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Jesús Cerquides1 and Ramon López de Màntaras2
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Abstract. Ensemble classifiers combine the classification results of several clas-
sifiers. Simple ensemble methods such as uniform averaging over a set of models
usually provide an improvement over selecting the single best model. Usually
probabilistic classifiers restrict the set of possible models that can be learnt in
order to lower computational complexity costs. In these restricted spaces, where
incorrect modeling assumptions are possibly made, uniform averaging sometimes
performs even better than bayesian model averaging. Linear mixtures over sets of
models provide an space that includes uniform averaging as a particular case.
We develop two algorithms for learning maximum a posteriori weights for linear
mixtures, based on expectation maximization and on constrained optimizition.
We provide a nontrivial example of the utility of these two algorithms by apply-
ing them for one dependence estimators. We develop the conjugate distribution
for one dependence estimators and empirically show that uniform averaging is
clearly superior to Bayesian model averaging for this family of models. After
that we empirically show that the maximum a posteriori linear mixture weights
improve accuracy significantly over uniform aggregation.

1 Introduction

An ensemble of classifiers is a set of classifiers whose individual decisions are com-
bined in some way (typically by weighted or unweighted voting) to classify new exam-
ples. Uniform averaging and other improper linear models have been demonstrated to
be better than selecting a single best model [5].

Bayesian model averaging (BMA) [19,20] provides a coherent, theoretically opti-
mal mechanism for accounting with model uncertainty. BMA, under the name Bayesian
voting, is commonly understood as a method for learning ensembles [6]. With some
exceptions [4,2], the application of BMA in machine learning has not proven as suc-
cessful as expected [7]. A reasonable explanation of this mismatch between expected
and real performance of BMA has been given in a short note by Minka [27], where it is
clearly pointed out that BMA is not a model combination technique, and that it should
be thought of as a method for ’soft model selection’. This understanding has led to the
proposal of techniques for the bayesian combination of classifiers [13]. In spite of that,
BMA is still being considered by many scientists as an ensemble learning technique
and as such it is compared with other ensemble learning techniques such as stacking,
bagging or boosting [3,9].
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Accepting BMA as ’soft model selection’, it can happen that uniform averaging im-
proves over BMA when modeling assumptions are incorrect. Many times this is the case
when classifiers are applied “out-of-the-box”. However, an ensemble classifier should
be able to recognize which models are right and which are incorrect. In order to do that,
we propose two algorithms for adjusting the weights for a linear mixture of classifiers
and are robust to incorrect modeling assumptions of the base classifiers.

The issue of generative versus discriminative classifiers has raised a lot of attention
in the community in the last years [28,1,30,16,15,31]. It is widely believed that, pro-
vided enough data, discriminative classifiers outperform their generative pairs. Since
both generative and discriminative classifiers are in use nowadays, two different ini-
tial settings are assumed in order to construct a linear ensemble of classifiers. In the
first one, we are given a set of base classifiers that after receiving an unclassified ob-
servation, output the conditional probability distribution for each class. On the second
setting, our base classifiers are assumed to output the joint probability for each class
and the observation (instead of contioned to the observation). We could name the first
setting linear averaging of discriminative classifiers and the second linear averaging
of generative classifiers. We propose the usage of an expectation maximization algo-
rithm for the first setting. The second setting is tougher and we propose the usage of
augmented lagrangian techniques [14,29] for constrained nonlinear optimization.

In the last years there have been several attempts to improve the naive Bayes clas-
sifier by relaxing its restrictive independence assumption [10,22,38,2]. Averaged One
Dependence Estimators (AODE) classifiers have been proposed [36] as an efficient and
effective alternative to naive Bayes. They are based on k-dependence estimators [32],
which are classifiers where the probability of each attribute value is conditioned by the
class and at most k other attributes. AODE classifiers estimate the class probabilities
by performing an equally weighted linear combination of the estimates of all possible
1-dependence estimators. Since AODE is a classifier based on uniform aggregation of
simple classifiers that make very hard assumptions that are likely not to be fulfilled, it
can act as a good test case for our algorithms. We describe AODE in section 4. In sec-
tion 5 we find a conjugate distribution for the problem and we prove that it is possible to
perform exact BMA over the set of 1-dependence estimators in polynomial time. After
that, in section 6 we adapt our weight adjustment algorithms for ODEs and finally in
section 7 we empirically compare the results of BMA with uniform averaging and our
two linear mixtures, obtaining results that clearly confirm the previously exposed ideas.

