
ar
X

iv
:2

30
4.

05
08

1v
1 

 [
qu

an
t-

ph
] 

 1
1 

A
pr

 2
02

3
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The Su-Schrieffer-Heeger (SSH) model, commonly used for robust state transfers through topo-
logically protected edge pumping, has been generalized and exploited to engineer diverse functional
quantum devices. Here, we propose to realize a fast topological beam splitter based on a gener-
alized SSH model by accelerating the quantum state transfer (QST) process essentially limited by
adiabatic requirements. The scheme involves delicate orchestration of the instantaneous energy spec-
trum through exponential modulation of nearest neighbor coupling strengths and onsite energies,
yielding a significantly accelerated beam splitting process. Due to properties of topological pump-
ing and accelerated QST, the beam splitter exhibits strong robustness against parameter disorders
and losses of system. In addition, the model demonstrates good scalability and can be extended
to two-dimensional crossed-chain structures to realize a topological router with variable numbers of
output ports. Our work provides practical prospects for fast and robust topological QST in feasible
quantum devices in large-scale quantum information processing.
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I. INTRODUCTION

In large-scale quantum information processing, infor-
mation encoded in quantum states needs to be transmit-
ted in a coherent manner between different nodes within
a quantum network [1–6]. In the last few years, great
efforts have been devoted into exploring the optimal pro-
tocol for achieving efficient state transfer in the simplest
and most common one-dimensional spin-1/2 chain, and
the results can be further applied to incorporate vari-
ous quantum systems such as quantum dots [7–11], cou-
pled waveguides [12–14], superconducting circuits [15–
17], and coupled-cavity arrays [18, 19]. However, due
to the existence of inevitable manufacturing imperfec-
tions within the devices and decoherence effect induced
by the environment, the reliability of the quantum in-
formation transmission may be significantly reduced [20–
24]. Therefore, it is of urgent need to improve the fidelity
of quantum state transfer (QST) and circumvent the im-
pact of different sources of disorder and decoherence.
Recently, the discovery of topological insulators opens

up new prospects for efficient and robust quantum in-
formation processing [25–29]. Owing to their nontrivial
topological energy band structures in momentum space
which are inequivalent to traditional insulators, topolog-
ical insulators hold simultaneously insulating bulk states
and conducting edge states which can be characterized by
topological invariants rooted in global geometric prop-
erties of the system [30–33]. These conducting edge
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states localized at the boundary of the system are in-
herently protected by the energy gap, and as a conse-
quence, are immune to mild manufacturing defects or en-
vironmental perturbations and able to propagate along
the boundary unidirectionally without generating back
scattering [34–36]. These prominent features make topo-
logical edge states a promising candidate for not only
robust QST [6, 16, 37–41] but also quantum comput-
ing [42–44] and quantum entanglement [45–48]. As one
of the most commonly studied one-dimensional mod-
els enabling nontrivial topological edge states, the Su-
Schrieffer-Heeger (SSH) model possesses structural sim-
plicity and rich forms of edge states. Based on the topo-
logical edge channel in the SSH lattice, the topologically
protected QST between different nodes has been exten-
sively explored and corresponding topological quantum
devices has been proposed, including topological beam
splitters [49, 50], topological routers [51, 52], topological
lasers [53–58], and so on. The key point of QST based on
the topological edge channel is the adiabatic evolution of
the channel state. The speed of QST needs to be suffi-
ciently slow so as to avoid nonadiabatic transitions be-
tween the channel and bulk states during the whole trans-
fer process, which results in topological quantum devices
with total evolution time usually too long to be feasibly
implemented in actual physical systems. Accelerated adi-
abatic pumping of topological edge state can be realized
by designing the topological edge channel reasonably, and
several protocols of QST based on the SSH model have
been proposed [59–62]. However, these techniques, elabo-
rately orchestrated to improve the transmission efficiency
and enhance robustness against disorder and decoherence
within the quantum system, focus mainly on the topo-
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logically protected state transfer from one single node to
the other, and are rarely combined with specific topo-
logical quantum devices, which are not conducive to the
construction of large-scale quantum networks.
In this work, we propose to realize fast and robust

QST in a symmetrical topological beam splitter based
on an odd-sized SSH model with alternating onsite ener-
gies and a topological interface, for which the exponential
modulation of nearest neighbor coupling strengths and
onsite energies account for accelerating the transfer pro-
cess. The introduction of alternating onsite energies and
the topological interface opens up a topological channel,
through which the input state initially prepared at the
interface site can be transferred to two end sites with
equal probabilities and phases. We propose exponential
modulation of nearest neighbor coupling strengths and
onsite energies to accelerate the state transfer process
whose speed is intrinsically limited by adiabatic require-
ments. The effect of different exponential parameters on
the performance of scheme are examined, and the optimal
exponential parameters for chains of different sizes are
shown. Furthermore, we investigate the robustness of the
topological beam splitter by taking into consideration the
impact of diagonal and off-diagonal disorders and losses
of system. In addition, we prove the scalability of the
symmetrical beam splitter and generalize the model to
two-dimensional crossed-chain structures that can be em-
ployed to implement a topological router whose number
of outports can be adjusted conveniently by cross-linking
different numbers of identical even-sized SSH chains via
one mutual site. Finally, we stress that fast and robust
QST in the proposed beam splitter and router can be
realized in superconducting circuit devices under current
experimental conditions, which has numerous potential
applications in efficient quantum information processing
and the construction of large-scale quantum networks.

II. PHYSICAL MODEL AND ENGINEERING

OF TOPOLOGICAL PUMPING

A. Topologically protected edge states for the

generalized SSH model

Schematic illustration of the generalized SSH model
is shown in Fig. 1, which describes a one-dimensional
dimerized lattice composed of N unit cells. The Hamil-
tonian of system reads as (~ = 1)

H =
∑

n

Vaa
†
nan + Vbb

†
nbn + (J1a

†
nbn + J2a

†
n+1bn +H.c.),

(1)
where the first two terms represent onsite energies of two
types of sites while the rest terms represent the nearest
coupling between two adjacent sites. Here, an (a†n) and
bn (b†n) are the annihilation (creation) operators of a par-
ticle at the nth a- and b-type sites with onsite energies
Va and Vb, and J1 and J1 are the respective intracell

a
V

b
V

b
V

b
V

a
V

a
V

1 2J J
1 2J J 1J

FIG. 1. Diagrammatic sketch of the generalized SSH model
composed of N unit cells. Each unit cell contains a pair of a-
(blue dot) and b-type (purple dot) sites with onsite energies
Va and Vb. Double lines and single lines denote the intra-
cell coupling strength J1 and intercell coupling strength J2

between two adjacent sites, respectively.

