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Lc for somej’s, j 2 f1; 2; � � � ; Mg. Delete these columns from
~SL +1(F) to form ~S 0

L +1 (F) of size[N(Le+1)]� [M(Le+1)+
M

j=1
Lcj ]. Similarly delete corresponding rows fromGhd, which

are zeros anyway, since they are given byaj(k) for Lcj +Le+1 �

k � Lc + Le (cf. (3-16)). It, therefore, follows from (3-14) and the
discussion leading up to it that~S 0

L +1 (F) is of full column rank iff
F(z) is column-reduced (in addition to satisfying AS5)), leading to
the conclusion that

fJcd = 0) Ghd = 0g , ~S
0

L +1 (F) is full column rank

, F(z) is column reduced and irreducible: (3-21)

In summary, it has been shown that for FIR systems, under AS5),
a finite length equalizer of the type (3-15) exists to yield (1-5) with
d = 1 and k0 = 0. If, in addition, F(z) is column reduced and
AS1) and AS3) are satisfied, all the stationary points ofJ w.r.t.
the equalizer coefficients are described by the stationary points ofG

w.r.t. the composite impulse responsehj(k); the latter possess no
undesirable local minima. However, ifF(z) is not column reduced,
then under AS1), AS3), and AS5), all the stationary points ofJ w.r.t.
the equalizer coefficients are described by the stationary points ofG

w.r.t. hj(k) whenever the equalizer is doubly infinite.

IV. I TERATIVE SOURCE EXTRACTION AND IDENTIFIABILITY

The preceding discussion suggests an iterative solution (as in [3])
where we iterate on inputs one by one; this solution is summarized
in Table I. Note that the solution is guaranteed to work only in
the absence of noise, although simulation results given in [14] are
quite good, even in considerable amount of noise. It follows from
the preceding developments that, givenF(z), the proposed iterative
approach yields aG(z), where the two are related via

G(z) = F(z)DAP (4-1)

whereD is anM � M “time-shift” diagonal matrix (recallk0 in
(2-5)),A is anM �M diagonal scaling matrix (recalld in (2-5)),
andP is anM�M permutation matrix (recallj0 in (2-5), where we
don’t “know” which input it refers to). Thus, we have the following
basic identifiability results.

Theorem 1: Given the model (1-1) such thatn(k) � 0 and con-
ditions AS1)–AS4) hold true. Suppose that doubly infinite equalizers
are used in the iterative procedure of Table I, and the record length
tends to infinity. Then, this procedure yields a transfer functionG(z)

satisfying (4-1).
Theorem 2: Given the FIR model (1-1) such thatn(k) � 0 and

conditions AS1) and AS3) hold true. Suppose that the iterative source
separation procedure of Table I is used, and the record length tends to
infinity. Then, this procedure yields a transfer functionG(z) satisfying
(4-1) if one of the following holds:

1) AS5) holds true and doubly-infinite equalizers are used.
2) AS5) holds true,F(z) is column reduced, and FIR equalizers

with Le � (2M � 1)Lc � 1 (cf., (3-15)) are used.
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Robust Beamforming for Interference
Rejection in Mobile Communications

Jaume Riba, Jason Goldberg, and Gregori Vàzquez

Abstract—The problem of robust beamformer design for mobile com-
munications applications in the presence of moving co-channel sources is
addressed. A generalization of the optimum beamformer based on a statis-
tical model accounting for source movement is proposed. The new method
is easily implemented and is shown to offer dramatic improvements over
conventional optimum beamforming for moving sources under a variety
of operating conditions.

I. INTRODUCTION

The increasing demand for mobile communications services over
the past several years has motivated the need for more efficient use of
the RF spectrum. Traditional approaches to sharing spectral resources
include channel multiplexing techniques that exploit diversity in time,
frequency, and/or code. Nevertheless, expected user demand is such
that the use ofspatialdiversity to further improve spectral efficiency
has recently received considerable attention [1]–[3] (and references
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therein). Specifically, the use of antenna arrays in combination with
signal processing algorithms at the basestation offer the possibility of
exploiting the spatial dimension to separate multiple, cochannel users.
This recent approach has been shown to provide increased channel
capacity and wider area coverage. Array beamforming methods
in such systems make use of the spatial dimension to combat
interference, noise, and multipath fading of the desired signal.

