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Abstract

In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication

network (WPCN) architecture is proposed for power-constrained Internet-of-Things (IoT) smart devices,

where IRS is exploited to improve the performance of WPCN under imperfect channel state information

(CSI). We formulate a hybrid access point (HAP) transmit energy minimization problem by jointly

optimizing time allocation, HAP energy beamforming, receiving beamforming, user transmit power

allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect

CSI and non-linear energy harvesting model. On account of the high coupling of optimization variables,

the formulated problem is a non-convex optimization problem that is difficult to solve directly. To

address the above-mentioned challenging problem, alternating optimization (AO) technique is applied

to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation,

HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection

coefficient and information reflection coefficient are divided into three sub-problems to be solved

alternately. The difference-of-convex (DC) programming is used to solve the non-convex rank-one
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constraint in solving IRS energy reflection coefficient and information reflection coefficient. Numerical

simulations verify the superiority of the proposed optimization algorithm in decreasing HAP transmit

energy compared with other benchmark schemes.

Index Terms

IRS, wireless powered communication network, imperfect channel state information, non-linear

energy harvesting, alternating optimization.

I. INTRODUCTION

In recent years, the number of smart devices has also shown a blowout growth along with the

vigorous development of Internet-of-Things (IoT) [1], [2]. There will be more than 28 billion

devices connected to wireless networks in 2022 according to Cisco’s forecast [3]. Nowadays,

there are two main challenges in the actual deployment of IoT networks. First, smart devices are

usually powered by batteries, which have a short life cycle, and the cost of battery replacement

and redeployment is relatively high. In addition, the interference problem caused by the large-

scale access of smart devices will greatly reduce the system capacity. Therefore, a novel paradigm

that can efficiently satisfy the IoT network needs to be proposed.

As an effective wireless energy network mode, wireless powered communication network

(WPCN) was first proposed in [4]. Ju et al. first proposed the “harvest-then-transmit” protocol,

i.e., hybrid access point (HAP) can be used to provide users with continuous downlink energy

services, while collecting uplink transmission information generated by users based on time

division multiple access (TDMA) [4]. This protocol can be better applied to most IoT scenarios,

where HAP provides energy services for energy-constrained smart devices, and then the devices

perform data transmission. In recent years, research on WPCN in IoT networks has also received

extensive attention from academia [5]–[10]. Aiming at the energy-constrainted nodes in the IoT

network, Song et al. proposed a new iterative algorithm for cluster-specific beamforming design

using the WPCN framework, and then proposed an algorithm for maximizing total throughput

[5]. In the WPCN-assisted IoT network, Nguyen et al. considered users to access by orthogonal

frequency division multiple access (OFDMA), and jointly optimized the duration of energy

harvesting (EH), subcarriers and power allocation to maximize the system energy efficiency (EE)

[6]. For self-sustaining wireless communication systems in IoT networks, channel allocation, time

resource and power resource allocation were optimized to maximize uplink weighted sum-rate
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[9]. However, previous research on WPCN in IoT networks still faces two main challenges: one is

low energy efficiency and small coverage, and the other is the interference caused by large-scale

access of massive devices. For the first challenge, it is mainly because that the distance-related

channel attenuation will greatly affect the energy harvesting of smart devices. Therefore, previous

solutions have focused on reducing the distance between the device and access point (AP), so that

the transmission between smart device and the AP has a good line-of-sight (LoS) link. However,

it greatly limits the energy transmission efficiency of the AP and the coverage of the network.

Therefore, it is urgent to adopt new and cost-effective solutions to improve the performance of

WPCN in IoT networks.

Intelligent reflecting surface (IRS), also known as reconfigurable intelligent surface (RIS),

has been widely discussed in the industry and academia as an emerging technology [11]–[14].

By changing the amplitude and phase shift of incident electromagnetic (EM) waves, IRS can

reconstruct the wireless propagation channel between transceivers. Then, the network capacity,

energy efficiency and coverage can be improved with low cost. The IRS is an array composed of a

large number of passive reflective units, and its deployment is more convenient, such as on a wall

or a building. Since the IRS is passive, it only reflects the incident signal compared with the relay

and does not process the signal, so it does not introduce additional noise [15], [16]. In addition,

since it is not equipped with a wireless radio frequency (RF) link, compared with multiple-input

multiple-output (MIMO) system, it can greatly reduce cost and power consumption [17]. The

above-mentioned significant advantages make IRS have a very broad application prospect in

future communication networks.

Due to the many advantages of IRS, the assistance of IRS can greatly improve the energy

efficiency and coverage of WPCN in IoT networks. In order to better illustrate the superiority

of IRS, some scholars have studied the WPCN network assisted by IRS [18]–[24]. Lyu et al.

proposed a hybrid relay scheme for self-sustaining IRS in WPCN to simultaneously improve the

performance of downlink energy transmission from HAP to multiple users and the performance

of uplink information transmission from users to HAP [18]. Zheng et al. jointly optimized HAP

active beamforming and IRS passive beamforming and user power for multi-user multiple-input

single-output (MISO) networks to study the weighted sum-rate maximization of IRS-assisted

WPCN [19]. [20] considered the cooperation of users assisted by IRS in the WPCN, where

two users harvest wireless energy and transmit the information to the HAP. For a downlink RIS-

assisted WPCN, Xu et al. proposed a joint radio resource and passive beamforming optimization
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algorithm to improve system energy efficiency (EE) [21]. However, the existing IRS-assisted

WPCN research is still in its infancy and most of the existing works consider the linear energy

harvesting model. While this assumption is not practical, so more practical nonlinear energy

harvesting models need to be considered, which also greatly stimulated this work.

The second challenge mentioned above is that with the proliferation of smart devices, the

problem of interference between devices caused by large-access will become more serious, and

system capacity will be limited. Beamforming is a very effective solution to deal with the

interference problem caused by the access of multiple users and increase the system capacity

[25]. For beamforming technology, channel state information (CSI) is critical, which is usually

obtained through channel estimation. However, in practical systems, the uncertainty of channel

estimation brings greater challenge to the beamforming technology. Take the previously men-

tioned IRS-assisted WPCN as an example, HAP needs to provide energy beam services for smart

devices based on CSI, and then can receive signals transmitted by users. The performance of both

depends largely on channel estimation. Previous researches on IRS-assisted WPCN are mostly

aimed at the single-antenna case [18], [26], or the case of perfect CSI [18]–[20], which will

reduce the performance of the IRS-assisted WPCN in the practical IoT networks. Therefore, in

order to solve the aforementioned challenges, we consider beamforming in the case of imperfect

CSI, which is novel and closer to the practical system.