and intercell coupling coefficients assumed to be real and
positive.
For periodic boundary conditions (PBC), we can use

the Bloch theorem and rewrite the bulk Hamiltonian as

Hbulk =

N
∑

n=1

Vaa
†
nan+Vbb

†
nbn+(J1a

†
nbn+J2a

†
m+1bn+H.c.),

(2)
with m = n mod N . After performing a Fourier trans-
formation an = 1√

N

∑

k e
iknak and bn = 1√

N

∑

k e
iknbk,

with the wavenumber k ∈
{

2π
N , 4πN , · · · , 2Nπ

N

}

being from
the first Brillouin zone, the Hamiltonian can be moved
into the momentum space, represented by Hbulk =
∑

k Vaa
†
kak+Vbb

†
kbk+

[

(

J1 + J2e
−ik

)

a†kbk + H.c.
]

. For

each wavenumber k, the bulk Hamiltonian in the momen-
tum space under the basis of (ak, bk)

T can be expressed
as

Hk =

(

Va J1 + J2e
−ik

J1 + J2e
ik Vb

)

. (3)

We first consider the case of the standard SSH model
where there is no onsite energy on the lattice sites. By di-
agonalizingHk, the eigenvalues can be obtained E±(k) =

±
√

J2
1 + J2

2 + 2J1J2 cos k, corresponding to eigenstates

|ψ±(k)〉 =
1√
2

[

E±(k)/
(

J1 + J2e
ik
)

, 1
]T
. (4)

The eigenenergy spectrum of the system is divided into
two bands, with an energy gap of 2∆ separating the
lower and filled bands from the upper and empty bands,
with ∆ = mink E(k) = |J1 − J2|. We plot the disper-
sion relation for three choices of the coupling strengths
in Figs. 2(a)-(c). As the coupling strengths ranges from
J1 > J2 to J1 < J2, the band gap is first closed and then
reopened at the boundaries of the first Brillouin zone.
Introducing the Pauli matrices σ = (σx, σy, σz) as base
vectors, the Hamiltonian can be expressed in the form

H(k) = d · σ, (5)

with d = (dx, dy, dz) = (J1 + J2 cosk, J2 sin k, Va). As
displayed in Figs. 2(d)-(f), d does not enclose the ori-
gin as the wavenumber runs across the Brillouin zone for
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FIG. 2. (a)-(c) Energy spectrum of SSH lattice in the mo-
mentum space for three settings of the coupling strengths (a)
J1 = 1, J2 = 0.6; (b) J1 = 1, J2 = 1; (c) J1 = 0.6, J2 = 1.
(d)-(f) Winding of the bulk momentum-space Hamiltonian for
the three settings as the wavenumber runs across the Brillouin
zone.

J1 > J2 while encloses the origin for J1 < J2, which cor-
respond to two topological distinct phases, respectively.
In the phase transition point J1 = J2, eigenstates of the
bulk are available with arbitrarily small energy, and the
SSH model behaves like a conductor which can transport
electrons from one end of the chain to the other. Oth-
erwise, the SSH model behaves like an insulator. The
encirclement of the Hamiltonian Hk can be characterized
by the winding number w defined as

w± =
i

π

∫ π

−π

〈ψ±(k) | ∂k | ψ±(k)〉 . (6)

w = 0 indicates that Hk does not enclose the origin,
corresponding to the topological trivial phase; w = 1
indicates that Hk encloses the origin, corresponding to
the topological nontrivial phase, in which according to
the body-boundary correspondence [30], the SSH lat-
tice exhibits edge states in the bulk gap under the open
boundary conditions (OBC). We examine how the spec-
trum of an open chain changes as the intracell and in-
tercell coupling strengths are continuously modulated.
For an even-sized SSH model composed of 2N = 40
lattice sites, the topological nontrivial phase hosts two

edge states exponentially localized on the boundaries of
the chain, as shown in Figs. 3(a)-(c). By analytically
solving the eigenvalue equation, we get the eigenvalues

Eeven,± = ±
∣

∣

∣

∣

−J2
(−J1/J2)

N [(−J1/J2)
2−1]

(−J1/J2)
2N−1

∣

∣

∣

∣

, corresponding

to eigenstates

|Ψ±〉 = (|L〉 ± |R〉)/
√
2, (7)

with

|L〉 = |1, 0,−J1/J2, 0, · · · , 0, (−J1/J2)n−1
, 0, · · · 〉,

|R〉 = | · · · , 0, (−J1/J2)N−n
, 0, · · · , 0,−J1/J2, 0, 1〉,

(8)
denoting the ideal left and right edge states in thermody-
namic limit (See Appendix for more details). The degen-
erate gap modes of a finite-sized system in the topolog-
ical nontrivial phase takes a pair of almost-zero-energy
eigenvalues opposite to each other due to chiral symme-
try, which makes eigenstates take the superposition of the
ideal left and right edge states and localize at both ends
of the system. For an odd-sized SSH model composed of
2N + 1 = 41 lattice sites, there is always a zero-energy
edge state with eigenvector

|Ψ0〉 =
∣

∣

∣1, 0,−J1/J2, 0, (−J1/J2)2 , · · · , (−J1/J2)N
〉

,

(9)
with the localized position depending on the ratio J1/J2,
as demonstrated in Figs. 3(d)-(f).

B. Symmetrical beam splitter via edge channel in

the Rice-Mele model

We now consider the case of the Rice-Mele model [63]
originated from the standard SSH model by adding alter-
nate onsite potentials Va = −Vb. For each wavenumber
k, eigenvalues and corresponding eigenstates can be ob-
tained by analytically solving the eigenvalue equation

E±(k) = ±
√

V 2
a + J2

1 + J2
2 + 2J1J2 cos k,

|ψ±(k)〉 = Nk

[

(E±(k) + Va) /
(

J1 + J2e
ik
)

, 1
]T
,

(10)

with Nk being normalization factor. In the odd-
sized Rice-Mele model, there is always a gap
state with eigenenergy Va and eigenstate |ψVa

〉 =
∣

∣

∣

∣

1, 0,−J1

J2
, 0,

(

−J1

J2

)2

, 0, · · · , 0,
(

−J1

J2

)N
〉

for which the

localized position can be also modulated by tuning J1/J2,
and thus can be exploited as a topologically protected
quantum channel. Setting J1/J2 = 0 initially, J1/J2 =
+∞ finally, and continuously modulating the intracell
and intercell coupling strengths, a topologically protected
state transfer can be realized from the left edge to the
right.
Inspired by topological edge pumping in the Rice-Mele

model, a symmetrical topological beam splitter with an
equal phase can be obtained based on an odd-sized SSH
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FIG. 3. (a) Energy spectrum of the SSH lattice with 40 sites with varying intracell coupling J1 but fixed intercell coupling
J2 = 1. J1 < 1 (J1 > 1) corresponds to the nontrivial (trivial) topological phase. (b) Energy spectrum (upper panel) and
distribution of the gap state (lower panel) for J1 = 0.6. (c) Energy spectrum (upper panel) and density distribution of one
bulk state (lower panel) for J1 = 2. (d)-(f) Energy spectra and distributions of the zero-energy edge state of the SSH lattice
with 41 sites with the same coupling strengths as those in (a)-(c), respectively.