In [33,34] a Bayesian technique for finding maximum likelihood ensembles of
Bayesian networks is described. In [26,25] an EM algorithm for finding linear mixtures
of trees is proposed. Those works were stated in the setting of density estimation (mix-
tures were learned with a generative approach in mind) and our explicitly deals with the
problem of classification or conditional density estimation (discriminative approach).
Ghahramani et al. [13] presented Bayesian methods for averaging classifiers. They as-
sume the predicted class to be the only information available as output from the classi-
fiers to be averaged. We assume a bit more and ask classifiers to output a probability dis-
tribution. This setting was already proposed by them as a rellevant line of future work.

To summarize, the main contribution of the paper is the proposal of two maximum
a posteriori algorithms for averaging probability distributions in a supervised setting.
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As side results, we provide the conjugate distribution for ODEs and empirically con-
firm the limitations of BMA when understood as an ensemble learning technique in a
nontrivial case. A more detailed study of the two algorithms proposed and a comparison
with other general ensemble learning methods will be the subject of future work.

2 Formalization and Notation

A discrete attribute is a finite set, for example we can define attribute Pressure as
Pressure = {Low, Medium, High}. A discrete domain is a finite set of discrete
attributes. We denote ΩC = {A1, . . . , An, C} for a classified discrete domain where
Au are attributes other than the class and C is the class attribute. We will use i and j
as values of an attribute and u and v as indexes over attributes in a domain. We denote
X−C = {A1, . . . , An} the set that contains all the attributes in a classified discrete
domain except the class attribute.

Given an attribute X , we denote #X as the number of different values of X . An
observation x in ΩC is an ordered tuple x = (x1, . . . , xn, xC) ∈ A1 × . . . × An × C.
An unclassified observation x−C in ΩC is an ordered tuple x−C = (x1, . . . , xn) ∈
A1 × . . . × An. To be homogeneous we will abuse this notation a bit noting xC for
a possible value of the class for x−C . A dataset D in ΩC is a multiset of classified
observations in ΩC .

We will denote N for the number of observations in the dataset. We will also denote
Nu(i) for the number of observations in D where the value for Au is i, Nu,v(i, j) the
number of observations in D where the value for Au is i and the value for Av is j and
similarly for Nu,v,w(i, j, k) and so on.

3 Learning Mixtures of Probability Distributions

In order to aggregate the predictions of a set of different models, we can use a linear
mixture assigning a weigth to each model. If modeling assumptions are correct, BMA
provides the best linear mixture. Otherwise, uniform averaging has been demonstrated
to improve over single model selection and many times also over BMA. We would
like to develop an algorithm for assigning weigths to models in a linear mixture that
improves over uniform averaging while being robust to incorrect modeling assumptions
of the base classifiers.

3.1 Formalization of the Problem

On a classified discrete domain ΩC , we define two different types of probability distri-
butionss. A generative probability distribution (GPD) is a probability distribution over
ΩC . A discriminative probability distribution (DPD) is a probability distribution over C
given X−C . Obviously, from every GPD, we can construct a DPD, but not vice versa.

A linear mixture of n DPDs (LMD in the following) is defined by the equation:

PLMD(xC |x−C) =
n∑

u=1

αuPDPDu(xC |x−C). (1)
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The model is more widely known as the linear opinion pool [12,11].
A linear mixture of n GPDs (LMG in the following) is defined by the equation:

PLMG(xC , x−C) =
n∑

u=1

αuPGPDu(xC , x−C), (2)

in both cases
n∑

u=1
αu = 1 and ∀u αu > 0.

