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Abstract—In this paper, we investigate methods for reducing
the likelihood that a message transmitted between two multi-
antenna nodes is intercepted by an undetected eavesdropper. In
particular, we focus on the judicious transmission of artificial
interference to mask the desired signal at the time it is broadcast.
Unlike previous work that assumes some prior knowledge of
the eavesdropper’s channel and focuses on maximizing secrecy
capacity, we consider the case where no information regarding
the eavesdropper is available, and we use signal-to-interference-
plus-noise-ratio (SINR) as our performance metric. Specifically,
we focus on the problem of maximizing the amount of power
available to broadcast a jamming signal intended to hide the
desired signal from a potential eavesdropper, while maintaining
a prespecified SINR at the desired receiver. The jamming signal
is designed to be orthogonal to the information signal when it
reaches the desired receiver, assuming both the receiver and the
eavesdropper employ optimal beamformers and possess exact
channel state information (CSI). In practice, the assumption
of perfect CSI at the transmitter is often difficult to justify.
Therefore, we also study the resulting performance degradation
due to the presence of imperfect CSI, and we present robust
beamforming schemes that recover a large fraction of the
performance in the perfect CSI case. Numerical simulations
verify our analytical performance predictions, and illustrate the
benefit of the robust beamforming schemes.

I. INTRODUCTION

Due to their broadcast nature, wireless communications are

inherently insecure. A passive eavesdropper within range of a

wireless transmission obtains information about the transmit-

ted signal without risk of detection. While encryption can be

used to ensure confidentiality, its computational cost may be

prohibitive and there are difficulties and vulnerabilities asso-

ciated with key distribution and management [1]. Even when

encryption is available, it is often still desirable to augment the

security of the link and decrease the likelihood that its signals

are detected or intercepted. As a result, there has recently been

considerable interest in the use of physical layer mechanisms

to increase the security of wireless communications systems.

Early work on the eavesdropper scenario, often referred

to as the wiretap channel, focused on determining what

conditions were necessary for secure communications in the

presence of an eavesdropper [2]–[4]. In particular, this work
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led to the development of the notion of secrecy capacity, which

quantifies the rate at which a transmitter can reliably send a

secret message to the receiver, without the eavesdropper being

able to decode it. Ultimately, for a wiretap channel without

feedback, it was shown that a non-zero secrecy capacity can

only be obtained if the eavesdropper’s channel is of lower

quality than that of the intended recipient. The work cited

above assumed single antenna nodes; secrecy capacity for the

multiple-antenna (MIMO) wiretap channel, where all nodes

may possess multiple antennas, has been studied in [5]-[10].

A key consideration in the MIMO wiretap problem is what

information is available about the eavesdropper. In principle, to

compute the secrecy rate, one must know the eavesdropper’s

channel state information (CSI), or at least its distribution.

Such information is unlikely to be available in many scenarios,

especially those involving purely passive eavesdroppers. As a

result, in this paper we take a different approach in which

the transmitter minimizes the transmit power required to

guarantee a certain Quality of Service (QoS) at the desired

receiver, and uses the remaining resources to transmit an

artificial interference signal that jams any eavesdroppers that

are present [11], [12]. The use of artificial interference has

been considered by a number of others even for the case where

the eavesdropper’s CSI is known, although such an approach

is known to be suboptimal. For example, assuming that the

transmitter has more antennas than the intended recipient so

that the corresponding channel has a non-trivial nullspace,

one of the approaches taken in [13] is to broadcast artificial

interference in this nullspace. Such interference will have

no impact on the receiver, but will in general degrade the

eavesdropper’s channel since its nullspace (if any) will be

different. The high-SNR performance of this type of technique

was shown to be nearly optimal in [6], and the optimal power

distribution between data and interference has been examined

in [14]. While [13] studied the case where only the distribution

of the eavesdropper’s channel was known, [6] focused on the

situation where the transmitter has access to the eavesdropper’s

instantaneous CSI, and developed an algorithm to optimally

exploit such information for the case where the intended

recipient has a single antenna.

Another key consideration is the accuracy of the available

CSI. The impact of imperfect CSI on the secrecy rate of

the single-antenna wiretap channel has been investigated in

[15], [16]. As we illustrate, techniques based on knowledge

of the eavesdropper’s channel in the multiple antenna case

are very sensitive to even slight perturbations in the CSI.

If unaccounted for, imprecise CSI for the primary channel

also causes interference leakage to the desired recipient when
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artificial noise is used to jam the eavesdropper, resulting

in significant degradation in the desired user’s performance.