In summary, for the large-scale access of power-constrained devices in IoT networks, the

increased demands for network energy efficiency, coverage, and system capacity have greatly

spurred the research on robust IRS-assisted WPCN. To our best knowledge, time allocation and

robust active and passive beamforming design in IRS-assisted WPCN has not been investigated in

the literature. In this paper, considering that HAP cannot obtain perfect CSI, we minimize HAP

transmit energy consumption by jointly optimizing time allocation, HAP energy beamforming in

downlink (DL), IRS energy reflection coefficient, HAP receiving beamforming in uplink (UL),

IRS information reflection coefficient, and user transmit power allocation in UL. Since the HAP

cannot obtain perfect CSI and high coupling of optimization variables, it is not easy to deal with

this formulated problem. Consequently, it is necessary to design an effective joint optimization

algorithm for the IRS-assisted WPCN in IoT networks, which can solve HAP transmit energy

minimization problem. The main contributions of this paper are as follows:

• We propose a novel IRS-assisted WPCN framework in IoT networks, where the “harvest-

then-transmit” protocol is adopted. Specifically, the HAP first provides DL energy beam-
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forming for multiple users with the assistance of IRS, and then the users use the harvested

energy for UL information transmission with the assistance of IRS. The IRS can change

the wireless channel to improve the energy transmission efficiency and coverage of WPCN.

In addition, our proposed framework adopts a non-linear energy harvesting model and

considers the case of imperfect CSI, which thus makes it more practical than existing

works. We formulate the HAP transmit energy minimization problem for joint optimization

of time allocation, HAP energy beamforming, IRS energy reflection coefficient in DL, HAP

receiving beamforming, IRS information reflection coefficient in UL, and user transmit

power allocate in UL. In view of the coupling of optimization variables, the minimization

problem is non-convex, and it is not easy to obtain the solution of the problem.

• To address the formulated HAP transmit energy minimization problem, we first transform

the problem and then use alternating optimization (AO) technique to divide the transformed

problem into three sub-problems. More specifically, in the first sub-problem, given time

allocation and IRS reflection coefficient, we propose optimization algorithms for the HAP

energy beamforming, receiving beamforming, and user transmit power allocation. In the sec-

ond sub-problem, we propose an optimization algorithm for IRS energy reflection coefficient

and information reflection coefficient based on the difference-of-convex (DC) programming.

For the third sub-problem, we solve a linear programming problem (LP) to obtain time

allocation scheme. Finally, the three sub-problems are alternately optimized until the overall

problem converges.

• Numerical simulation results confirm the performance advantage of the proposed algorithm

compared with other benchmarks, i.e., it can significantly reduce the HAP transmit energy.

For IRS-assisted WPCN, the HAP transmit energy is lower than that of networks without

IRS assistance. Meanwhile, the more IRS reflection elements, the smaller the transmit energy

required. The applied DC programming can also solve the problem of non-convex rank-one

constraint in the second sub-problem, and its performance is better than the commonly used

semidefinite relaxation (SDR). In addition, the performance of our proposed algorithm is

close to that in the case of perfect CSI, but it is more realistic and has better robustness.

Notations: In this paper, scalars are denoted by lower-case letters. Vectors and matrices are

respectively represented by bold lower-case letters and bold upper-case letters. The absolute value

of a complex-valued scalar x can be denoted by |x|, and the Euclidean norm of a complex-valued
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vector x can be denoted by ‖x‖. In addition, tr(X), rank(X), XH , Xm,n and ‖X‖ denote trace,

rank, conjugate transpose, m,n-th entry and matrix norm of a square matrix X, respectively,

while X � 0 represents the square matrix X is a positive semidefinite matrix. Similarly, rank(A),

AH , Am,n and ‖A‖ also denote rank, conjugate transpose, m,n-th entry and matrix norm of

a general matrix A, respectively. CM×N represents the space of M ×N complex matrix. IN

represents an identity matrix of size N ×N . j represents the imaginary unit, i.e., j2 = −1. E {·}

is expectation operator. Finally, the distribution of a circularly symmetric complex Gaussian

(CSCG) random vector with mean µ and covariance matrix C can be expressed as CN (µ,C),

and ∼ denotes ‘distributed as’.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

In this section, we first introduce the system model of IRS-assisted WPCN in IoT networks,

as shown in Fig. 1, which includes an HAP with N antennas, an IRS with M reflection elements

deployed on a building, and K users (i.e. IoT devices) with a single antenna. The HAP with

constant power can be used to coordinate the energy transmission and information transmission

of a group of users. In WPCN, HAP means that the energy station and the information station

are hybrid, and it can broadcast energy signals to users via the DL as well as receive user

information via the UL. The antennas of the HAP and the array of the IRS are both distributed

in a uniform linear array (ULA)1. Let E =
√
ιdiag (e1, ..., eM) ∈ CM×M denote the energy

reflection coefficient matrix of the IRS in the DL, and let Q =
√
$diag (q1, ..., qM) ∈ CM×M

denote the information reflection coefficient matrix of the IRS in the UL, which has the following

constraints,

|em|2 = 1,∀m, (1)

|qm|2 = 1,∀m. (2)

In order to maximize the strength of the reflective signal, the amplitude of each element of

the IRS is usually set to 1 [12]. Meanwhile, for the IRS structure, the phase shift is mainly

controlled by the conduction of the diode, so it is more difficult to adjust its amplitude, which

1Note that if HAP and IRS use uniform planar array (UPA) instead of ULA for channel modeling, the optimization algorithm
proposed in this paper can still work well.
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Fig. 1. IRS-assisted WPCN in IoT networks.

will also bring certain challenges to the design of the IRS [27]. Hence, we use an IRS with

a fixed amplitude of 1, i.e., ι = 1 and $ = 1. In addition, due to severe path loss, the signal

reflected twice or more by the IRS can be ignored. We assume that the phase shift of the IRS can

be calculated by the HAP and sent to the IRS controller through the feedback channel. For DL

wireless energy transmission, the channel gain from HAP to IRS, from IRS to the k-th user, and

from HAP to the k-th user can be expressed as Hd,r ∈ CM×N , hHr,k ∈ C1×M , and hHd,k ∈ C1×N ,

respectively. We can use the existing channel estimation algorithm to estimate the DL channel

[28]–[30], and then according to the channel reciprocity, the UL CSI can be obtained. Hence,

for UL wireless information transmission, the channel gain from the IRS to the HAP, from the

k-th user to the IRS, and from the k-th user to the HAP can also be expressed as Hd,r ∈ CM×N ,

hHr,k ∈ C1×M , and hHd,k ∈ C1×N . The channel consists of a direct channel and a cascaded channel,

named HAP-user channel and HAP-IRS-user channel, respectively. We assume that all channels

are quasi-static flat fading, i.e., in each transmission time duration T , Hd,r, hHr,k and hHd,k are

constant.

Although the channel between the HAP and the user may be blocked, the wireless channel

still has a lot of scattering, so the channel between the HAP and the user can be modeled as

Rayleigh fading, denoted as gHd,k ∈ C1×N . We assume that each element of gHd,k is independent

and identically distributed (i.i.d) CSCG random variable with zero mean and unit variance [11],
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[12]. Therefore, the channel gain between HAP and the k-th user is

hHd,k =

√
C0

(
dd,k
D0

)−α
gHd,k, (3)

where C0 is the path loss at the reference distance D0 = 1m, dd,k is the distance between the

HAP and the k-th user, and α is the path loss exponent between the HAP and the k-th user.