Supervised Posteriors. From a frequentistic point of view, in order to learn condi-
tional probability distributions we need to maximize conditional likelihood. In [17] the
concept of supervised posterior is introduced as a Bayesian response to this frequen-
tistic idea. The proposal in [17] is that from a Bayesian point of view, in order to learn
conditional probability distributions, given a family of models M, we need to compute
the BMA over models using the supervised posterior P s(M |D):

P (xC |x−C , D, ξ) =
∫

M∈M
P (xC |x−C , M, ξ)P s(M |D, ξ), (3)

where
P s(M |D, ξ) = P s(D|M, ξ)P (M |ξ) (4)

and
P s(D|M, ξ) =

∏

x∈D
P (xC |x−C , M, ξ). (5)

Supervised posterior for LMD. In order to perform Bayesian learning over LMD and
LMG we define a prior distribution over α. A natural choice in this case is to use a
Dirichlet distribution. For conciseness we fix the Dirichlet hyperparameters to 1, that
is P (α|ξ) ∝

∏n
u=1 αu, although the development can be easily generalized to any

Dirichlet prior. The supervised posterior after an i.i.d. dataset D for a LMD is:

PLMD(α|D, ξ) =
P (D|α, ξ)P (α|ξ)

P (D|ξ) =

∏
x∈D

P (xC |x−C , α, ξ)P (x−C |α, ξ)P (α|ξ)

P (D|ξ) =

=
∏

x∈D
P (xC |x−C , α, ξ)P (α|ξ)

∏
x∈D

P (x−C |α, ξ)

P (D|ξ) . (6)

Assuming that P (x−C |α, ξ) does not depend on α we can conclude that

PLMD(α|D, ξ) ∝
∏

x∈D

n∑

u=1

αuPDPDu(xC |x−C)
n∏

u=1

αu. (7)

The exact BMA prediction in this setting will be given by:

PLMD(xC |x−C , D, ξ) =
∫

α

PLMD(α|D, ξ)
n∑

u=1

αuPDPDu(xC |x−C)dα. (8)
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Supervised Posterior for LMG. The supervised posterior after an i.i.d. dataset D for
LMG is

PLMG(α|D, ξ) =
∏

x∈D

n∑
u=1

αuPGPDu(xC , x−C)

∑
c∈C

n∑
u=1

αuPGPDu(c, x−C)

n∏

u=1

αu, (9)

and the exact BMA prediction in this setting

PLMG(xC |x−C , D, ξ) =
∫

α

PLMG(α|D, ξ)

n∑
u=1

αuPGPDu(xC , x−C)

∑
c∈C

n∑
u=1

αuPGPDu(c, x−C)
dα. (10)

3.2 Proposed Solutions

MAPLMD. To the best of our knowledge there is no closed form solution for comput-
ing the result of equation 8. Hence, we will have to approximate its value. A first possi-
bility would be to directly approximate it using Markov Chain Monte Carlo (MCMC).
However, each iteration of the model will require the computation of the product in
equation 8 that ranges over all the observations in the dataset, resulting in a heavy use
of computational resources. A second possibility is approximating the expression using
only the maximum a posteriori (MAP) value for α (which we denote αMAP

LMD) as

P (xC |x−C , D, ξ) ≈
n∑

u=1

αu
MAP
LMDPDPDu(xC |x−C). (11)

It is known [24,23] that, since we are dealing with a finite mixture model, we can de-
termine αMAP

LMD by means of the Expectation-Maximization (EM) algorithm by posing
the problem into an incomplete-data one introducing an additional unobservable vari-
able for each observation corresponding to the mixture component that generated the
data. This gives us a reasonably efficient procedure for determining αMAP

LMD . The ag-
gregation method resulting from finding αMAP

LMD and then applying it in equation 1 is
MAPLMD.

MAPLMG. The case of LMG is not so simple. As we did for LMD, we can ap-
proximate the exact BMA prediction using only the MAP value for α (that we denote
αMAP

LMG ). However, in this case, there is no straightforward way to use the EM algo-
rithm. From an optimization point of view, we have to find αMAP

LMG , under the inequal-
ity constraints that each component of the vector αMAP

LMG should be greater that 0 and
the equality constraint that the components of αMAP