model with alternating onsite energies and a topologi-
cal interface. We consider a finite chain comprising of
L = 2N + 1 sites, with N being even, i.e., structured
by linking two even-sized SSH chains via one mutual a-
type site, as schematically shown in Fig. 4. Intracell (in-

a
V

b
V

b
V

b
V

b
V

a
V

a
V

a
V

a
V

1 2

LL

interface

JJ
1 2

JJ 1J2
J 1J2

J

FIG. 4. Schematic of SSH model with the size of L = 2N +1
with alternate onsite energies and an interface. Double
and single lines denote the intracell and intercell coupling
strengths J1 and J2 between two adjacent sites, respectively.
Intracell (intercell) coupling strengths and alternate onsite en-
ergies are mirror-symmetric with respect to the interface site.
N is an even number, so that the topological interface falls
on an a-type site.

tercell) coupling strengths and alternate onsite energies
are mirror-symmetric with respect to the interface site.
The system can be described by the following interaction-
picture Hamiltonian

H =
∑

n

[

Vaa
†
nan + Vbb

†
nbn

]

+





N/2
∑

n=1

(J1a
†
nbn + J2a

†
n+1bn)

+

N
∑

n=N/2+1

(J2a
†
nbn + J1a

†
n+1bn) + H.c.



 . (11)

In the energy spectrum of this system there always exists
a gap state with eigenenergy Va and eigenvector

|ψVa
〉 =

∣

∣

∣

∣

∣

1, 0,−J1
J2
, 0,

(

−J1
J2

)2

, 0, · · · , 0,
(

−J1
J2

)N/2

, 0,

· · · , 0,
(

−J1
J2

)2

, 0,−J1
J2
, 1

〉

,

which is localized at the topological interface when



5

J1/J2 = +∞ but localized at both ends of the chain
when J1/J2 = 0. Assisted by this topological edge chan-
nel, a topologically protected QST from the interface site
to the two end sites with equal probabilities can be real-
ized by continuously modulating the intracell and inter-
cell coupling strengths from J1/J2 = +∞ to J1/J2 = 0.
When regarding the interface site as the input port and
the two end sites as two output ports, the whole system
is equivalent to a symmetrical topological beam splitter,
in which a particle injected into the interface site can be
transferred to the two endpoints of the chain with equal
probabilities. It is worth emphasizing that this beam
splitting process along the gap state |ψVa

〉 is topologically
protected by the band gap between the gap state and its
adjacent bulk eigenstates and is thus immune to scatter-
ing from inherent disorders and local imperfections.

C. Choice of the modulating coupling strengths

and analysis of energy spectrum

The realization of the topological beam splitter is es-
sentially based on the adiabatic evolution of the gap
state, which requires the system to be driven slowly
enough so that the initial state always evolves along the
gap state |ψVa

〉 during the transfer process. The topolog-
ical pumping based on the gap state is governed by the
following time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉 (12)

where |Ψ(t)〉 can be expressed as

|Ψ(t)〉 =
∑

n

an(t)e
−iEn(t)t |ψn(t)〉 , (13)

with |ψn(t)〉 and En(t) obeying the instantaneous
eigenequationH(t) |ψn(t)〉 = En(t) |ψn(t)〉, and an(t) de-
notes the probability amplitude on the nth instantaneous
eigenstates. Substituting Eq. (13) into Eq. (12), we get

∂

∂t
an(t) =

∑

m 6=n

am(t)eit[En(t)−Em(t)] 〈ψn(t)|∂H(t)
∂t |ψm(t)〉

Em(t)− En(t)
.

(14)
In order to approach the adiabatic limit, we have

∑

m 6=n

〈

ψn(t)
∣

∣

∣

∂H(t)
∂t

∣

∣

∣ψm(t)
〉

|Em(t)− En(t)|
≪ 1. (15)

To satisfy the adiabatic condition, the instantaneous en-
ergy difference between the gap and bulk states should
be large enough, and the derivative of the Hamiltonian,
which is directly related to the slope of the driving func-
tion, should be sufficiently small. In order to enhance the
speed and efficiency of state transfer, we need to adjust
the intracell and intercell coupling strengths appropri-
ately so that the system can be driven strongly where

the energy gap is wide but mildly when the energy gap
is narrow.

Several protocols have been proposed to realize accel-
erated QST via topological edge channel based on the
SSH model [59–62]. However, these techniques for accel-
erated adiabatic edge pumping are mainly based on the
standard SSH model where there is no onsite energy on
the lattice sites and focus on the topologically protected
state transfer from one single node to the other. For ex-
ample, Palaiodimopoulos et al. [62] proposed exponential
modulation of nearest-neighbor coupling in an odd-sized
SSH chain and achieved fast topological edge pumping.
This approach, unlike the shortcuts to adiabaticity [64]
where elaborately orchestrated counter-adiabatic terms
in the Hamiltonian are introduced to suppress unwanted
excitations, only involves engineering of the driving func-
tion. In this paper we adopt the exponential modulation
of not only the nearest neighbor coupling strengths but
also onsite energies

J1 = J0
1− e−α(t∗−t)/t∗

1− e−α
, (16a)

J2 = J0
1− e−αt/t∗

1− e−α
, (16b)
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FIG. 5. Waveforms of coupling strengths and alternate onsite
energy with (a) α = 2, (c) α = 6, and (e) α = 10. (b),
(d) and (f) Instantaneous energy spectrum as a function of
time for different exponential parameters in (a), (c) and (e),
respectively. The total evolution time is chosen to unity and
the size of chain to be 21.
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energy gap between the gap state and the nearest-neighbor
bulk states versus values of α with fixed chain size L = 21.