In addition, the channel between HAP and IRS and the channel between IRS and users have

line-of-sight (LoS) components, so we model them as Rician channels, which can be given by

H̄d,r =

√
κ

1 + κ
HLoS
d,r +

√
1

1 + κ
HNLoS
d,r , (4)

and

h̄Hr,k =

√
ϑ

1 + ϑ
hLoS
r,k +

√
1

1 + ϑ
hNLoS
r,k , (5)

where κ and ϑ respectively represent the Rice factor of the corresponding channel, HLoS
d,r and

hLoS
r,k respectively represent the LoS component of the corresponding channel. HNLoS

d,r and hNLoS
r,k

respectively represent the non-line-of-sight (NLoS) component of the corresponding channel,

and each of their elements is i.i.d CSCG random variable with zero mean and unit variance

[11], [12].

The LoS component is represented by the array response of ULA. The array response of N

elements ULA can be given by

aN (θ) =
[
1, e−j2π

d
λ

sin θ, ..., e−j2π(N−1) d
λ

sin θ
]
, (6)

where θ represents the angle-of-arrival (AoA) or the angle-of-departure (AoD) of the signal2, λ

denotes the carrier wavelength and d represents the spacing between adjacent antenna elements.

Therefore, the LoS component HLoS
d,r and hLoS

r,k can be given by

HLoS
d,r = aHM (θAoA,1) aN (θAoD,1) , (7)

and

hLoS
r,k = aM (θAoD,2) , (8)

where θAoA,1 is the AoA to the ULA at IRS, and θAoD,1 is the AoD from the ULA at HAP.

2Note that the angle of arrival of all elements is the same, but the antenna response is different.
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Fig. 2. “Harvest-then-transmit” protocol.

θAoD,2 is the AoD from the ULA at IRS. Therefore, The channel gain between HAP and IRS

can be expressed as

Hd,r =

√
C0

(
dd,r
D0

)−β
H̄d,r, (9)

and the channel gain between IRS and the k-th user can be given by

hHr,k =

√
C0

(
dr,k
D0

)−o
h̄Hr,k, (10)

where dd,r and dr,k represent the distance from HAP to IRS and the distance from IRS to the

k-th user, respectively. β and o respectively represent path loss exponent from HAP to IRS and

IRS to the k-th user.

In this paper, we consider that all users do not have traditional energy supply (e.g., power

supply, etc.), so they need to harvest energy from the HAP transmission signal in the DL.

We assume that each user is equipped with an energy storage device to store energy obtained

from radio frequency signals for wireless information transmission. We adopt the “harvest-then-

transmit” protocol. Each transmission time duration T is divided into two parts3, as shown in

Fig. 2. The HAP broadcasts energy signals to all users to provide users with continuous energy in

τT (0 < τ < 1). Then, all users use the energy they harvest in DL to transmit their independent

information to the multi-antenna HAP in UL by space division multiple access (SDMA) in

(1− τ)T . We normalize time to T = 1 without loss of generality in this paper.

More specifically, in DL, the HAP sends L energy beams to all users, and L can be any

integer not exceeding N . The baseband transmission signal can be expressed as

x0 =
L∑
l=1

vls
dl
l , (11)

3We assume that in each transmission time duration T , users are static, i.e., the location of users does not change.
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where sdl
l denotes the energy signal, which is assumed to be i.i.d CSCG random variable with

zero mean and unit variance, i.e., sdl
l ∼ CN (0, 1). vl ∈ CN×1 represents the l-th energy beam,

and the HAP transmission power in DL can be denoted by E
{
‖x0‖2} =

L∑
l=1

‖vl‖2. Let Pmax be

the maximum transmit power of HAP4, we have

L∑
l=1

‖vl‖2 ≤ Pmax. (12)

In the DL, through the HAP-user channel and HAP-IRS-user channel, the energy signal obtained

by the k-th user is given by

yk =
(
hHr,kEHd,r + hHd,k

)
x0 =

(
hHr,kEHd,r + hHd,k

) L∑
l=1

vls
dl
l . (13)

Let e = [e1, ..., eM ]T ∈ CM×1 and Gk = diag
(
hHr,k
)

Hd,r. Then the energy signal obtained by

the k-th user is further given by

yk =
(
eHGk + hHd,k

) L∑
l=1

vls
dl
l , ∀k. (14)

Since the HAP in the DL adopts a broadcast mode, all L energy beams can be received for the

k-th user. Therefore, the received power in the DL for the k-th user can be given

Pk = E
{
|yk|2

}
=

L∑
l=1

∣∣(eHGk + hHd,k
)

vl
∣∣2,∀k. (15)

We adopt the more practical non-linear energy harvesting model in this paper. Accordingly, the

harvested power of the k-th user can be expressed as

Ξ (Pk) =

(
ξk

Xk (1 + exp (−ak (Pk − bk)))
− Yk

)
,∀k, (16)

where ξk is the maximum power that the k-th user can harvest. ak and bk denote parameters

related to specific circuit specifications. Herein, Xk = exp (akbk)/(1 + exp (akbk)) and Yk =

ξk/exp (akbk) [31]. The harvested energy of the k-th user is given by

Ek = τΞ (Pk) ,∀k, (17)

4In this paper, we mainly consider the transmit energy minimization, the power consumption required for channel estimation
and the circuit power consumption of the IRS controller are temporarily ignored. They can be considered when we solve other
optimization problems, e.g., the problem of maximizing energy harvested by users.
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where τ represents the time duration in the DL phase5.

Let Φk = E
{(

eHGk + hHd,k
)H (

eHGk + hHd,k
)}
∈ CN×N be the DL channel covariance

matrix of the k-th user, then Eq. (17) can be expressed as

Ek = τ

 ξk

Xk

(
1 + exp

(
−ak

(
L∑
l=1

vHl Φkvl − bk
))) − Yk

 ,∀k. (18)

In the UL, the k-th user uses the energy harvesting in the DL phase to send independent

information to HAP, and the transmission signal of the k-th user can be expressed as

xk =
√
pks

ul
k ,∀k, (19)

where sul
k represents the information signal transmitted by the k-th user, which is i.i.d CSCG

random variable with zero mean and unit variance, i.e., sul
k ∼ CN (0, 1) ,∀k. pk is transmit power

of the k-th user. Considering energy harvesting constraint of the k-th user in DL, we have

(1− τ) pk ≤ Ek,∀k. (20)

In the UL, through HAP-user channel and HAP-IRS-user channel, the received signal of HAP

can be expressed as

y =
K∑
k=1

(
hHr,kQHd,r + hHd,k

)
xk + n

=
K∑
k=1

(
hHr,kQHd,r + hHd,k

)√
pks

ul
k + n,

(21)

where n ∈ C1×N represents the additive white Gaussian noise (AWGN) introduced by the

receiving antenna of the HAP, assuming n ∼ CN (0, σ2
nIN). Let q = [q1, ..., qM ]T ∈ CM×1, then

the received signal of HAP can be further given by

y =
K∑
k=1

(
qHGk + hHd,k

)√
pks

ul
k + n. (22)

In this paper, we assume that a linear receiver is deployed at the HAP to decode the information

signal in the UL. Specifically, let wk ∈ CN×1 be the beamforming vector for decoding the

5In order to facilitate analysis, this paper does not consider the user’s own circuit power consumption, and only focuses on
the power consumption of UL wireless information transmission.
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information signal sul
k transmitted by the k-th user. The signal-to-interference-plus-noise ratio

(SINR) of the k-th user decoded at HAP in UL can be expressed as

γk =
pk
∣∣(qHGk + hHd,k

)
wk

∣∣2∑
i 6=k

pi
∣∣(qHGi + hHd,i

)
wk

∣∣2 + σ2
n‖wk‖2

,∀k. (23)

Let Ψk = E
{(

qHGk + hHd,k
)H (

qHGk + hHd,k
)}
∈ CN×N be the UL channel covariance matrix

of the k-th user6, then Eq. (23) can be expressed as

γk =
pkw

H
k Ψkwk∑

i 6=k
piwH

k Ψiwk + σ2
nw

H
k wk

,∀k. (24)

In this paper, we consider the setup where perfect CSI of DL and UL cannot be obtained.