In most cases, the beamformer is designed using data taken over
some short time interval. The weights are then held constant over
some generally longer interval before being updated in response to
changes in the scenario. This may be due to the lack of a contin-
ually available beamformer reference and/or limited computational
resources. Such is the case, for example, in the uplink (mobile to
basestation) of temporal reference beamforming (TRB) systems [1].
The training sequence used in the design of the beamformer is only
available over a small fraction of the entire data frame length. The
resulting beamformer weights are frozen and used for the remainder
of the frame despite changes in the scenario. Moreover, in both TRB
and spatially referenced beamforming (SRB) systems, the use of
frozen weights may be desired to avoid the additional complexity
of continuous updating. Another example is found in time division
duplex (TDD) systems when the uplink beamformer is used during the
subsequent downlink (basestation to mobile) in an effort to improve
reception at the mobile [2].

The minimum rate at which the beamforming weights are updated
depends on the speed with which the scenario changes. The perfor-
mance of some beamformers can be seriously degraded when this
updating rate is not sufficiently high. Consider, for example, the use
of the optimum, maximum output signal-to-noise-and-interference-
ratio (SINR) beamformer when the additive sensor noise power is
low compared with the desired signal-of-interest (SOI) power that., in
turn, is lower than the power of the interfering signals-not-of-interest
(SNOI’s). The optimum beamformer will often place sharp, deep
nulls at the SNOI directions of arrival (DOA’s) in order to maximize
output SINR. However, output SINR can be severely degraded if
source movement is significant relative to the beamformer updating
rate.

This paper considers the problem of robust beamformer design in
the presence of sources that move over the interval during which its
weights are held constant. A new method is proposed that is based on
a generalization of the optimum beamformer employing a statistical
model accounting for source movement. The resulting array response
pattern possesses a broad mainlobe and broad nulls over the SOI
and SNOI DOA’s, respectively, and is therefore less sensitive to
source motion. Like [4], such response patterns are obtainedwithout
estimation of SNOI DOA’s. However, rather than explicitly imposing
derivative constraints at the SNOI DOA nulls as in [4], the new design
procedure adaptively allocates beamformer degrees of freedom.

II. PROBLEM FORMULATION

Consider a single, narrowband, desired signal-of-interest (SOI) in
the far-field of an array ofM passive sensors in the presence ofN�1

cochannel SNOI’s and additive, white noise. TheM -dimensional
snapshot vector at snapshot time indexk is modeled as a sum of
desired, interfering, and noise components

y(k) = d(k) + i(k) + n(k);

d(k) = a(�0(k)) s0(k); i(k) =

N�1

m=1

a(�m(k)) sm(k):
(1)

�0(k) and �m(k); m 2 f1; . . . ; N � 1g denote the DOA’s (with
respect to the array’s broadside) at timek of the single SOI and the
N�1 SNOI’s, respectively, whereasa(�) denotes theM�1 steering

vector as a function of DOA.s0(k) andsm(k); m 2 f1; . . . ; N�1g
represent the SOI and theN�1 SNOI’s at timek. Last,n(k) denotes
theM � 1 additive, white noise vector at timek.

Assuming that all the sources are mutually uncorrelated, the
correlation matrix of the array snapshot is given by

Ry = E[yy
H
] = Rd +Ri+n; (2)

Rd = 
0a(�0)a
H
(�0) (3)

Ri+n =

N�1

m=1


ma(�m)a
H
(�m) + �

2
I

where(�)H denotes conjugate transpose, and explicit dependence on
the time indexk has been and will be suppressed where possible.
0
and
m; m 2 f1; . . . ; N � 1g denote the powers of the SOI and the
N � 1 SNOI’s, respectively.�2 denotes the sensor noise power.

Next, considerz = w
H
y to be the output of a beamformerw.

The SINR atz is defined as

SINR[w] =
w
H
Rdw

wHRi+nw
=

0 w

H
a(�0)

2

wHRi+nw
: (4)

The optimum beamformer that maximizes SINR (and is proportional
to the well-known minimum variance distortionless response beam-
former) can be interpreted (to within a scale factor) as the solution
to the following constrained minimization problem:

wo = argmin
w

w
H
Ri+nw subject to w

H
Rdw = 
0: (5)

It is not difficult to show from (2) that the above problem is equivalent
to

wo = argmin
w

w
H
Ryw subject to w

H
Rdw = 
0: (6)