Vb = −Va = J0

√

J2(2t)

J0
, (16c)

where t∗ denotes the total evolution time and α is a tun-
able exponential modulation parameter. According to
the definitions in Eq. (16a-16c), J1,2 satisfy J1/J2 = 0
and J1/J2 = +∞ at the initial and end instants, respec-
tively.
Taking the system with chain length of L = 21 as an

example, we select three different values of exponential
parameter and plot evolution of the coupling strengths
and alternating onsite energy in Figs. 5(a), (c), and (e).
In addition, in Figs. 5(b), (d), and (f), we show how the
instantaneous eigen-spectrum evolves over time. Refer-
ring to the gap states (magenta line) in eigen-spectrum
and the corresponding evolution of onsite energy, we
identify that the gap state |ψVa

〉 varies along the topo-
logical channel in the symmetrical beam splitting pro-
cess. This can be further verified by distribution of
the gap state during the evolution process as depicted
in Figs. 6(a)-(c), in which the state transfers from the
interface site to two-end sites with equal probabilities.
Evolution of energy gap between the gap state and the
bulk adjacent state (green line) in Figs. 5(b), (d), and (f)
is shown in Figs. 5(a), (c), and (e) (green-dotted lines),
respectively. In the whole process of evolution, the mo-
ment of larger (smaller) values of energy gap obviously
corresponds to the larger (smaller) slope of the driving
function J2. Besides, as illustrated in Fig. 6(d), the mini-
mum energy gap augments with the increase of parameter
α, which is positively related to the slope of the driving
function. As a result, the exponential modulation of cou-

pling strengths and alternate onsite energies is a qualified
candidate to achieve fast and efficient topologically pro-
tected state transfer in the symmetrical topological beam
splitter.

III. FAST QST WITH HIGH ROBUSTNESS

AND SCALABILITY

A. Fast QST in the topological beam splitter

The initial state of the system

|Ψi〉 =
∣

∣ρa,1e
iφa,1 , ρb,1e

iφb,1 , · · · , ρa,Neiφa,N , · · · ,
ρa,2N+1e

iφa,2N+1 , ρb,2N+1e
iφb,2N+1

〉

.

= |0, 0, 0, · · · , 0, 1, 0, · · · , 0, 0, 0〉

is specified to set the interface site as the input port of
the beam splitter. To measure how faithfully the transfer
from the interface site to two end sites has occurred, we

0J t
∗

FIG. 7. (a Fidelity as a function with respect to the final
time of QST for the cosine and exponential protocols. (b)-
(e) Distribution of the gap state during the evolution and
the phase distribution of the evolved final state for the cosine
protocol in (b) and (c), and for the exponential protocol in
(d) and (e), respectively. Other parameters take L = 21 and
α = 3.2.
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introduce fidelity defined as F = |〈Ψt | Ψ(t∗)〉|2, where

|Ψt〉 =
∣

∣

∣
ρ′a,1e

iφ′

a,1 , ρ′b,1e
iφ′

b,1 , · · · , ρ′a,Neiφ
′

a,N , · · · ,

ρ′a,2N+1e
iφ′

a,2N+1 , ρ′b,2N+1e
iφ′

b,2N+1

〉

.

=
1√
2
|1, 0, 0, · · · , 0, 0, 0, · · · , 0, 0, 1〉

and Ψ (t∗) denote the target state and the evolved state
at final time t∗, respectively. Consider the system with
chain size L = 21. In order to see the speed of transfer, we
plot in Fig. 7(a) the QST fidelity of beam splitter versus
the total transfer time to compare the commonly-used
cosine protocol (for example, protocols in Refs. [49, 50])
and the exponential protocol with exponential param-
eter α = 3.2, where parameters in the cosine proto-
col are J1 = J0

2

(

1 + cos πt
t∗

)

, J2 = J0

2

(

1− cos πt
t∗

)

, and

Vb = −Va = J0 sin
πt
t∗ . For both protocols, as total evo-

lution time approaches infinity, the fidelity approaches
unity, meaning that an excitation imposed initially at the
interface site can be perfectly transferred along the chain
to two-end sites with equal probabilities, which satisfies
the adiabatic approximation during the transfer process,
so that the system state always evolves along the gap
state |ψVa

〉 without leaking to others. Here we suppose
that the QST is successfully implemented if the fidelity is
stabilized above 0.99. The implementation of the expo-
nential protocol leads to a significantly accelerated QST
process which is about 10 times faster than its cosine
counterpart, since the fidelity is stabilized above 0.99 af-
ter t∗ = 100/J0 for the exponential protocol as compared
to t∗ = 1080/J0 for the cosine protocol. The process of
QST and the phase distribution of the evolved final state
for the cosine and exponential protocols are illustrated in
Figs. 7(b)-(e), indicating that both protocols can achieve
symmetrical topological beam splitting with equal phase
by costing sufficient transfer time, but obviously the ex-
ponential protocol is much faster.

B. Effect of different values of α

The realization of fast QST via edge channel in
the symmetrical topological beam splitter is exempli-
fied above by setting a fine-tuned exponential parameter
α = 3 in a chain of size L = 21. We note in Sec. II C
that for different α in the exponential modulation, there
are evident differences in the slopes of the coupling func-
tions and the corresponding energy gaps between the gap
state and its nearest-neighbor bulk state in the instanta-
neous spectrum, leading to different effects on the QST
process. To give some quantitative results,in Fig. 8 we
plot fidelity as a function of the transfer time for the
exponential protocol with different α. Taking a closer
look at the fidelity curves of the exponential protocol,
we notice the existence of mild oscillations, which indi-
cates that resonant processes are at work in the QST
process. When a smaller α is chosen, the driving func-

tion is flattened and the minimum energy gap between
the gap state and its nearest-neighbor bulk state narrows
down, as analytically investigated in Sec. II C, where the
resonant processes are suppressed effectively and longer
total transfer time is required for successful symmetrical
beam splitting. Conversely, larger values of the expo-
nential parameter α lead to a steeper slope of the driving
function and better separation between the gap state and
its nearest-neighbor bulk state. As a consequence, the
resonant processes are intensified and strong oscillations
appear at the fidelity curve, which takes longer time for
the fidelity being stabilized at a sufficiently large value.
Therefore, it is a trade-off to set α = 3 for a chain of size
L = 21, when the system is driven strongly enough to
achieve high-fidelity QST of beam splitter in relatively
short time, yet mildly enough to avoid strong oscillations
of the fidelity curve.
Further, we investigate the fidelity of QST by vary-

ing α and the total evolution time with L = 21, 33, 45,
and 57, respectively, as illustrated in Figs. 9(a)-(d). The
0.9 and 0.99 fidelity contour lines manifest intense oscil-
lations for larger α, yet similar to Fig. 8, for smaller α
the oscillations are suppressed substantially. We can al-
ways find the optimal exponential parameter so as to
reach a balance between accelerating the symmetrical
beam splitting process and avoiding excessive oscilla-
tions. For instance, the optimal exponential parame-
ters can be set as α = 3.2, 4.5, 5.5, and 6.1 for chain
sizes L = 21, 33, 45, and 57, respectively. As shown
in Figs. 9(e)-(f), by selecting different chain sizes and
optimizing the best exponential parameters as well as
corresponding total evolution times for the final fidelity
equaling to 0.99 as numerical samples, αoptimal versus L
and α0.99