Specifically, for DL transmission, it is assumed that the channel covariance matrix is Φk +

∆EDL
k , where Φk ∈ CN×N is the estimated channel covariance matrix in the DL, and ∆EDL

k ∈

CN×N denotes covariance uncertainty matrix of the corresponding HAP-user channel and HAP-

IRS-user channel in the DL, which describes the difference between the true value and the

estimated value of two channels [25], [32]. Similarly, for UL transmission, it is assumed that

the channel covariance matrix is Ψk + ∆EUL
k , where Ψk ∈ CN×N is the estimated channel

covariance matrix in the UL and ∆EUL
k ∈ CN×N represents covariance uncertainty matrix of

the corresponding HAP-user channel and HAP-IRS-user channel in the UL. We assume that

the statistical information of ∆EDL
k and ∆EUL

k cannot be obtained, but certain threshold can be

obtained, i.e., ∥∥∆EDL
k

∥∥ ≤ εDL
k ,∀k, (25)

and ∥∥∆EUL
k

∥∥ ≤ εUL
k ,∀k, (26)

where ‖·‖ represents the matrix norm. It is worth noting that Φk, Ψk, ∆EDL
k and ∆EUL

k are all

6Φk and Ψk represent the DL and UL channel covariance matrices, respectively. The definition of the channel covariance
matrix is to take the expectation of the product of the channel gain and its conjugate transpose. However, in calculation process,
due to the assumption that the channel is constant in each transmission time duration T , we can ignore the operation of the
expectation operator.
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Hermitian matrices, Eq. (18) and Eq. (24) can be respectively expressed as

Ek = τ

 ξk

Xk

(
1 + exp

(
−ak

(
L∑
l=1

vHl (Φk + ∆EDL
k ) vl − bk

))) − Yk
 , ∀k, (27)

and

γk =
pkw

H
k

(
Ψk + ∆EUL

k

)
wk∑

i 6=k
piwH

k (Ψi + ∆EUL
i ) wk + σ2

nw
H
k wk

,∀k. (28)

B. Problem formulation

In this paper, we define Vdl = [v1, ...,vL], Wul = [w1, ...,wK ] and P = [p1, ..., pK ]. We

jointly optimize the time allocation τ , the HAP transmit energy beamforming Vdl in the DL, IRS

energy reflection coefficient e, the HAP receiving beamforming Wul in the UL, IRS information

reflection coefficient q, and user transmit power allocation P in the UL to minimize the transmit

energy of the HAP. The optimization problem can be expressed as follows,

(P1) min
τ,Vdl,Wul,P,e,q

τ
L∑
l=1

‖vl‖2, (29a)

s.t. 0 ≤ τ ≤ 1, (29b)

L∑
l=1

‖vl‖2 ≤ Pmax, (29c)

(1− τ) pk ≤ Ek,∀
∥∥∆EDL

k

∥∥ ≤ εDL
k ,∀k, (29d)

γk ≥ γth,∀
∥∥∆EUL

k

∥∥ ≤ εUL
k ,∀k, (29e)

|em|2 = 1,∀m, (29f)

|qm|2 = 1,∀m. (29g)

where (29b) is the time allocation constraint, and (29c) is the maximum transmit power constraint

at the HAP in the DL phase, and (29d) means when any covariance uncertainty matrix satisfies∥∥∆EDL
k

∥∥ ≤ εDL
k , the energy constraint of the k-th user in the DL holds, and (29e) means when

any covariance uncertainty matrix satisfies the
∥∥∆EUL

k

∥∥ ≤ εUL
k , the user’s SINR constraint should

be satisfied in the UL, and (29f) and (29g) are the unit modulus 1 constraint of the reflection

coefficient of the IRS in the DL and UL, respectively.
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III. ROBUST BEAMFORMING DESIGN AND TIME ALLOCATION ALGORITHM FOR

IRS-ASSISTED WPCN

A. Problem Transformation

Apparently, the optimization problem (P1) is non-convex and cannot be solved directly. First,

transform constraints (29d) and (29e) according to Lemma 1.

Lemma 1: For any Hermitian matrix A and B, if B satisfies ‖B‖ ≤ ε, then

max
‖B‖≤ε

tr (AB) = ε‖A‖∗ (30)

holds, where ‖A‖∗ denotes the dual norm of matrix A.

Proof: According to the definition of the dual norm, for a complex matrix X whose norm is

less than 1, the maximum value of the inner product of the complex matrix Z and X is the dual

norm of Z, i.e.,

‖Z‖∗ = sup
{

tr
(
ZHX

)
|‖X‖ ≤ 1

}
. (31)

From the definition of the dual norm, it can be obtained that for complex matrix X and Z, the

following inequalities hold

tr
(
ZHX

)
≤ ‖X‖ ‖Z‖∗. (32)

Since both matrices A and B are Hermitian matrices, there are

tr (AB) ≤ ‖B‖ ‖A‖∗ ≤ ε‖A‖∗. (33)

Thus

max
‖B‖≤ε

tr (AB) = ε‖A‖∗ (34)

holds. The proof of Lemma 1 is completed. �

If we use the spectral norm of B, i.e., the maximum singular value of B satisfies σmax (B) ≤ ε.

Since the dual norm of the spectral norm is the nuclear norm, which is equal to the sum of

singular values, then the dual norm of A can be expressed as ‖A‖∗ =
∑
σ (A).

Further, according to vHl ∆EDL
k vl = tr

(
vHl ∆EDL

k vl
)

= tr
(
∆EDL

k vlv
H
l

)
= tr

(
∆EDL

k Vl

)
,

where Vl = vlv
H
l � 0 and rank (Vl) = 1. We use the spectral norm of ∆EUL

k for
∥∥∆EDL

k

∥∥ ≤



15

εDL
k . According to the Lemma 1, we have

max
‖∆EDL

k ‖≤εk
tr
(
∆EDL

k Vl

)
= εDL

k ‖Vl‖∗ = εDL
k tr (Vl) . (35)

In the worst case, Eq. (27) can be denoted by

Ek = τ

 ξk

Xk

(
1 + exp

(
−ak

(
L∑
l=1

tr ((Φk − εDL
k IN) Vl)− bk

))) − Yk
 ,∀k. (36)

Similarly, we have wH
k ∆EUL

k wk = tr
(
wH
k ∆EUL

k wk

)
= tr

(
∆EUL

k wkw
H
k

)
= tr

(
∆EUL

k Wk

)
,

where Wk = wkw
H
k � 0 and rank (Wk) = 1. Thus,

max
‖∆EUL

k ‖≤εk
tr
(
∆EUL

k Wk

)
= εUL

k ‖Wk‖∗ = εUL
k tr (Wk) . (37)