In practice, this formulation is preferred sinceRy, unlike Ri+n,
can be easily and consistently (in the statistical sense) estimated
directly from the snapshot data. Generally, optimization problems
of the form in (5) or (6) are solved via generalized eigenanalysis as
in [3]. However, since rank(Rd) = 1, the quadratic constraint can
be replaced by the linear constraintwH

a(�0) = 1. The optimum
beamformer can then be expressed simply as

wo =
R
�1
y a(�0)

aH(�0)R
�1
y a(�0)

: (7)

For high signal-to-noise ratio (SNR), relatively low signal-to-
interference ratio (SIR), andN � 1 < M , the output SINR will be
very high. The array response pattern magnitude, which is defined by
jG(�)j = jwH

a(�)j, is such that the SNOI components will probably
be almost perfectly nulled1 jG(�m)j � 0;m 2 f1; . . . ; N � 1g.

In general, for a beamformer designed to function in a given
scenario, subsequent movement of the SOI will result in a pointing
error. This can lead to mainlobe signal attenuation effects that
decrease output SINR. Moreover, SNOI movement can also very
seriously degrade output SINR, especially in those low-noise sce-
narios where deep nulls are placed at the initial SNOI locations.
The problem addressed in this correspondence ishow to broaden the
mainlobe and the nulls without knowledge of the SNOI DOA’s.The
resulting beamformer, while offering suboptimum SINR performance,
possesses greater robustness in the presence of source motion.

1Note, however, that this is less likely to be true for moderate or low SNR
when one or more SNOI’s are close in angle (relative to the array resolution)
to the SOI. This is because a null so close to the SOI can produce high
sidelobe levels elsewhere in the response that amplify the additive noise term.
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Fig. 1. Block diagram of design procedure.

III. SOURCE MOTION AND ITS EFFECT ON SINR

The loss in performance due to source motion is now quantified. In
practice, since such motion is assumed unknown and is not estimated,
a model is proposed that simply expresses our lack of precise source
DOA knowledge as a function of time. For this purpose, source
motion is taken into account by modeling the source DOA’s at time
k > 0 as normal random variables centered on thek = 0 DOA’s
and of time-varying variance

�m(k);� N (�m(0); �
2

m
(k)); �

2

m
(0) = 0 (8)

where�2
m
(k), which is the variance of themth source DOA at time

k, is modeled as a monotonically increasing function ofk. Again, it is
stressed that such a model is not appropriate for describing particular,
realistic DOA trajectories. It is, however, a suitable and useful means
of expressing our uncertainty as to source DOA, which is induced
by source motion fork > 0.

A covariance matrix averaged over angle can now be defined as

�Ry(k) = E�;k[Ry] = �Rd(k) + �Ri+n(k) (9)

�Rd(k) = 
0 p #0 j �0(0); �
2

0(k) a(#0)a
H
(#0)d#0 (10)

�Ri+n(k) =

N�1

m=1


m p #m j �m(0); �
2

m(k) a(vm)

� aH(#m)d#m + �
2
I (11)

wherep(�j�; �) is the probability density function of a real Gaussian
random variable of specified mean and variance parameters. The
above expressions are identical in form to those describing a spa-
tial channel model used to characterize local scattering in mobile
communications applications [3]. For theM -element linear uniform
array (ULA) with interelement spacingd (relative to the wavelength
�), (9) may be written as [3]

�Ry(k)

=

N�1

m=0


m a(�m(0))a
H
(�m(0)) �Q �m(0); �

2

m(k) + �
2
I

(12)

a(�m(0)) = 1; e
j2�d sin � (0)

; . . . ; e
j2�d(M�1) sin � (0) T

Q �m(0); �
2

m(k)
pq

= e
�2[�d(p�q)] � (k) cos � (0) (13)

where�; (�)T , and [�]pq, respectively, denote the Schur–Hadamard
element-by-element matrix product, the vector transpose operation,
and thepqth element of a matrix.