LMG should add up to 1. This is a
constrained nonlinear optimization problem that can be solved by using the augmented
(or penalized) lagrangian method [14,29] for constrained nonlinear optimization. This
method transforms a constrained nonlinear optimization problem into a sequence of
unconstrained optimization problems, progresively adjusting the penalization provided
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by not fulfilling the constraints. For solving each of the resulting unconstrained opti-
mization problems several efficient methods are available. In our case we have used
the well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. It is a quasi-
Newton method which builds up an approximation to the second derivatives of the
function using the difference between successive gradient vectors. By combining the
first and second derivatives the algorithm is able to take Newton-type steps towards the
function minimum, assuming quadratic behavior in that region. This technique requires
the computation of the partial derivative of the function to be optimized with respect to
each of the αi. Fortunately this can be done efficiently if we calculate it together with
the function. By simple algebraic manipulations it can be seen that the derivative of
equation 9 is:

∂P (α|D, ξ)
∂αu

= P (α|D, ξ)

⎛

⎜⎜⎝
∑

x∈D

pu,xC

n∑
u=1

αupu − pu

n∑
u=1

αupu,xC

n∑
u=1

αupu

n∑
u=1

αupu,xC

+
1

αu

⎞

⎟⎟⎠ , (12)

where pu,c = PGPDu(c, x−C) and pu =
∑

c∈C PGPDu(c, x−C). In order to complete
the Lagrangian, we also need to compute the derivatives of the constraints,∑

u = 1nαu = 1 and ∀u αu > 0, with respect to each αu, that are very simple. The
aggregation method resulting from finding αMAP

LMG and then predicting using equation 2
is named MAPLMG.

4 AODE

In this section we review the AODE classifier as presented in [36]. Given a classified
domain, AODE learns a set of 1-dependence probability distribution estimators (ODE)
containing those where the class attribute and another single attribute are the parents of
all other attributes. Obviously there are n ODEs satisfying our condition, one for each
choice of root attribute. The probablity estimates for an ODE are:

Pu(x) = Pu(xC , x−C) = Pu(xC , xu)
n∏

v=1
v �=u

Pu(xv|xC , xu), (13)

where Pu(xC , xu) = NC,u(xC ,xu)+1
N+#C#Au

and Pu(xv|xC , xu) = NC,u,v(xC ,xu,xv)+1
NC,u(xC ,xu)+#Av

(these
equations are slightly different to the ones presented in [36] and correspond to the
AODE classifier implemented in Weka[37] version 3.4.3). After learning these mod-
els , AODE uniformly combines the probabilities for each of them:

PAODE(xC , x−C) =
n∑

u=1
Nu(xu)>t

Pu(xC , x−C). (14)

In equation 14, the condition Nu(xu) > t is used as a threshold in order to avoid
making predictions from attributes having few observations. If no attribute fulfills the
condition, AODE returns the results of predicting using naive Bayes.
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5 Exact Bayesian Model Averaging of ODEs

In this section we provide a conjugate distribution for ODEs and show how it can be
used to efficiently perform BMA over ODEs.

5.1 Conjugate Distribution for One Dependence Estimators

In order to define a probability distribution over ODEs, we define how we compute the
probability that an ODE is the generating model. After that, we define the probability
distribution over the parameters of that ODE. Probability distribution over the parame-
ters of two different ODEs u and v (denoted uΘ and vΘ) are assumed independent.

Definition 1 (Decomposable distribution over ODEs). The probability of an ODE
with concrete structure and parameters under a decomposable distribution over ODEs

with hyperparameters α, N ′ =
n⋃

u=1

uN ′ is the product of the probability that its root

is the selected root (P (ρB|ξ)) times the probability that its parameters are the right
parameters (P (ρBΘ|ξ)):

P (B|ξ) = P (ρB|ξ)P (ρB Θ|ξ). (15)

The probability distribution for the root is a multinomial with hyperparameter α. The
probability for the parameter set ,uΘ, for each possible root u factorizes following the
ODE structure:

P (uΘ|ξ) = P (uθu,C |ξ)
m∏

v=1
v �=u

P (uθv|u,C |ξ) (16)

and the distribution over each conditional probability table follows a Dirichlet distri-
bution (where the needed hyperparameters are given by uN ′):

P (uθu,C |ξ) = D(uθu,C(., .); uN ′
u,C(., .)) (17)

P (vθv|u,C |ξ) = D(uθv|u,C(., i, c); uN ′
v,u,C(., i, c)) (18)

.

