it is valid Bayesian inference based on limited information. The interpretation 

is conceptually clear—one does inference with the same model, but conditioned on a 

different event than usual. As shown in Supplement S3, the c-posterior inherits the 

continuity properties of the chosen discrepancy, and thus, exhibits robustness to small 

perturbations. In this section, we address several frequently asked questions.

Concentration versus calibration

It is important to note that, unlike the standard posterior, the c-posterior does not concentrate 

as n → ∞. This is appropriate and desirable, since if there is a perturbation then some 

uncertainty always remains about the true (idealized) distribution, no matter how much data 

are observed. Thus, in practice, the best one can do is appropriately quantify uncertainty 

about the true distribution, which is precisely what the c-posterior is designed to do, by 

allowing for perturbations.

However, if too much coarsening is applied (e.g., if α is too small), then (1) model 

complexity estimates under the c-posterior will tend to be biased downward, and (2) 

posterior credible sets will be overly large, since the c-posterior will not be sufficiently 

concentrated. These are the main disadvantages of using a c-posterior.

Thus, it is necessary to appropriately calibrate the amount of coarsening to match the size of 

the perturbation. If the model is exactly correct, then any amount of coarsening would be 

disadvantageous. However, in practice, the model is almost always wrong, so some amount 

of coarsening would probably be beneficial in most applications.

Bias

For any given level of model complexity, parameter estimates under the c-posterior have 

very similar bias to standard posterior estimates, as long as the prior is not overly strong. For 

instance, in regression problems, the c-posterior mean of the regression function tends to be 

very close to the standard posterior mean function — the c-posterior is just less concentrated 

about this function.
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Meanwhile, the bias of model complexity estimates can be considerably improved under the 

c-posterior. This is illustrated by the mixture model example and the autoregression 

example, in which the bias of the posterior mean of k is massively reduced by using a c-

posterior rather than the standard posterior.

Not equivalent to renormalized tempering or overdispersion

The power posterior is not equivalent to the posterior under a model with density f(x|θ, ζ) ∝ 
pθ(x)ζ (where ∝ indicates proportionality with respect to x) since the normalization constant 

of f involves θ, whereas the power likelihood does not contain this normalization constant. 

Using a model based on f would not be expected to provide the same robustness properties 

as the power posterior, since it simply amounts to a model with one additional parameter, ζ.

Measurement error

A frequently asked question is whether the problems addressed by the c-posterior could 

instead be handled using measurement error methods.

The term “measurement error” usually refers to the situation in which the covariates in a 

regression model are observed with error (Carroll et al., 2006). This represents one particular 

kind of perturbation, and it is usually dealt with by changing the model appropriately in 

order to make it correctly specified. We are concerned with the broader class of 

misspecification problems in general — not just covariate error, and not just regression 

models. Further, in many situations it is impractical to correct the model, and these are the 

situations our method is intended to address.

Alternatively, sometimes “measurement error” is used to refer to an augmentation of the 

model to account for additional error/noise/uncertainty in the observed data, beyond what is 

already included in the original model. There are essentially two ways of doing this, the first 

of which does not solve the fundamental problem addressed by the c-posterior, and the 

second of which tends to be computationally expensive:

1. Error model.—One could assume a model for the distribution of xi|Xi (in the notation 

of Section 2), for example, Gaussian or some other error distribution. However, this simply 

amounts to convolving the original model distribution Pθ with the chosen error distribution, 

leading to a new model that has a few more parameters but is just as bound to be 

misspecified as the original model. For instance, if one is using a Gaussian mixture model, 

and then introduces an additional Gaussian error distribution for xi|Xi, the result is simply a 

new Gaussian mixture model with inflated variances, which is likely to suffer from the same 

misspecification issues as the original model. Even if one nonparametrically models the 

error distribution for xi|Xi, this is still more restrictive than our approach of allowing for a 

distributional perturbation from the original model, rather than just a convolution of it.