In the worst case, Eq. (28) can also be expressed as

γk =
pktr

((
Ψk − εUL

k IN
)

Wk

)∑
i 6=k

pitr ((Ψi + εUL
i IN) Wk) + σ2

ntr (Wk)
,∀k. (38)

Let {Vl} and {Wk} denote the set of Vl and Wk, respectively. Therefore, the problem (P1)

can be transformed into the problem (P2) as follows

(P2) min
τ,{Vl},{Wk},P,e,q

τ
L∑
l=1

tr (Vl), (39a)

s.t. 0 ≤ τ ≤ 1, (39b)

L∑
l=1

tr (Vl) ≤ Pmax, (39c)

(1− τ) pk ≤ Ek,∀k, (39d)

γk ≥ γth,∀k, (39e)

|em|2 = 1,∀m, (39f)

|qm|2 = 1, ∀m, (39g)

Vl � 0,∀l, rank (Vl) = 1,∀l, (39h)

Wk � 0, ∀k, rank (Wk) = 1, ∀k. (39i)
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B. Problem Solution

In this sub-section, we apply AO technique to divide the problem (P2) into three sub-problems

to obtain its solution. Firstly, given the time allocation and IRS reflection coefficient, a robust

beamforming design of HAP and user transmit power allocation algorithm is proposed. Next,

when time allocation and HAP beamforming design are fixed, a robust beamforming design of

IRS is given. Finally, based on the HAP beamforming design and the IRS beamforming design

already obtained, the time allocation can be easily obtained.

1) Robust beamforming design of HAP and user transmit power allocation: First of all, let

S =
L∑
l=1

Vl. For the sub-problem 1, given time allocation τ and the IRS beamforming design e,

q, the problem (P2) can be transformed into the problem (P3) as follows

(P3) min
S,{Wk},P

τtr (S) , (40a)

s.t. tr (S) ≤ Pmax, (40b)

(1− τ) pk ≤ τ

(
ξk

Xk (1 + exp (−ak (tr ((Φk − εDL
k IN) S)− bk)))

− Yk
)
, ∀k, (40c)

γk ≥ γth, ∀k, (40d)

Wk � 0,∀k, (40e)

rank (Wk) = 1,∀k, (40f)

S � 0. (40g)

The optimization problem (P3) is still non-convex. Below we divide it into three parts to solve.

Fixed {Wk} and P, the problem (P3) is transformed into the problem into (P3.1), which can

be given by

(P3.1) min
S

τtr (S) , (41a)

s.t. (40b), (40g), (41b)

Ξ−1

(
1− τ
τ

pk

)
≤ tr

((
Φk − εDL

k IN
)

S
)
,∀k, (41c)

where Ξ−1 (x) represents the inverse function of Ξ (x), Ξ−1 (x) = bk− ln(ξk/((x+Yk)Xk)−1)
ak

. It can

be seen that the problem is a semi-definite programming (SDP) problem and can be solved by

applying the CVX toolbox [33]. Let S∗ represent the optimal solution of the problem (P3.1),
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then the optimal L = rank (S∗) is the number of energy beams in DL. In addition, {v∗1, ...,v∗L}

can be obtained by eigenvalue decomposition of S∗.

Lemma 2: Assuming that the separable SDP problem (P) and its dual problem (D) are

both solvable, the problem (P) always has an optimal solution X∗a that satisfies the following

conditions
A∑
a=1

(rank (X∗a))
2 ≤ B, (42)

where A represents the number of optimization variables, and B represents the number of

constraints [34].

Further, given S and P, the problem (P3) can be converted to a feasibility-check problem

(P3.2) as follows

(P3.2) find Wk, (43a)

s.t. (40d), (40e), (40f). (43b)

We first apply SDR to relax the non-convex rank-one constraint (40f). Hence, the problem (P3.2)

can be converted to the problem (P3.2.1), which can be represented as

(P3.2.1) find Wk, (44a)

s.t. (40d), (40e). (44b)

We can see that the problem (P3.2.1) is an SDP problem, which can be solved by applying the

CVX toolbox [33]. According to Lemma 2, the problem (P3.2.1) and its dual problem can be

solved, the number of optimization variables and the number of constraints are both K, so the

problem (P3.2.1) must have a rank-one solution. Herein, the optimal w∗k can be obtained by

eigenvalue decomposition of W∗
k.

Finally, when S and {Wk} are fixed, the problem (P3) is also converted to a feasibility-check

problem (P3.3) as follows

(P3.3) find pk, (45a)

s.t. (40c), (40d). (45b)

This problem is an LP problem, which can be solved by applying the CVX toolbox [33].

Therefore, the robust beamforming design of HAP and user transmit power allocation algorithm
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can be shown as Algorithm 1.

Algorithm 1 The Robust Beamforming Design of HAP and User Transmit Power Allocation
Algorithm

1: Input: τ 0, e0, q0, convergence threshold ε and iteration index t = 0.
2: repeat
3: For the t-th ineration, given Wk and pk, solve the problem (P3.1) to obtain S∗, and
{v∗1, ...,v∗L} can be obtained by eigenvalue decomposition of S∗.

4: For the t-th ineration, given S and pk, solve the feasibility-check problem (P3.2.1), w∗k
can be obtained by eigenvalue decomposition of W∗

k.
5: For the t-th ineration, given S and Wk, solve the feasibility-check problem (P3.3) to

obtain p∗k.
6: Update t = t+ 1.
7: until the optimization objective function value meets the convergence threshold ε.
8: Output: HAP energy beamforming vector v∗l , receiving beamforming vector w∗k and user

transmit power p∗k.

2) Robust beamforming design of IRS: For the sub-problem 2, when the time allocation τ

and HAP beamforming design {Vl}, {Wk}, P are given, the problem (P2) can be converted to

the feasibility-check problem (P4), which can be represented as

(P4) find e,q, (46a)

s.t. Ξ−1

(
1− τ
τ

pk

)
≤

L∑
l=1

tr
((

Φk − εDL
k IN

)
Vl

)
, ∀k, (46b)

pk
(
tr (ΨkWk)−εUL

k tr (INWk)
)
−γth

∑
i 6=k

pi
(
tr (ΨiWk)−εUL

i tr (INWk)
)
≥γthσ2

ntr (Wk) ,∀k

(46c)

|em|2 = 1,∀m, (46d)

|qm|2 = 1,∀m. (46e)

Due to the constraint (46d) and (46e) of the IRS phase, the problem (P4) is obviously non-convex.