5.2 Learning Under Decomposable Distributions over ODEs

If a decomposable distribution over ODEs is accepted as prior, we can efficiently cal-
culate the posterior after a complete i.i.d. dataset:

Theorem 1. If P (B|ξ) follows a decomposable distribution over ODEs with hyperpa-
rameters α,N′, the posterior distribution given an i.i.d. dataset D is a decomposable
distribution over ODEs with hyperparameters α∗,N′∗ given by:

α∗
u = αuWu (19)

uN ′∗
u,C(i, c) = uN ′

u,C(i, c) + Nu,C(i, c) (20)
uN ′∗

v,u,C(j, i, c) = uN ′
v,u,C(j, i, c) + Nv,u,C(j, i, c) (21)
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where

Wu =
Γ (N ′)
Γ (N ′∗)

∏

c∈C

∏

i∈Au

⎡
⎢⎢⎣

Γ (uN ′∗
u,C(i, c))

Γ (uN ′
u,C(i, c))

m∏

v=1
v �=u

⎛

⎝ Γ (u,s(v)N ′
u,C(i, c))

Γ (u,s(v)N ′∗
u,C(i, c))

∏

j∈Av

Γ (uN ′∗
v,u,C(j, i, c))

Γ (uN ′
v,u,C(j, i, c))

⎞

⎠

⎤
⎥⎥⎦ ,

(22)

and
uN ′ =

∑

c∈C

∑

i∈Au

uN ′
u,C(i, c) (23)

u,s(v)N ′
u,C(i, c)) =

∑

j∈Av

uN ′
v,u,C(j, i, c), (24)

and the equivalent of equations 23 and 24 hold for N ′∗.

5.3 Classifying Under Decomposable Distributions over ODEs

Under a decomposable distribution over ODEs, we can efficiently calculate the proba-
bility of an observation by averaging over both structure and parameters:

Theorem 2. If P (B|ξ) follows a decomposable distribution over ODEs with hyperpa-
rameters α,N′, the probability of an observation given ξ is

P (X = x|ξ) =
m∑

u=1

αuP (X = x|ρB = u, ξ)

where P (X = x|ρB = u, ξ) =
uN ′

u,C(xu,xC)
uN ′

m∏
v=1
v �=u

uN ′
v,u,C(xv,xu,xC)

u,s(v)N ′
u,C(xu,xC) .

Theorems 1 and 2 demonstrate that exact learning can be performed in polynomial
time under the assumption of decomposable distributions over ODEs. Furthermore, the
overhead with respect to the standard AODE algorithm in terms of computational com-
plexity can be considered very small. Proofs are omitted due to space limitations. For
domains where we do not have prior information we will assign a value of 1 to each of
the hyperparameters in α and N′. We name the resulting classifier BMAAODE.

6 Learning Mixtures of ODEs

It is worth noting that the development in section 3 was done under the assumption
that the dataset D used for determining αMAP is assumed to be independent of the
dataset used to learn the individual classifiers. To allow the successful application of
this results to ODEs, instead of using Pu(c, x−C) as the probability distribution be-
ing averaged, we will use PLOO

u (c, x−C) (from Leave-One-Out), where the observa-
tion being classified (x) is excluded from the training set. After computing the counts
NC,u,v(c, i, j),NC,u(c, xu), and N , PLOO

u is simply:

PLOO
u (c, x−C) = PLOO

u (c, xu)
n∏

v=1
v �=u

PLOO
u (xv|c, xu) (25)
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PLOO
u (c, xu) =

NC,u(c, xu) + 1 − δ(c = xC)
N + #C#Au − 1

(26)

PLOO
u (xv|c, xu) =

NC,u,v(c, xu, xv) + 1 − δ(c = xC)
NC,u(c, xu) + #Av − δ(c = xC)

(27)

so almost no computational burden is introduced by this strategy. This can be under-
stood as performing the best possible stacking [35] strategy with the data at hand, with
an ODE for each attribute as the set of level-0 models and MAPLMD or MAPLMG as
the level-1 generalizer. This particularization of MAPLMD and MAPLMG for ODE
are named MAPLMDODE and MAPLMGODE respectively.