2. Joint error model.—The second approach would be to jointly model the distribution 

of x1:n|X1:n. In principle, this can work, but the choice of distribution for x1:n|X1:n cannot be 

something simple, otherwise this ends up suffering from the same issue as modeling xi|Xi. In 

order for this approach to work well, the distribution of x1:n|X1:n needs to allow for 
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distributional perturbations even as n → ∞; essentially, it needs to be a nonparametric 

model for the empirical distribution P
x1:n

 given P
X1:n

 (see Figure 1). But this seems just as 

computationally burdensome as using a nonparametric model for Po given PθI, and then 

modeling x1, …, xn as i.i.d. from Po.

Separation of the amount of coarsening from the choice of prior

A question that may be asked is whether there is a duality between coarsening and using a 

robust prior. In particular, would less coarsening be required if one used a more robust prior? 

The answer is “no” for two reasons, one technical and one conceptual.

The technical reason is that the likelihood overwhelms the prior as the sample size increases. 

Thus, no matter what prior is selected, a perturbation involving the likelihood will require 

the same amount of coarsening. A robust prior provides robustness to the choice of prior, but 

not robustness to the choice of likelihood. For example, in variable selection linear 

regression models, we have observed that using a mixture of g priors (a leading example of a 

robust prior) is still just as sensitive to perturbations as using a more informative prior. 

Coarsening addresses the problem by dealing with the likelihood directly.

Confusion over a perceived duality may arise due to a misinterpreted analogy with penalized 

regression methods. In penalized regression, there is a duality between the regularization 

coefficient of the penalty term and the weight given to the log likelihood term, since both 

terms can be multiplied by a constant without affecting the optimizing value. In contrast, 

when constructing a posterior distribution rather than computing an optimum, the 

concentration of the distribution is affected if one multiplies both terms (in this case, the log 

likelihood and the log prior) by a constant. Thus, adjusting the strength of the prior is not 

equivalent to adjusting the strength of the likelihood. The analogy does hold in one respect, 

which is that reducing the strength of the likelihood (as in coarsening) is akin to increasing 

the regularization coefficient in penalized regression.

There is also a conceptual reason for separation between the choice of prior and the amount 

of coarsening. In many applications, the parameters represent a true state of nature that has a 

meaning and existence completely separate from any likelihood. The prior represents our 

prior beliefs about this true state, regardless of any data generating mechanism or 

misspecification thereof. For instance, suppose θ is the height of a particular person. The 

prior distribution represents our uncertainty in θ before we have any idea what type of data 

may be received, and thus, before any likelihood is specified. Then, various data on the 

person’s height may be received — such as self-reported height, measurement with a scale, 

parents’ heights, or estimation from a photograph — which can be used to form a posterior 

by assuming a likelihood. The amount of coarsening required pertains to the amount of 

misspecification of the assumed likelihood (or equivalently, the magnitude of the 

perturbation), which is completely unrelated to the prior beliefs.

Overfitting

In the coarsening approach, we can choose the discrepancy function and α in addition to the 

likelihood and prior, and one may wonder whether this could lead to overfitting. Usually, 
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having more choices makes a method more flexible. However, coarsening can be viewed as 

a form of regularization, so in fact, it reduces overfitting and makes the results less sensitive 

to modeling choices. To make a very rough analogy to penalized regression, the choices 

involved in coarsening (namely, the discrepancy and α) are analogous to the form of 

regularization penalty (e.g., ridge, lasso, elastic net) and the regularization parameter, λ. The 

point of coarsening is that it reduces sensitivity to model assumptions, by allowing for 

perturbations of the model. The discrepancy and α simply specify in what way you want to 

reduce sensitivity (i.e., what kind of perturbations you want robustness against).

8 Conclusion

The c-posterior approach seems promising as a general method of robust Bayesian 

inference. There are several directions that would be interesting to pursue in future work. 