Therefore, we divide it into two parts to solve. Fixed q, the problem (P4) can be converted to
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the problem (P4.1) as follows

(P4.1) find e, (47a)

s.t.
L∑
l=1

tr (ΦkVl) ≥ Ξ−1

(
1− τ
τ

pk

)
+ εDL

k

L∑
l=1

tr (INVl),∀k, (47b)

|em|2 = 1,∀m. (47c)

The left side of constraint (46b)
L∑
l=1

tr (ΦkVl) =
L∑
l=1

∣∣(eHGk + hHd,k
)

vl
∣∣2 =

L∑
l=1

∣∣eHakl + bkl
∣∣2,

where akl = Gkvl ∈ CM×1 and bkl = hHd,kvl ∈ C. Introduce auxiliary matrices as follows

Rkl =

 akla
H
kl aklb

H
kl

aHklbkl 0

 , ē =

 e

1

 . (48)

Thus
L∑
l=1

∣∣eHakl + bkl
∣∣2 =

L∑
l=1

(
ēHRklē + |bkl|2

)
=

L∑
l=1

(
tr
(
RklĒ

)
+ |bkl|2

)
,

(49)

where Ē = ēēH � 0 and rank
(
Ē
)

= 1. Then the problem (P4.1) can be rewritten as the problem

(P4.1.1), which can be given by

(P4.1.1) find Ē, (50a)

s.t.
L∑
l=1

tr
(
RklĒ

)
≥ Ξ−1

(
1− τ
τ

pk

)
+ εDL

k

L∑
l=1

tr (INVl)−
L∑
l=1

|bkl|2,∀k, (50b)

Ē � 0, (50c)

rank
(
Ē
)

= 1, (50d)

Ēm,m = 1,m = 1, ...,M + 1. (50e)

As for the problem (P4.1.1), we usually use SDR to relax the non-convex rank-one constraint

(49d), and the problem is converted to an SDP problem, which can be solved by using the CVX

toolbox [33]. Let Ē∗ denote the optimal solution of the SDP problem. If the obtained Ē∗ is rank-

one, then ē∗ can be obtained by eigenvalue decomposition of Ē∗. Conversely, since the number of

optimization variables for this problem is one, and the number of constraints is M+K, it may not
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be guaranteed to obtain a rank-one solution according to the Lemma 2. Gaussian randomization

is usually used to obtain a sub-optimal solution to the original problem. However, due to the

large number of reflection elements in the IRS, i.e., the scale of the optimization problem is

larger, it is difficult to use Gaussian randomization to return a rank-one solution. In this paper,

we apply the DC programming to convert the non-convex rank-one constraint and obtain the

solution of the problem (P4.1.1) [35].

Proposition 1: For the positive semi-definite matrix M ∈ CN×N , tr (M) > 0, the rank-one

constraint can be equivalent to the difference between two convex functions, which can be given

by

rank (M) = 1⇔ tr (M)− ‖M‖2 = 0, (51)

where tr (M) =
N∑
n=1

σn (M), ‖M‖2 = σ1 (M) is spectral norm, and σn (M) represents the n-th

largest singular value of matrix M.

According to Proposition 1, the problem (P4.1.1) can be rewritten as the problem (P4.1.2)

as follows

(P4.1.2) min tr
(
Ē
)
−
∥∥Ē∥∥

2
, (52a)

s.t. (50b), (50c), (50e). (52b)

The problem (P4.1.2) is still a non-convex problem because −
∥∥Ē∥∥

2
is concave. The core of the

DC programming is to convert the problem to a convex optimization problem by linearizing the

concave term. Specifically, we need to solve the following problem in the t-th iteration,

(P4.1.3) min tr
(
Ē
)
−
〈
∂
∥∥Ēt−1

∥∥
2
, Ē
〉
, (53a)

s.t. (49b), (49c), (49e), (53b)

where Ēt−1 is the solution obtained at the t− 1 iteration, and ∂
∥∥Ēt−1

∥∥
2

denotes the subgradient

of the spectral norm at the t−1 iteration, which can be calculated by Proposition 2. The problem

(P4.1.3) is a convex optimization problem, which can be solved by applying the CVX toolbox

[33]. By solving problem (P4.1.3) iteratively until the optimal value is zero, we can obtain a rank-

one solution. In numerical simulation, we usually set the stopping criterion tr
(
Ē
)
−
∥∥Ē∥∥

2
≤

ε, where ε is a sufficiently small constant. The convergence of the DC programming can be

guaranteed.
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Proposition 2: For the positive semi-definite matrix M, the subgradient ∂‖M‖2 of the matrix

spectral norm can be obtained by m1m
H
1 , where m1 ∈ C1×N is the eigenvector corresponding

to the largest singular value of the matrix M [36].

Similarly, if e is fixed, the problem (P4) can also be converted to the problem (P4.2) as follows

(P4.2) find q, (54a)

s.t.

pktr (ΨkWk)− γth
∑
i 6=k

pitr (ΨiWk) ≥ γthσ
2
ntr (Wk) + pkε

UL
k tr (INWk)

−γth
∑
i 6=k

piε
UL
i tr (INWk),∀k,

(54b)

|qm|2 = 1,∀m. (54c)

The left side of constraint (53b) tr (ΨiWk) =
∣∣(qHGi + hHd,i

)
wk

∣∣2 =
∣∣qHcik + dik

∣∣2, where

cik = Giwk ∈ CM×1 and dik = hHd,iwk ∈ C. Introduce auxiliary matrices as follows

Tik =

 cikc
H
ik cikd

H
ik

cHikdik 0

 , q̄ =

 q

1

 . (55)

Thus ∣∣qHcik + dik
∣∣2 = q̄HTikq̄ + |dik|2 = tr

(
TikQ̄

)
+|dik|2, (56)

where Q̄ = q̄q̄H and rank
(
Q̄
)

= 1. Then the problem (P4.2) can be converted to the problem

(P4.2.1), which can be given by

(P4.2.1) find Q̄, (57a)

s.t.

pktr
(
TkkQ̄

)
−γth

∑
i 6=k

pitr
(
TikQ̄

)
≥γthσ2

ntr (Wk)

+ pkε
UL
k tr (INWk)− γth

∑
i 6=k

piε
UL
i tr (INWk)

+

(
γth
∑
i 6=k

pi − pk

)
|dik|2,∀k,

(57b)

Q̄ � 0, (57c)

rank
(
Q̄
)

= 1, (57d)

Q̄m,m = 1,m = 1, ...,M + 1. (57e)
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Similar to the problem (P4.1.1), this problem can be rewritten as the problem (P4.2.2) as follows

(P4.2.2) min tr
(
Q̄
)
−
〈
∂
∥∥Q̄t−1

∥∥
2
, Q̄
〉
, (58a)

s.t. (57b), (57c), (57e). (58b)

Until the stopping criterion tr
(
Q̄
)
−
∥∥Q̄∥∥

2
≤ ε is satisfied, a solution of the problem (P4.2.2)

is obtained. Therefore, the robust beamforming design algorithm of IRS can be shown as

Algorithm 2.

Algorithm 2 The Robust Beamforming Design Algorithm of IRS by Applying DC Programming
1: Input: τ 0, Vl

0, Wk
0, P0, convergence threshold ε and iteration index t = 0.

2: repeat
3: For the t-th ineration, given τ t, Vl

t, Wk
t and Pt, solve the problem (P4.1.3) (or the

problem (4.2.2)) to obtain Ē∗ (or Q̄∗).
4: Update t = t+ 1.
5: until the stopping criterion is satisfied.
6: e∗ and q∗ can be obtained by eigenvalue decomposition of Ē∗ and Q̄∗, respectively.
7: Output: IRS energy beamforming vector e∗, information beamforming vector q∗.

3) Time allocation: For the third sub-problem 3, we fix the HAP beamforming design {Vl},

{Wk}, P and IRS beamforming design e, q. The problem (P2) can be converted to the problem

(P5) as follows

(P5) min
τ

τ
L∑
l=1

tr (Vl) (59a)

s.t. 0 ≤ τ ≤ 1, (59b)

Ξ−1

(
1− τ
τ

pk

)
≤

L∑
l=1

tr
((

Φk − εDL
k IN

)
Vl

)
,∀k. (59c)

We can see that the problem (P5) is a standard LP problem and can be solved by the CVX

toolbox [33].