optimal versus L can be fitted by cubic functions

αoptimal = 1.2 × 10−5L3 − 0.0026L2 + 0.22L − 0.33 and
J0t

0.99
optimal = 0.00052L3 + 0.059L2 − 0.34L + 68, respec-
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FIG. 8. Fidelity as a function of the transfer time for the
exponential protocol with different values of α with L = 21.
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FIG. 9. Fidelity of QST versus varying α and t∗ for the expo-
nential protocol with (a) L = 21, (b) L = 33, (c) L = 45, and
(d) L = 57. The green and red solid lines represent 0.9 and
0.99 fidelity contour lines, respectively. (e) Optimal exponen-
tial parameters and (f) the corresponding total evolution time
needed for 0.99-fidelity as a function of the size of the chain.
The scattering dots and the lines represent the numerical and
cubic polynomial fitting results, respectively.

tively. The exponential parameter and corresponding
evolution time should be large enough to satisfy the adi-
abatic condition for a longer size of the chain.

C. Robustness against disorders and loss of system

Due to the existence of manufacturing defects of sys-
tematic elements in practice, perfect modulation of the
coupling strengths and onsite energies is almost unattain-
able. In this section, we examine robustness of QST in
the beam splitting process by introducing disorders both
in coupling strengths and onsite energies to discuss its ef-
fect on the performance of beam splitter. The disorder in
coupling strengths is generally addressed as off-diagonal
disorder, while the disorder in onsite energies as diagonal
ones, depending on its effect on the matrix representa-
tion of the Hamiltonian. We first consider the case of
symmetric distortion, in which the way each disorder re-
alization is imposed on the system parameters can be
assumed as

J i
1(2),n → J i

1(2),n

(

1 + δJ i
1(2)

)

,

V i
1(2),n → V i

1(2),n

(

1 + δV i
1(2)

)

, (17)

where δJ i
1(2) and δV

i
1(2) are assumed to remain constant

during the QST process, but δJ i
1(2) and δV i

1(2) acquire

random real values sampled from the interval [−ωs, ωs],

s
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exp
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0 500 1000
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0J t
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∗

FIG. 10. Impact of diagonal and off-diagonal disorders with
ωs = 0.4 on the fidelity for the (a) cosine and (b) exponen-
tial protocols. Each point corresponds to the mean value of
fidelity averaged over 100 disorder realizations. Average fi-
delity as a function of the disorder strength for (c) diagonal
and (d) off-diagonal disorders for different protocols. Other
parameters take L = 21 and α = 3.2.

where ωs is termed the disorder strength. We plot
the mean fidelity of splitting QST versus total transfer
time for both kinds of disorders with moderate strength
ωs = 0.4 for the cosine and exponential protocols with
L = 21 and α = 3.2 in Figs. 10(a) and (b), respec-
tively. Each point corresponds to the mean value of fi-

delity F̄ = 1
M

∑M
i=1 Fi averaged over M = 100 disorder

realizations for the sake of universality, while the error
bars correspond to the standard deviation. What we can
immediately notice is that both protocols are highly ro-
bust to the diagonal disorder, because the F–t∗ curves
almost coincide with the unperturbed curve. Besides,
the transfer process is insignificantly destroyed by non-
diagonal disorder applied in the both protocols. Rather,
the main impact is longer total transfer time required to
achieve QST of beam splitter.

In the presence of off-diagonal disorder, a longer to-
tal transfer time t∗ is required to achieve high-fidelity
QST for both protocols. In Figs. 10(c) and (d), for dif-
ferent types of disorder for the cosine and exponential
protocols with α = 3.2 and L = 21, we plot the aver-
age fidelity (M = 100) as a function of disorder strength.
For the sake of comparison, we set the total transfer time
t∗ = 1100/J0 so that the QST of beam splitter can be
implemented via both protocols when disorder strength
equals zero. Numerical results reveal strong robustness
against diagonal disorders for both protocols, because
average fidelities in Fig. 10(c) always approach unity.
However, we find that the exponential protocol mani-
fests stronger robustness than the cosine protocol against
off-diagonal disorder, as shown in Fig. 10(d) where the
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FIG. 11. Average fidelity and phase difference of the evolved
final state at two-end sites versus disorder strength for asym-
metric (a) diagonal and (b) off-diagonal disorders for different
protocols. Other parameters take L = 21 and α = 3.2.

average fidelity of the former decreases significantly when
ωs = 0.7, while it is ωs = 0.4 that the average fidelity
of the cosine protocol starts to declines significantly. To
sum up, the exponential protocol apparently outperforms
the cosine protocol in terms of robustness to off-diagonal
disorder, while both protocols are quite robust to diago-
nal disorder.
Diagonal and off-diagonal effects as depicted in

Eq. (17) are mirror symmetrical with respect to the topo-
logical interface. In the following, we try to reveal the
effects of asymmetric disorders. For asymmetric distor-
tions on coupling strengths and onsite energies, their ef-
fects are described by

{

J i
1,n → J i

1,n, J
i
2,n → J i

2,n

(

1 + δJ i
1

)

, n = 1, · · · , N2 ,
J i
1,n → J i

1,n, J
i
2,n → J i

2,n

(

1 + δJ i
2

)

, n = N
2 + 1, · · · , N,

(18)

{

V i
1,n → V i

1,n, V
i
2,n → V i

2,n

(

1 + δV i
1

)

, n = 1, · · · , N2 ,
V i
1,n → V i

1,n, V
i
2,n → V i

2,n

(

1 + δV i
2

)

, n = N
2 + 1, · · · , N,

(19)
where δJ i

1(2) and δV i
1(2) acquire random real values in

the interval [−ωs, ωs]. Taking the system of chain size
L = 21 as an example, we plot in Fig. 11 the mean fi-
delity of the topological beam splitter and phase differ-
ence of the evolved final state at two end sites averaged
over M = 100 samples versus disorder strength ωs for
the cosine and exponential protocols. We find that for
both protocols, when asymmetric diagonal disorders are
imposed on the system, it can still function as a robust
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FIG. 12. Final fidelity as a function of the loss rate γ for
the cosine protocol with t∗ = 1080/J0 and the exponential
protocol with t∗ = 100/J0 and α = 3.2 under symmetrical
losses. (b) Final fidelity and phase difference of the evolved
final state at two-end sites versus loss rate γ for both protocols
under asymmetrical losses.