7 Empirical Results

In this section we compare AODE with BMAAODE, MAPLMGODE and MAPLM-
DODE on two different scenarios. On the first one we compare performance over Irvine
datasets and on the secondone over randomly generated Bayesian networks with differ-
ent sets of parameters. In the following sections, we explain the experimental setup and
then show the results and draw some conclusions.

7.1 Experimental Setup

We used three different measures to compare the performance of the algorithms: the
error rate, the conditional log-likelihood and the area under the ROC curve [8] which
we will refer to as AUC. For this last measure, when the class is multivalued, we use
the formula provided in [18].

Irvine Setup. We ran each algorithm on 38 datasets from the Irvine repository repeat-
ing 10 runs of 10 fold cross validation. Continuous attributes were discretized into 5
equal frequency intervals.

Random Bayesian Networks Setup. We compared the algorithms over random
Bayesian networks varying the number of attributes in {5, 10, 20, 40}, the number
of maximum values of an attribute in {2, 5, 10} and the maximum induced width in
{2, 3, 4}. For each configuration of parameters we generated randomly 100 Bayesian
networks using BNGenerator [21]. For each Bayesian network we obtained 5 learning
samples of sizes {25, 100, 400, 1600, 6400} and a testing sample of size of 500.

7.2 Results and Conclusions

A summary of the results can be seen in tables 1 and 2. The tables describe the num-
ber of Wins/Draws/Loses at a 95% statistical t-test confidence level for each measure.
AODE0 and AODE30 are two versions of AODE, with different thresholds t = 0 and
t = 30 respectively. The results show that the condition Nu(xu) > t proposed in [36]
although intuitively appealing, does not improve performance on none of both settings
and can safely be simplified.
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Table 1. Empirical results over Irvine datasets

Algorithms AUC ER LogP
AODE0-AODE30 7/24/7 10/22/6 13/18/7

AODE0-BMAAODE 26/11/1 25/8/5 29/4/5
MAPLMGODE-AODE0 12/20/6 18/18/2 29/5/4
MAPLMDODE-AODE0 14/9/15 17/11/10 26/6/6

Table 2. Empirical results over random Bayesian networks

Algorithms AUC ER LogP
AODE0-AODE30 38/124/18 45/128/7 85/92/3

AODE0-BMAAODE 101/77/2 90/83/7 143/26/11
MAPLMGODE-AODE0 155/24/1 138/41/1 151/17/12
MAPLMDODE-AODE0 176/4/0 145/27/8 177/2/1

It can be seen that BMAAODE performance is significantly worse than uniform
aggregation in both settings. In order to understand the reason why, we note that in
our Bayesian formalization of the problem an additional assumption has been intro-
duced ’unnoticed’: the assumption that one of the ODEs is the right model generat-
ing the data. This assumption has the effect that the posterior after a small number
of observations concentrates most of its weight in a single model. AODE also makes
a strong assumption: that the right model generating the data is a uniform aggrega-
tion of ODEs. This assumption turns out to be less restrictive that the one made by
BMAAODE. Obviously, neither AODE nor BMAAODE assumptions are fulfilled by
the datasets nor by the Bayesian networks used for the experimentation, but AODE
is able to provide a better approximation than BMAAODE to their probability distri-
butions most of the times. This result obviously does not change the fact that the as-
sumption of a single generating model, as a generic assumption underlying Bayesian
learning, is completely reasonable. However, it points out that we should be careful and
understand that BMA provides the optimal linear ensemble only when the assumption
is fulfilled.

Comparing AODE0 with MAPLMDODE and MAPLMGODE we can see that, with
the only exception of MAPLMDODE over Irvine datasets and the AUC measure, both
algorithms consistently improve AODE0 in a statistically significant way. Hence, we
have shown that the general scheme for determining weights of linear mixtures devel-
oped in section 3, when particularized for ODEs, improves uniform aggregation signif-
icantly, even when the models make incorrect modeling assumptions.

8 Conclusions

We have argued that under incorrect modeling assumptions BMA can be worse than uni-
form aggregation. We have provided two maximum a posteriori algorithms to improve
over uniform aggregation even in the case that the classifiers make incorrect modeling
assumptions. We have shown by means of a nontrivial example that the algorithms can
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be applied with significant accuracy gains. A more detailed study of these algorithms
and a comparison with other general ensemble learning methods will be the subject of
future work.
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