Finally, the three sub-problems are alternately optimized to obtain the solution of problem

(P2).
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C. The Overall Robust Optimization Algorithm in IRS-assisted WPCN

Based on the previous sub-problems, we propose the overall robust beamforming design and

time allocation algorithm, which is summarized as Algorithm 3. In the sub-problem 1, the

HAP beamforming design and user power control are determined by applying Algorithm 1. In

the sub-problem 2, the IRS beaforming design is obtained through Algorithm 2. Further, time

allocation in the sub-problem 3 is obtained by solving a standard LP. Finally, three sub-problems

are alternately solved to achieve convergence.

Algorithm 3 The Overall Robust Beamforming Design and Time Allocation Algorithm
1: Randomly initialize τ 0, Vdl, Wul, P0, e0 and q0. Initialize convergence threshold ε and

iteration index t = 0.
2: repeat
3: Obtain HAP energy beamforming vector v∗l , receiving beamforming vector w∗k and user

transmit power p∗k according to the Algorithm 1.
4: Obtain IRS energy beamforming vector e∗, information beamforming vector q∗ according

to the Algorithm 2.
5: Obtain time allocation τ ∗ by solving an LP problem (P5).
6: Update t = t+ 1.
7: until The fractional decrease of the objective value is below a threshold ε.
8: return The beamforming design and time allcation scheme.

D. Computational Complexity and Convergence Analysis

1) Computational complexity analysis: The complexity of Algorithm 1 mainly depends on

iteratively solving the SDP problem (P3.1), (P3.2.1) and the LP problem (P3.3). In each iteration,

by using the interior point method [37], the computational complexity of solving problem (P3.1)

is O (N3.5), the computational complexity of solving problem (P3.2.1) is O (KN3.5), and the

computational complexity of solving problem (P3.3) is O (K). Therefore, the computational

complexity of Algorithm 1 is at most O (KN3.5). Similarly, the computational complexity of

Algorithm 2 is mainly determined by SDP problems (P4.1.3) and (P4.2.2). In each iteration,

the complexity of solving problems (P4.1.3) and (P4.2.2) by the interior point method can be

denoted by O ((M + 1)3.5) [37]. While the subgradient can be computed by singular value

decomposition (SVD) with complexity O ((M + 1)3). Therefore, the computational complexity

of Algorithm 2 is at most O ((M + 1)3.5). Finally, the computational complexity of the third

sub-problem is constant. In summary, let t be the number of iterations required for the proposed

algorithm to achieve convergence, the computational complexity of Algorithm 3 can be denoted

by O (t (KN3.5 + (M + 1)3.5)).
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2) Convergence analysis: The convergence of the proposed Algorithm 3 in IRS-assisted

WPCN can be proved as follows.

We define τ t,
(
Vdl
)t, (Wul

)t, Pt, et and qt as the t-th iteration solution of the problem (P3),

(P4) and (P5). Herein, the objective function is denoted by E
(
τ t,
(
Vdl
)t
,
(
Wul

)t
,Pt, et,qt

)
. In

the step 3 of Algorithm 3, since the HAP beamforming design and user power allocation can

be obtained for given τ t, et and qt. Hence, we have

E
(
τ t,
(
Vdl
)t
,
(
Wul

)t
,Pt, et,qt

)
≥ E

(
τ t,
(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et,qt

)
. (60)

In the step 4 of Algorithm 3, the IRS beaforming design scheme can be obtained when τ t,(
Vdl
)t, (Wul

)t and Pt are given. Herein, we also have

E
(
τ t,
(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et,qt

)
= E

(
τ t,
(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et+1,qt+1

)
. (61)

Finally, in the step 5 of Algorithm 3, time allocation can be obtained when
(
Vdl
)t, (Wul

)t,
Pt, et and qt are fixed. Therefore, we have

E
(
τ t,
(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et+1,qt+1

)
≥ E

(
τ t+1,

(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et+1,qt+1

)
.

(62)

Based on the above, we can obtain

E
(
τ t,
(
Vdl
)t
,
(
Wul

)t
,Pt, et,qt

)
≥ E

(
τ t+1,

(
Vdl
)t+1

,
(
Wul

)t+1
,Pt+1, et+1,qt+1

)
. (63)

It shows that the value of the objective function after each iteration of Algorithm 3 is non-

increasing. At the same time, the objective function value of the problem (P2) has a lower

bound, so the convergence of Algorithm 3 can be guaranteed.

IV. NUMERICAL RESULTS

In this section, we demonstrate on the effectiveness of the proposed robust beamforming

design and time allocation algorithm in IRS-assisted WPCN through numerical simulations. We

consider a three-dimensional coordinate system in this paper, where the location of HAP is (0m,

0m, 15m), the location of IRS is (50m, 50m, 15m), and in the circle whose origin is (50m, 45m,

0m) and radius is 5m, K = 4 users are randomly distributed. Moreover, HAP is equipped with

N = 6 antennas, and IRS is equipped with M = 20 reflection elements. We set the antenna

spacing to be half of the carrier wavelength. Meanwhile, we make the parameters of all users
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consistent. i.e., ξk = 24mW, ak = 150 and bk = 0.024. In addition, we set Pmax = 43dBm,

σ2 = −70dBm and γth = 10dB in our numerical simulations. The path loss exponents are set as

α = 3, β = 2.2 and o = 2.5. The path loss with a reference distance of 1m is set to C0 = −30dB.

We set Rician factor κ to 3dB, and we set the convergence threshold of the proposed algorithm

to 10−3.

First, we verify the convergence of the proposed robust beamforming design and time alloca-

tion algorithm in IRS-assisted WPCN. Fig. 3 shows the transmit energy of HAP varies with the

number of iterations under different IRS reflection elements. We can see that the transmit energy

gradually decreases as the number of iterations increases. The proposed algorithm can quickly

achieve convergence and has good convergence performance. In addition, we compare the impact

of different IRS reflection element numbers on system performance. Specifically, we respectively

compare the performance of the proposed algorithm when the number of IRS reflection elements

are 20, 40, and 60. It can be found that the larger the number of IRS reflection elements, the

lower the HAP transmit energy. This also illustrates the importance of IRS for WPCN, which

can reduce the transmit energy of the HAP by increasing the number of reflection elements.
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Fig. 3. The convergence of the proposed robust
beamforming design and time allocation algorithm.
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Fig. 4. The HAP transmit energy versus the number
of HAP antennas.

In this paper, we demonstrate the performance of the proposed robust beamforming design

and time allocation algorithm in IRS-assisted WPCN by comparing with other benchmarks. (1)

benchmark 1 (i.e., without-IRS): In this case, the IRS is no longer deployed, so there is no

need to consider the combined channel, that is, the solution of the second sub-problem is not

considered. (2) benchmark 2 (i.e., IRS-random-phase): In this case, we deploy IRS, but do not
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optimize its phase, and adopt a random phase. (3) benchmark 3 (i.e., IRS-phase-SDR): In this

case, we deploy IRS and optimize its phase, but applying the SDR approach. (4) benchmark 4

(i.e., perfect-CSI): In this case, we consider beamforming design and time allocation with perfect

CSI in IRS-assisted WPCN.