symmetrical beam splitter with equal phase. However,
in terms of robustness against asymmetric diagonal dis-
orders, the evolved final state at the two ends may not
have the same phase and amplitude, and the deviations
will be amplified when ωs increases.
On the other hand, for high-efficiency QST in quantum

networks, the systemic loss is an important factor on in-
fidelity. The effect of losses during the QST of beam
splitter can be considered by changing the Hamiltonian
to a non-Hermitian form

H ′ = H − i
∑

n

[

γana
†
nan + γbnb

†
nbn

]

, (20)

where H is the lossless Hamiltonian, and γa,bn denotes
the loss rate of each type of sites. We first consider the
impact of symmetrical loss. For convenience, we assume
γan = γbn = γ. The dynamics of system is governed by the
non-Hermitian Lioville equation ρ̇ = −i

(

H ′ρ− ρH ′†).
We plot in Fig. 12(a) effects of symmetrical loss on the
final fidelity of QST for a chain of size L = 21 for the co-
sine and exponential protocols with α = 3.2 and transfer
time fixed at t∗ = 1080/J0 and t∗ = 100/J0, respec-
tively, so that the QST can be successfully implemented
via both protocols when no loss exists. Evidently, the
exponential protocol manifests a notable improvement of
the final fidelity compared to the cosine protocol. The
weakened damage of the loss effect to the QST process
can be attributed to the shorter accumulation time of
decoherence during the QST in the exponential protocol.
We also demonstrate in Fig. 12(b) effects of asymmetri-
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cal loss on the final fidelity and phase difference of the
evolved final state at two end sites. Here, we assume

γan = γ,

γbn = γ(1 + δγ1), n = 1, · · · , N
2
,

γbn = γ(1 + δγ2), n =
N

2
+ 1, · · · , N,

where δγ1(2) acquire random real values in the interval
[−0.1, 0.1]. Apparently, numerical results for effect of
asymmetrical loss have few differences from its symmet-
rical counterpart.

D. Scalability

1. Size of chains

As noted above, the exponential protocol is a com-
pelling alternative for fast and robust QST in the sym-
metrical topological beam splitter, which exhibits a re-
markable improvement in speed of beam splitting and
robustness against both types of disorders compared to
the commonly-used cosine protocol. In order to ver-
ify more extensively the effect of exponential coupling
strengths and onsite energies, one crucial aspect deter-
mining the efficiency of QST is its scalability. In the
following, we focus on how the exponential protocol be-
haves when the system size is altered. We show the phase
diagram of the QST in the parameter space (t∗, L) of
the cosine and exponential protocols in Figs. 13(a) and
(b), respectively, with the exponential parameter fixed
at α = 3.2. The yellow (purple) areas indicate that
the QST of beam splitter can be implemented with fi-
delity over (below) 0.99. Evidently, the parameter space
can be divided into three regions according to different
phase boundaries, as demonstrated in Fig. 13(c). In re-
gion I, the symmetrical beam splitter can be faithfully
realized via both protocols. In region II, beam splitting
is faithfully implemented via only the exponential pro-
tocol, while in region III neither protocols cannot work
well. Consequently, we can choose feasible modulation
protocols according to different parameter design in the
system. We plot in Fig. 13(d) the total transfer time
t∗0.99 each protocol takes to achieve beam splitting as
a function of the size of the system, where t0.99cos versus
L for the cosine protocol can be fitted by cubic func-
tion J0t

0.99
cos = 0.1L3 − 0.46L2 + 28L − 260. Obviously,

the symmetrical topological beam splitter modulated by
both protocols needs a longer total evolution time with
the augmentation of chain size L. Nevertheless, it is ev-
ident that the exponential protocol outperforms the co-
sine protocol in terms of the transfer speed and manifests
good scalability within the range of length we have con-
sidered here.
In the following, we take into consideration the in-

evitable loss of the system. As shown in Fig. 14,
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FIG. 13. Phase diagram of the QST in the parameter space
(t∗, L) of the (a) cosine and (b) exponential protocols. (c) The
total phase diagram derived from (a) and (b). (d) The trans-
fer time t∗0.99 that each protocol takes to reach 0.99 fidelity as
a function of the size of the system. α = 3.2 is used here.

we plot for both protocols the final fidelity as a func-
tion of the chain size with fixed loss parameter γ =
2.5 × 10−5J0. The parameter selection is made in ac-
cordance with current technological capabilities in the
superconducting circuit devices, where the initial (end)
coupling strengths between resonators and the decoher-
ence rates of photon in superconducting resonator are
set to be J0/2π = 100MHz and γ/2π = 2.5kHz, respec-
tively [65–67]. The exponential parameters are chosen as
α = 1.2× 10−5L3− 0.0026L2+0.22L− 0.33 for chains of
different sizes, and the total evolution times are set to be
J0t = 0.1L3− 0.46L2+28L− 260 for the cosine protocol
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FIG. 14. Fidelity as a function of the chain size with fixed
loss parameter γ = 2.5 × 10−5J0 for both protocols. α = 3.2
is used here.
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FIG. 15. Schematic illustration of the crossed-chain struc-
ture comprised of four even-sized SSH chains connected to a
mutual additional a-type site.

and J0t = 0.00052L3 + 0.059L2 − 0.34L+ 68 for the ex-
ponential protocol, which ensures the 0.99-fidelity QST
for both protocols in the absence of losses. The results
indicate that the exponential protocol not only exhibits
stronger robustness against environment-induced deco-
herence, but also manifests good scalability, whereas the
fidelity of the cosine protocol plummets with increasing
size.

2. Number of chains

The symmetrical topological beam splitter based on
an odd-sized SSH model with alternating onsite energies
and a topological interface can be regarded structurally
as a system composed of two even-sized SSH chains con-
nected to a mutual additional a-type site. Another vital
direction for scalability is how the exponential protocol
behaves when the number of constituent chains in the
crossed-chain structure is altered. To this end, in Fig. 15
without loss of generality we consider a crossed-chain
structure comprised of K = 4 even-sized SSH chains con-
nected to a mutual additional a-type site, which will be
taken as a typical example and analyzed extensively in
the following. The interaction of the crossed-chain struc-
ture formed by L = 4N +1 sites can be described by the
following interaction-picture Hamiltonian

H ′ =
∑

σ

∑

n

[

Vaa
σ†
n aσn + Vbb

σ†
n bσn

]

+
∑

σ

N/2
∑

n=1

[

J1a
σ†
n bσn

+J2a
σ†
n+1b

σ
n + H.c.