A corresponding “average” SINR for this scenario at timek at the
output of a beamformer designed at timek0 (i.e., which uses data up
to time k0) can be defined as

SINR[k;w(k
0

)] �
w
H
(k0) �Rd(k)w(k0)

wH(k0) �Ri+n(k)w(k0)
; 0 � k

0 � k (14)

Fig. 2. Array response patterns for conventional optimum beamformer (dot-
ted line) and robust beamformer (solid line). Vertical lines indicate source
DOA’s.

which is simply the ratio of average signal power to average in-
terference and noise power. Note that,SINR[k;wo(k

0

)] is expected
to decrease ask � k0 increases (i.e., as more time elapses between
when the beamformer is designed and when it is used). The next
section proposes a new robust beamformerwr(�), which, if designed
at time k0 = 0 with the intention of being used over the interval
k 2 f0; . . . ; Kg, offers the following compromise with respect to
the optimum beamformer:

SINR[K;wo] � SINR[k;wr] < SINR[0;wo] = SINR[wo] (15)

where all beamformers are designed atk0 = 0. That is, as the
sources move with time, the robust beamformer will perform better
than the optimum beamformer but at the cost of suboptimum initial
performance.

IV. ROBUST BEAMFORMER

The robust beamformer presented in this section will be based
on the source motion model as reflected in the average covariance
matrix of (12). The effect of the associated “DOA spreading matrix”
as defined in (13) is to smear or spread the point sources over
intervals centered on the initial (k = 0) DOA’s. A beamformer that
is designed to be robust in the presence of source motion should take
this smearing effect into account in order to create a broad mainlobe
for the desired user and broad nulls for the interfering users. To this
end, we can define the optimum robust constrained minimum variance
(i.e., maximumSINR) beamformer as the solution of the following
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Fig. 3. Average output SINR versus time for conventional optimum beam-
former (dotted line) and robust beamformer (solid line).

Fig. 4. Average Output SINR atk = K = 500 versus input SNR
for conventional optimum beamformer (dotted line) and robust beamformer
(solid line). The vertical line corresponds to the input SNR for the scenario
considered in Figs. 1 and 2.

constrained minimization problem:

wr(k) = argmin
w

w
H �Ry(k)w subject to w

H �Rd(k)w = 
0:

(16)
In contrast to (6), the quadratic constraint in (16) cannot be expressed
as a linear constraint because, in general, rank( �Rd(k)) > 1 for k > 0.
In such a case, (16) is solved via a straightforward application of
generalized eigenanalysis

wr(k) = emax


0

eHmax
�Rd(k)emax

(17)

whereemax is the generalized eigenvector associated with the max-
imum generalized eigenvalue of the matrix pairf �Rd(k); �Ry(k)g.
This beamformer should have the effect of broadening the mainlobe
as well as the potentially sharp nulls that would have been placed
over the SNOI’s by the ordinary optimum beamformer.

The spreading matrix (13) is a function of source DOA atk = 0

and the angular perturbation variance for each source. To avoid

Fig. 5. Average Output SINR atk = K = 500 versus SOI-SNOI-1 angular
separation for conventional optimum beamformer (dotted line) and robust
beamformer (solid line).The vertical line corresponds to the angular separation
for the scenario considered in Figs. 1 and 2.

estimation of the DOA’s of the SNOI’s and the angular perturba-
tion variances of all the sources, consider a pessimistic, worst-case
spreading matrix

[ ~Q(K)]pq = e
�2[�d(p�q)] � (K) (18)

where �2max(K) is an upper bound on the angular perturbation
variance.2 Then, from (9) and (12), the average covariance matrices
required to design the beamformer can be computed as follows:

�Rd(K) = Rd(0)� ~Q(K); �Ry(K) = Ry(0)� ~Q(K): (19)

The overall design procedure is described in Fig. 1. The snapshot data
y(k) is collected overk 2 f�L+1; . . . ; 0g, which is some interval
during which all the source angles do not change significantly.
This data is applied to a DOA estimation/tracking algorithm (e.g.,
[6]) to yield an estimate of the initial SOI DOA,̂�0(0), which,
in turn, is used to formR̂d(0) = a(�̂0(0))a

H
(�̂0(0)), which is a

parametric estimate of the SOI correlation matrix.3 The snapshot
data is also used to form the full sample correlation matrix as
R̂y(0) = 1

L

0

k=�L+1
y(k)yH(k). Next, after choosing a worst-

case angular spreading variance�2max(K), the corresponding DOA
spreading matrix~Q(K) is computed via (18). This matrix, along with
R̂d(0) andR̂y(0), are then used to calculate estimates of the average
desired and full correlation matriceŝ�Rd(K) and �̂Ry(K) via (19).
Last, the robust beamforming weight vectorwr(K) is computed via
(17) as a scaled version of the generalized eigenvector associated
with the maximum eigenvalue of the matrix pairf �̂Rd(K); �̂Ry(K)g.