Next, we investigate the behavior of the HAP transmit energy with the number of HAP

antennas. We can see that from Fig. 4 that the HAP transmit energy under different benchmarks

decreases as the number of the HAP antennas increases. This is because that the more antennas

of the HAP, the stronger the spatial diversity gain, and the lower the required transmit energy.

This also stimulate our motivation to introduce large-scale antenna systems. In addition, it can

be seen that in the case of the same number of the HAP antennas, the performance of our

proposed algorithm is superior to benchmark 1 and benchmark 2, which reflects the superiority

of IRS-assisted WPCN and the necessity of optimizing its phase. Meanwhile, its performance is

better than that of benchmark 3. The main reason is that after relaxing the rank-one constraint,

the solution of the problem obtained by Gaussian randomization may not satisfy the rank-one

constraint, i.e., the relaxation is not tight. And the performance of the algorithm will decrease as

the problem size increases. The DC algorithm can solve the problem without dropping the non-

convex rank-one constraint. Therefore, the performance of the DC algorithm is better than that of

the Gaussian randomization algorithm. Compared with benchmark 4, although the performance

of our proposed algorithm is slightly inferior, the perfect CSI of the practical system is almost

impossible. Therefore, the robustness of our proposed algorithm is better, and it is closer to the

deployment of the practical system.

Fig. 5 shows the variation of the HAP transmit energy with the number of IRS reflection

elements. Under different benchmarks, HAP transmit energy continues to decrease as the number

of IRS reflection elements increases. This is owing to as the number of IRS elements increases,

the number of combined channels and the channel gain increase, so that the HAP transmit

energy decreases. Meanwhile, this also shows the advantages of IRS. With the assistance of

IRS, the performance of WPCN in IoT networks can be improved. In addition, we also found

that when the number of IRS reflection elements is the same, the performance of our proposed

algorithm still outperforms benchmarks 2 and 3, and slightly inferior to 4. The main reason is

that benchmark 2 does not optimize the phase of the IRS. As the number of reflection elements

increases, the performance of SDR becomes weaker. Therefore, the performance of our proposed

algorithm outperforms that of benchmark 3. This also reflects the advantages of the DC algorithm
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we used in solving the second sub-problem. Although the performance of our proposed algorithm

is slightly inferior to benchmark 4, it is robust and more conducive to practical deployment.

Fig. 6 illustrates the variation of the HAP transmit energy with the number of users. From

the Fig. 6, we can find that the transmit energy of the HAP increases as the number of users

increases under different benchmarks. This is mainly because as the number of users in the HAP

coverage area increases, it needs to provide more energy to meet the user’s quality-of-service

(QoS) requirements and energy harvesting requirements. In addition, when the number of users

is the same, the performance of our proposed algorithm still outperforms benchmark 1, 2 and

3, and slightly inferior to benchmark 4 under ideal conditions. The reasons are similar to those

above-mentioned .
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Fig. 5. The HAP transmit energy versus the number of
reflection elements.
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Fig. 6. The HAP transmit energy versus the number of users.

Fig. 7 shows the variation of the HAP transmit energy with the user’s SINR target under

different benchmarks. When the user’s SINR target increases, the transmit energy of the HAP

increases. In order to meet the user’s higher rate requirements or higher QoS requirements, the

HAP needs to allocate more energy to users so that they have greater transmit energy in the

UL, so the transmit energy of the HAP needs to be continuously increased. In addition, when

the user’s SINR target is the same, the performance comparison of several benchmarks and the

proposed beamforming design and time allocation algorithm in IRS-assisted WPCN still meets

the relationship explained above.

In order to illustrate the robust beamforming design we proposed, Fig. 8 depicts the HAP

transmit energy of the proposed algorithm versus the spectral norm of different channel error
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matrices. Herein, we set ∆EDL
k = ∆EUL

k . The abscissa of Fig. 8 is logarithm. Under different

benchmarks, as the spectral norm of the error matrix increases, the transmit energy of the HAP

continues to increase. This is because that in the problem (P2), we consider the worst-case, i.e.,

to meet the worst-case user’s QoS requirements and energy harvesting requirements. Therefore,

the greater the channel error, the greater the transmit energy required by the HAP to meet

the the worst-performing user. Since it is impossible to obtain perfect CSI at the HAP in an

practical system, the beamforming design considering a certain channel error is robust and is

more conducive to deployment in the practical system. In addition, through the above numerical

simulations, we can also find that the performance gap between our proposed algorithm and

perfect CSI under different conditions is not very large but it is better than other benchmarks,

achieving a good trade-off between practical and theoretical.
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Finally, we investigate the impact of IRS location on system performance. Herein, we let

the positions of HAP and IRS be (0m, 0m, 0m) and (xirs, 0m, 0m), respectively. Users are

randomly distributed in a circle with a center of (60m, 0m, 0m) and a radius of 10m, so the

distance between the center of user distribution and the HAP is dhtu = 60m. In addition, we

set the path loss coefficient α = β = 2.5. The position of the IRS changes from 10m to 50m

with a step size of 10m. As shown in Fig. 9, for benchmark 1, it has no IRS assistance, so the

HAP transmit energy does not change with the position of the IRS. For benchmark 2, 3, 4 and

our proposed algorithm, the transmit energy of HAP first increases and then decreases with the

increase of xirs. When xirs is about 30m, the transmit energy of HAP is the largest. In order
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Fig. 9. The HAP transmit energy versus the position of IRS.

to simplify the analysis, we only consider the large-scale channel gain related to the distance,

which can be expressed as

$ (d) =
10−3

(dhtu)
2.5 +

10−6

(dhtrdrtu)
2.5 , (64)

where dhtr denotes the distance from the HAP to the IRS, drtu represents the distance from the

IRS to the user’s distribution center, and dhtu = dhtr + drtu. Therefore, when dhtr = drtu = dhtu
2

,

the channel gain is the smallest, so the required HAP transmit energy is the largest.

V. CONCLUSIONS

This paper investigates the HAP transmit energy minimization problem for the IRS-assisted

WPCN. Specifically, time allocation, HAP energy beamforming, receiving beamforming, user

transmit power allocation, IRS energy reflection coefficient and information reflection coeffi-

cient are jointly optimized by applying AO framework with DC programming. The problem is

first transformed and then divided into three sub-problems. In the first sub-problem, the HAP

energy beamforming, receiving beamforming and user transmit power allocation are optimized

by solving SDP problems and a LP problem. Next, in the second sub-problem, IRS energy

reflection coefficient and information reflection coefficient are obtained by applying variable

substitution and DC programming. DC programming is introduced to deal with non-convex

rank-one constraints, which has better performance than SDR. In the third sub-problem, the

time allocation scheme is obtained by solving an LP problem. Finally, the three sub-problems

are solved alternately to achieve convergence. In addition, the computational complexity and
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convergence of the proposed robust beamforming design and time allocation algorithm are

analyzed. Numerical simulation results show that the performance of our proposed algorithm

is better than other benchmarks, and the auxiliary role of IRS is extremely important, which can

greatly decrease the HAP transmit energy with low cost in practice.
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