Consequently, we are interested in developing robust schemes

that are insensitive to CSI errors. As such, we assume the

transmitter uses beamforming rather than spatial multiplexing

to communicate with the desired receiver. Beamforming is

known to provide higher capacity than spatial multiplexing

in many situations where the CSI at the transmitter is in the

form of a mean and covariance (similar to the case considered

here), even when the receiver has perfect CSI [17]. When

the receiver CSI is also subject to errors, recent work has

shown that beamforming is optimal even for small channel

perturbations [18].

Since we focus on transmission of a single data stream using

beamforming, and we let the received signal-to-interference-

plus-noise-ratio (SINR) of the data stream at the desired

receiver serve as our QoS metric. We design robust algorithms

that minimize the transmit power required for the desired

receiver to achieve the target QoS in the presence of CSI

errors. This in turn maximizes the power available to transmit a

jamming signal that distrupts the ability of the eavesdroppers

to recover the desired signal. The robust algorithms rely on

knowledge of the statistics of the CSI errors, and use a

second-order perturbation analysis of the primary channel’s

singular value decomposition to account for the effects of

the perturbation on the desired data stream. As a result, the

algorithms provide the following benefits: (1) they minimize

the effect of the jamming interference at the desired receiver

when CSI errors are present, which means that (2) they require

less transmit power to achieve the desired QoS, which in

turn (3) maximizes the power available for degrading the

channel of the eavesdroppers. Our simulations demonstrate

that the resulting secrecy capacity is significantly improved

compared with what would be obtained by a naive scheme that

did not take CSI errors into account. We note that a similar

approach can be taken to study the impact of imperfect CSI

on schemes that make use of relays or neighboring users to

jam eavesdroppers [19]-[23].

The paper is organized as follows. In the next section, the as-

sumed mathematical model is presented, and the capabilities of

the transmitter, receiver and eavesdropper are detailed. We also

discuss the use of artificial interference, and examine the use

of secrecy capacity and SINR as performance metrics. Fixed-

QoS beamforming algorithms are described in Section III

for the perfect CSI case, and the effects of imperfect CSI

are analytically evaluated in Section IV. Robust beamforming

methods that compensate for the degradation in SINR are

then developed in Section V. The resulting SINR performance

for a range of antenna configurations and CSI perturbations

is studied via simulation in Section VI, and conclusions are

drawn in Section VII.

II. SYSTEM MODEL WITH PERFECT CSI

We assume a scenario with two cooperating nodes, Alice

and Bob, and a passive eavesdropper, Eve. Each of the

nodes may possess multiple antennas, the number of which

we denote by Na, Nb and Ne, respectively. By the term

“cooperating,” we mean that Alice and Bob share information

with each other about channel state information, desired link

quality and coding/decoding strategies. Eve is non-cooperative

in the sense that Alice and Bob are unaware of Eve’s operating

parameters, including her channel state information, number of

antennas, etc. Alice is attempting to communicate a message

to Bob in the presence of Eve, who is able to overhear

Alice’s transmissions. Eve need not be a single receiver with

colocated antennas; our definition of “Eve” in this context

could be multiple receivers in scattered locations who are

able to coherently coordinate their received data. The signals

received by Bob and Eve can be represented as follows:

yb = Hbaxa + nb (1)

ye = Heaxa + ne, (2)

where xa is the signal vector transmitted by Alice, nb,ne are

the naturally occurring noise and interference received by Bob

and Eve, respectively, and Hba,Hea are the corresponding

Nb × Na and Ne × Na channel matrices. The channels

Hba,Hea are assumed to be deterministic quantities unrelated

to each other, and no assumptions are made about their

dimensions or structure.

The background noise is assumed to be spatially white, with

possibly different power levels:

E{nbn
H
b } = σ2

b I

E{nen
H
e } = σ2

eI,

where E{·} denotes expectation, (·)H the Hermitian transpose,

and I is an identity matrix of appropriate dimension. The

transmit power available for Alice is bounded by P :

E{xax
H
a } = Qa

Tr(Qa) ≤ P ,

where Tr(·) denotes the trace operator. Without loss of gener-

ality, we normalize Hba so that its elements have unit-average

gain (excess energy available from Hba is assumed to be

included in P ):

∥Hba∥2F
NbNa

= 1

∥Hea∥2F
NeNa

= γ2
ea .