]

, (21)

where aσN/2+1 = aN/2+1 = a0, a
σ
n and bσn are the am-

plitudes at the nth a- and b-type sites in a single SSH
chain indexed by σ. If we regard the connecting site as
the input port and the K end sites as K output ports,
the crossed-chain structure is equivalent to a topological

router, in which a particle injected into the connecting
site can be transferred toK end sites with equal probabil-
ities. To verify the fast QST for the exponential protocol
in topological router with four output ports, we plot the
fidelity versus the total transfer time for the cosine and
exponential protocols with α = 3.2 in Fig. 16(a). The
QST process for the exponential protocol is still about

10 times faster than its cosine counterpart, since fidelity
is stabilized above 0.99 after t∗ = 91/J0 for the exponen-
tial protocol as compared to t∗ = 935/J0 for the cosine
protocol. The process of QST and the amplitude distri-
bution of the evolved final state under the basis of

C =
(

a11, b
1
1, . . . , a

1
N/2, b

1
N/2, a

2
1, . . . , b

2
N/2, a

3
1, . . . , b

3
N/2, a

4
1,

. . . , b4N/2, aN/2+1

)

for the exponential and cosine protocols are illustrated in
Figs. 16(b)-(e), implying that both protocols can achieve
successful topological routing under sufficient transfer
time, but the former protocol is obviously faster.
We plot in Fig. 17(a) the transfer time t∗0.99 as a func-

tion of the size N of each constituent chain. Total trans-
fer time increases with the augmentation of the size of
each constituent chain for the four-chain structure, which
is consistent with the results in the two-chain beam split-
ter. The transfer time t∗0.99 as a function of the number
of constituent chains is illustrated in Fig. 17(b), where
exponential parameter is set as α = 3.2 and the size of
each constituent chain is chosen to be N = 10. We can
see that in general, total transfer time increases with the
augmentation of the number of constituent chains con-
nected in the crossed-chain structure, with mild fluctua-
tions which can be attributed to inevitable oscillation in
the F–t∗ curves. Therefore, by modulating the number of

0J t
∗

FIG. 16. (a) Final fidelity of four-outport router as a function
of the transfer time for the cosine and exponential protocols.
(b)-(e) Distribution of the gap state with energy eigenvalue
of Va during the evolution and amplitude distribution of the
evolved final state for the exponential protocol in (b) and (c),
and the cosine protocol in (d) and (e), respectively. Other
parameters take L = 4N + 1 = 41 and α = 3.2.
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crossed linked chains, the number of outports can be ad-
justed conveniently. Such good flexibility and scalability
give the topological beam splitter and topological router
broad application prospects in quantum information dis-
tribution and large-scale quantum information network
construction.

IV. EXPERIMENTAL CONSIDERATION AND

ANTICIPATED IMPROVEMENT

A. Experiment consideration for superconducting

circuit devices

This protocol for realizing fast and robust QST in a
symmetrical topological beam splitter is applicable to su-
perconducting circuit devices, which benefits from exist-
ing circuit-QED technologies.
We can construct a superconducting resonator chain to

arrange alternately the resonator An and the resonator
Bn in one-dimensional space, whose equivalent circuit of
one unit cell is shown in Fig. 18. The resonator An (Bn)
is composed by a spiral inductor La (Lb) and a capacitor
Ca (Cb) in analogy with harmonic oscillator, which has
a single mode. In terms of the capacitor charge Qa (Qb)
and the inductor current Ia (Ib), the Hamiltonian of os-
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FIG. 17. Using the exponential protocol with α = 3.2 for the
four-outport router, transfer time t∗0.99 as a function of (a) the
size of each constituent chain with K = 4 and (b) the number
of constituent chains with N = 10.

cillator is written as

ĤLC =
Q2

j

2Cj
+

Φ2
j

2Lj
(22)

where Φj is the flux through the inductor Lj, and Qj

is the charge on the capacitor Cj (j = a, b). Based on
the standard quantization process of an LC circuit [70],
the Hamiltonian of the resonator An (Bn) can be further
written as HLC = ~Vjj

†j in terms of the creation and an-

nihilation operators defined by j† = 1/
√

2~Vj(Qj/
√

Cj−
iΦj/

√

Lj) and j = 1/
√

2~Vj(Qj/
√

Cj + iΦj/
√

Lj),

where Vj = 1/
√

LjCj is the oscillator frequency. Thus,
onsite energies of two types of sites An (Bn) can be engi-
neered in a large range of possible values by adjusting the
parameters Lj and Cj . In experiment, the onsite ener-
gies of the resonator can be selectively controlled by a DC
bias voltage supply connected with the variable capaci-
tor via a low-pass filter. The dependence of its resonant
frequency on the DC bias is observed with no hysteresis,
which is of great value for tunability [71].
Furthermore, a direct tunable coupler is realized by a

tunable circuit element between the resonators, e.g., a
flux-biased direct-current superconducting quantum in-
terference device (SQUID) to generate strong resonant
and nonresonant tunable interactions between any two
lumped-element resonators. In this work, we adopt a
direct tunable coupler replaced by a SQUID between
resonator An and Bn, which is composed by the ad-
ditional Josephson junction EJ [72, 73]. The flux φ
threading the SQUID loop gives rise to a circulating
current Is(φ) = −Ic sin(2πφ/φ0), where φ0 is the flux

Coupler
Resonator Resonator

FBL

AWGMagnetic shield T ~ mk

FIG. 18. Equivalent circuit of the coupled superconducting
resonator system. Circuit elements are used to model the
microwave resonator An (Bn) and the coupler with the ad-
ditional Josephson junction in a dilution refrigerator (with a
temperature T ∼ mK), which is placed in a magnetic shield.
The microwave resonator An (Bn) is an LC circuit composed
of a spiral inductor La (Lb) and a capacitor Ca (Cb). The ex-
ternal classical filed can be attained independently via chang-
ing the magnetic flux φ threading on the loop of coupler,
which can add the FBL to connect with an AWG by adopt-
ing controlled voltage pulses [68, 69].
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quantum. Here, φ is the sum of the externally ap-
plied flux φext and the flux generated by Is, which
can be represented by φ = φext + LsIs(φ). Thus, the
flux dependent coupling between resonators is written as

J1,2 = −
√

Va

La

√

Vb

Lb

L2
0

L(φ) , where L0 is the inductance of

the segment shared between resonator and SQUID and
the effective SQUID inductance with respect to exter-
nal fluxes L(φ) = ∂φext/∂Is [74]. Therefore, the sim-
plest way to tune the coupling strength J1,2 is to ap-
ply a control magnetic flux to this loop dynamically
with φext(~x) =

∫

s B(~x, t) · dS, by adding the external
flux-bias line (FBL) to connect with an arbitrary wave-
forms generator (AWG) by adopting controlled voltage
pulses [68, 69], as shown in Fig. 18. Thus, superconduct-
ing circuits possessing advantages of flexibility, scalabil-
ity and tunability [75–77], providing an excellent plat-
form for realizing fast and robust QST in a symmetrical
topological beam splitter with high fidelity.