An important feature of the proposed criterion (16) is that the re-
sulting beamformer makes “intelligent” use of its degrees of freedom
to minimize noise and interference. The effects of additive noise,
source motion, and potentially large differences in source powers
(i.e., the so-called “near-far effect”) are all taken into account. For
example, relatively more degrees of freedom will be automatically

2This approximation will have the effect of somewhat overestimating the
angular perturbation for sources near endfire and/or sources moving “slowly”
relative to the speed implied by�2max(K). However, in networks employing
cell sectorization(e.g., 120� per sector in GSM [5]), the former source of
inaccuracy will be less pronounced.

3In fact, aunit powerversion of this matrix is formed. The constraint in
(16) is such that explicit knowledge SOI power is not required.
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Fig. 6. Average output SINR for robust beamformer atk = 0 versus SOI
pointing error. (a)�max = 0 (optimum beamformer). (b)�max = 0:07

�.
(c) �max = 7

�.

allocated for the suppression of a particular interferer as its power
increases.

V. RESULTS

Computer simulations results now illustrate the performance of
the new technique. ConsiderN = 4 sources (one SOI and three
SNOI’s) impinging on a uniform linear array ofM = 8 sensors with
half-wavelength interelement spacing. The initial DOA’s of the SOI
and the three SNOI’s at timek = 0 are, respectively,�0(0) = 0�,
�1(0) = 25�, �2(0) = 40�, and�3(0) = �35�. The source powers
are 
0 = 1, 
1 = 
2 = 
3 = 20. The sensor noise power is
�2 = 0:05. The resulting SNR’s are 13 dB for the SOI and 26 dB
for each of the three SNOI’s. The corresponding SINR is�17 dB.
The performance of the proposed beamformer is considered over a
period ofK = 500 output samples during which the sources undergo
random DOA perturbations in angle with timeK standard deviations:
�0(K) = 5:1�, �1(K) = 5:6�, �2(K) = 6:7�, and�3(K) = 6:3�.
The new technique is applied to this scenario assuming�max(K) of
(18) is set to7�.4

Fig. 2 shows the broad mainlobe and broad nulls placed by
the robust beamformer at the angles of the desired user and the
interferences, respectively. This is to be compared with the narrower
mainlobe and sharper nulls created by the conventional optimum
beamformer. Fig. 3 compares the average output SINR as a function
of time from which the beamformer is designed for the optimum
and the robust beamformer. In this example, we have assumed that
the angular variances increase linearly with time (i.e.,�2

m
(k) =

�2
m
(K)k=K; k 2 f0; 1; . . . ; Kg). It is seen that although the

optimum beamformer designed at timek = 0 yields very high initial
performance, this steadily degrades with time as the SNOI’s move
further away from the nulls present in the array response pattern. On
the other hand, the robust beamformer performance remains roughly
constant with time; it is initially somewhat inferior to that of the
optimum beamformer designed atk = 0 but quickly offers greatly
improved performance as a function of time due to the wider nulls
present in its array response pattern. Fig. 4 shows the effect of the

4It is noted that a movement of7� during K = 500 snapshots starting
from broadside and assuming a sampling rate of 10 kHz implies that a source
2.5 km from the array would move with a mean speed of approximately 22
km/hr.

sensor noise power on output SINR at timek = K. As expected,
the robust beamformer performance gain diminishes as input SNR
decreases. Fig. 5 shows the timek = K performance as the initial
(k = 0) DOA as the first SNOI approaches that of the SOI. As a
broad null is created at the SNOI angle, the SOI is also attenuated if
the SNOI and SOI angles are close. This implies that the robust
beamformer performance gain worsens as the angular separation
decreases. Last, Fig. 6 shows the sensitivity of the robust beamformer
to initial SOI DOA pointing errors. Performance is calculated at time
k = 0 (when the only source of error would be that due to pointing
errors). It is seen that the robust beamformer, even with low assumed
spreading, is far less sensitive to initial pointing errors.

VI. CONCLUSION

A new method for the design of beamformers that are robust in the
presence of source motion was presented. The technique is useful in
mobile communications applications where the beamforming weights
are frozen for some length of time (despite changes in the scenario)
before being updated. The new beamformer is easily implemented and
was seen to offer a dramatic improvement in performance with respect
to the optimum beamformer in the presence of source movement for
several scenarios.
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