Instead of using a single α for the entire likelihood, one could potentially use different 

amounts of coarsening on different parts of the likelihood, since some parts may be more 

misspecified than others. Further investigation of the accuracy of the power posterior 

approximation is needed, both theoretically and empirically. Additionally, it would be 

beneficial if precise guarantees could be provided regarding frequentist coverage properties 

of the c-posterior when there is a perturbation. Finally, it would be interesting to explore 

coarsening in frequentist procedures, since the scope of application is not limited to 

Bayesian inference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Notional schematic diagram of the idea behind the c-posterior. The ambient space is the set 

of probability distributions on 𝒳, and the curve represents the subset of distributions in the 

parametrized family {Pθ : θ ∈ Θ}. The idealized distribution PθI is a point in this subset, and 

the empirical distribution P
X1:n

 of the idealized data converges to PθI as n → ∞. Although 

P
X1:n

 is not observed, it is known to be within an r-neighborhood of the empirical 

distribution P
x1:n

 of the observed data, which, in turn, converges to the observed data 

distribution, Po. The basic idea of the c-posterior approach is to condition on the event that 

P
X1:n

 is within this neighborhood.
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Figure 2. 

Bernoulli example. Left: Results using a priori choice of α = 1250, averaged over 1000 

datasets, for θo = 0.51 and θo = 0.56. Center and right: α calibration curves for θo ∈ {0.5, 

0.51, 0.75}, and results using the data-driven choice of α = 2500 when θo = 0.51.
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Figure 3. 

Top left: True density (dotted blue line) and perturbed density (red line). Top right: 

Calibration curve for α. Middle: Mixture density (dotted black line) and components (solid 

colors) for typical samples from the posterior. Bottom left: The standard posterior has too 

many clusters as n increases. Bottom right: Coarsening yields a more accurate number of 

clusters.
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Figure 4. 

Flow cytometry clustering results on FlowCAP-I GvHD dataset #10 (n = 23377, d = 4). The 

four dimensions are FL1.H, FL2.H, FL3.H, and FL4.H, which measure selected antibodies; 

three two-dimensional projections are shown. Row 1: Expert manual gating identifies three 

populations (clusters) of cells. Each point is one cell, and the colors indicate cluster labels, 

with black indicating cells not labeled by the expert. Row 2: The standard posterior yields 

far too many clusters — on this dataset, posterior samples typically have 13 clusters that 

contain more than 2% of the points, each. Row 3: Conditional coarsening very closely 

matches the manual ground truth (average F-measure = 0.998 in this case). In rows 2–3, the 

clusters shown are the z* assignments from the last iteration of the algorithm.
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Figure 5. 

Calibration of α on the training set (GvHD datasets 1–6). The average F-measure is shown 

for each α and each dataset. The black dotted line is the overall average for each α.
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Figure 6. 

Flow cytometry clustering results on FlowCAP-I GvHD dataset #7 (n = 13773, d = 4). Row 

1: Ground truth clusters from expert labeling. Row 2: Standard posterior. Rows 3-4: 

Conditional coarsening with α ∈ {200, 500}. See the text and Figure 4 for more 

information.
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Figure 7. 

Autoregression example. Row 1 (left): Data from the perturbed AR(4) process in Equation 

6.1. Row 1 (right): α calibration curve, when n = 104. Row 2: Posterior distributions on k. 

Note that the standard posterior significantly overestimates k as n grows, whereas the c-

posterior strongly favors the true value of k. Rows 3-5: Log marginal likelihood of AR(k) 

model (standard and coarsened) for k = 0, 1, …, 20, on increasing amounts of data from this 

process.
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Table 1

Average F-measures on the flow cytometry test set (GvHD datasets 7–12).

7 8 9 10 11 12

Standard 0.532 0.478 0.619 0.453 0.542 0.585

Coarsened 0.667 0.875 0.931 0.998 0.989 0.993
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