B. Possibility of further accelerating QST process

in the symmetrical beam splitter

As noted above, we have realized fast QST in the sym-
metrical beam splitter through exponential modulation
of the nearest-neighbor coupling strengths and the on-
site energies. The scheme acclerates the beam splitting
process through subtle control of the driving functions
according to the instantaneous eigenspetrum and is still
limited by the adiabatic requirements. To further ac-
celerate the QST process, we can consider incorporat-
ing moderately nonadiabatic resonant process between
eigenstates into the adiabatic process. For example, a
fast topological edge pumping protocol in which quan-
tum state transfers rapidly from the left edge to the right
was recently presented in an SSH chain [61]. The intra-
cell and intercell nearest neighbor coupling strenghts are
governed by the following 3-step modulation functions

J1 =

{

J1(0), t ≤ t∗ − top
(J1(0)−J2(0))t

∗

top

(

1− t
t∗

)

, t > t∗ − top
(23a)

J2 =

{

J2(0) +
(J1(0)−J2(0))t

top
, t ≤ top

J1(0), t > top
(23b)

where J1(0) and J2(0) denote the intracell and intercell
coupling coefficients at the initial moment, t∗ is the to-
tal evolution time, and top is the time interval for the
coupling strengths to increase (decrease) from initial to
terminal value (and vice versa). J1 and J2 are of mirror
symmetry, so top is the only free parameter. It is possible
to find the best top value through parameter optimization
so as to produce the fastest topological egde pumping.
Different from the case of the commonly-used trigono-

metric protocol in which eigenenergy of the edge mode
for an odd-sized SSH model remains constant during the

transfer process, for the 3-step protocol the instantaneous
eigenenergy are bended and its mean value is signifi-
cantly increased. Therefore, the timescales which may
be considered inversely proportional to the time average
of eigenenergy of the edge state effectively decrease. The
key to this scheme is incorporating the nonadiabatic res-
onance transition, whose dynamical evolution is closely
related to the pulse area. Analogously, with the help of
such a 3-step modulation protocol, it is of great potential
to furthur speed up the QST in the symmetrical beam
splitter proposed here.

V. CONCLUSION

To sum up, we have proposed a protocol of fast and
robust topological pumping via edge channel through
exponential modulation of the driving functions for
generating a symmetrical topological beam splitter and
further for deriving a topological router. We show both
analytically and numerically that by continuously mod-
ulating the intracell and intercell coupling strengths and
onsite energies, we can achieve topologically protected
quantum state transfer (QST) from the interface site
towards end sites with equal probabilities. Based on
numerical analysis of the instantaneous energy spectrum
of the system, we confirm that the value of the instan-
taneous energy gap suitably adapts to the slope of the
driving functions, and then present numerical evidence of
accelerated adiabatic edge pumping in the symmetrical
beam splitter. Furthermore, we investigate how the
selection of the exponential parameter impact the QST
process. The robustness of the topological beam splitter
is extensively discussed by taking into consideration
the impact of diagonal and off-diagonal disorders and
systematic losses. In addition, we prove the scalability in
the size and number of chains for the symmetrical beam
splitter and topological router, respectively. Last but
not least, we propose superconducting circuit devices
as a feasible platform to implement fast and robust
QST in the symmetrical beam splitter discussed in this
article. The scheme provides detailed assumption of
topological beam splitter and topological router assisted
by fast and robust topological edge pumping, which is
expected to make substantial contribution to efficient
quantum information processing and the construction of
large-scale quantum networks.
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APPENDIX: HYBRIDIZED EDGE STATES FOR

EVEN-SIZED SSH MODEL

For the even-sized SSH model, the matrix representa-
tion of the Hamiltonian on a real-space basis reads

HM =

















0 J1 0 0 · · · 0 0 0
J1 0 J2 0 · · · 0 0 0
0 J2 0 J1 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · J2 0 J1
0 0 0 0 · · · 0 J1 0

















. (A1)

In the following we prove that in the thermodynamic
limit of N → ∞, the topological nontrivial phase hosts
two edge states localized on the boundaries of the chain.
We first consider a semi-infinite long SSH lattice with left
boundry. In topological nontrivial phase, we assume that
the SSH lattice exhibits zero-energy eigenstate

|L〉 = |ψa1
, ψb1 , ψa2

, ψb2 , · · · , ψan
, ψbn , · · · 〉, (A2)

where ψan
(ψbn) are the amplitudes on lattice site

an (bn). Solving the eigenvalue equation HM |L〉 =
0 (HM under right semi-infinite boundary condition), we
get

J1ψb1 = 0, (A3a)

J1ψan
+ J2ψan+1

= 0, (n = 1, 2, · · · ), (A3b)

J2ψbn + J1ψbn+1
= 0, (n = 1, 2, · · · ), (A3c)

The zero-energy edge state is derived as

|L〉 = |ψa1
, 0, ξψa1

, 0, · · · , ξn−1ψa1
, 0, · · · 〉, (A4)

where ξ = −J1/J2 denotes the localization factor. Obvi-
ously, the edge state is exponentially localized in the left

side of the lattice in topological nontrivial phase and only
occupies the a-type sites. Similiarly, for a semi-infinite
long SSH lattice with right boundry, the zero-energy edge
state can be derived as

|R〉 = | · · · , 0, ξN−nψbN , 0, · · · , 0, ξψbN , 0, ψbN 〉, (A5)

which is exponentially localized in the right side of the
lattice in topological nontrivial phase and only occupies
the b-type sites.

For an even-sized SSH lattice composed of finite sites,
we can get its eigenvalues and corresponding eigenstates
by diagnolizing the real-space Hamiltonian under base
vectors |L〉 and |R〉

H ′
M =

(

OL,L OL,R

OR,L OR,R

)

, (A6)

where OL,L = 〈L | HM | L〉 = 0, OL,R = 〈L | HM | R〉 =
−J2ξ

N (ξ2−1)
ξ2N−1 , OR,L = 〈R | HM | L〉 = O∗

L,R, and OR,R =
〈R | HM | R〉 = 0. The eigenvalues and corresponding
eigenstates are

E0,± = ± |OL,R| , (A7a)

|Ψ0,±〉 = (|L〉 ± |R〉)/
√
2, (A7b)

Obviously, for an even-sized SSH lattice composed of fi-
nite sites, energies of the hybridized edge states in topo-
logical nontrivial phase do not equal zero, but a pair of
numbers opposite to ecah other due to chiral symme-
try (E0,± → 0 in the thermodynamic limit of N → ∞).
The wavefunctions of almost-zero-energy eigenstates are
odd and even superpositions of states localized exponen-
tially on the left and right edges.
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