A. Artificial Interference

Techniques that employ artificial interference devote a frac-

tion of Alice’s power to the transmission of a noise-like

waveform, in an attempt to degrade the ability of Eve to

intercept the signal destined for Bob. Since we are focusing

on a beamforming scenario, Alice’s signal is split into two

components: one being a scalar data stream denoted as z
that contains the message for Bob, and one that contains the

jamming signal, which we denote by the Na × 1 vector z′.

Bob therefore receives

yb = Hbatz +Hbaz
′ + nb, (3)
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where t is the Na × 1 transmit beamformer used for the

information signal. Similarly, Eve sees

ye = Heatz +Heaz
′ + ne. (4)

Assume tHt = 1 and let E{|z|2} = ρP , where 0 < ρ ≤ 1
is the fraction of the power devoted to the information signal,

so that

E{z′z′H} = Q′
z

Tr(Q′
z) = (1− ρ)P .

The QoS experienced by Bob and the probability of Eve

intercepting the message intended for Bob will be determined

by Alice’s choice of the following parameters: the covariance

matrix Q′
z , the transmit beamformer t, and the power alloca-

tion parameter ρ. The impact of these parameters on secrecy

capacity and SINR are discussed in Sec. II-B.

It is important to note that the design of a complete

transmission strategy for secrecy must also involve the con-

struction of a “secrecy codebook” that is comprised of sub-

codebooks for both the secret message and a randomization

message intended to confuse the eavesdropper [24]. This is

true even for situations where little or no information about

the eavesdropper is present; in such cases, one can design

the codebook using a set of worst-case assumptions about

the eavesdropper. In a sense, the beamforming techniques

discussed here represent a version of this idea in the spatial

domain, where the secret and random messages are assigned

to different spatial precoders (beamformers) with different

transmit powers. An optimal design would presumably involve

the joint construction of encoding schemes in both space and

time, but such an effort is beyond the scope of this paper.

B. Performance Metrics

Early work on the wiretap channel [2]–[4] led to the concept

of secrecy capacity, which is defined to be the maximum rate

at which Alice and Bob can communicate without allowing the

eavesdropper to obtain any information about the transmitted

message. In [7], it was shown that for the case where the

background noise for Bob and Eve is of equal power (and

no artificial interference is generated, z′ = 0), the secrecy

capacity for the MIMO wiretap channel is given by

Csec = max
Qa≥0

I(Xa;Yb)− I(Xa;Ye) (5)

= max
Qa≥0

log |I+HbaQaH
H
ba| − log |I+HeaQaH

H
ea| ,

where I(·; ·) represents mutual information, and where Yb,Ye

and Xa are the random variable counterparts to the specific

realizations yb,ye and xa, respectively. The secrecy-capacity-

achieving choice for Qa was derived in [7] for the case where

the transmitter has knowledge of both Hba and Hea, which

were assumed to be fixed.

The use of secrecy capacity as the performance metric with

artificial interference was studied in [13], where knowledge of

only the distribution of Hea was assumed and the expected

value of (6) was maximized to obtain the ergodic secrecy

capacity. The approach of [13] allowed for the transmission

of multiple data streams to Bob, but restricted attention to the

case where Na > Nb, and forced Alice to choose a transmit

covariance matrix according to the standard water-filling solu-

tion without regard to the possibility of an eavesdropper. The

expected value of (6) was then maximized over ρ, where the

expectation was taken over the distribution of eavesdropper

channels, and it was assumed that σ2
e = 0. Note that,

although this approach obviates the need for knowledge of

Eve’s instantaneous channel, optimization over ρ still requires

knowledge of the number of antennas Eve possesses and the

strength of Eve’s channel relative to Bob’s (inherent in the

assumption that the channel distribution is available).

Without any information about Hea, the above maximiza-

tion problem is ill-posed, although (6) can still be used to

quantify the secrecy rate of a given transmission scheme.

In our work, we restrict attention to situations where Alice

transmits only a single data stream to Bob since (1) we will

focus on cases where the CSI is imperfectly known, and (2)

we can develop methods that make beamforming robust to

CSI errors. As a result, we choose to work directly with SINR

rather than capacity. We will calculate the SINR assuming that

both Bob and Eve use linear receive beamforming, recognizing

the fact that both could use more sophisticated nonlinear

techniques for decoding Alice’s signal. The SINR achieved by

linear beamforming will nonetheless provide an indication of

the relative ability of Bob and Eve to determine the transmitted

signal regardless of which decoding approach is used.

Let wb,we respectively denote the Nb × 1, Ne × 1 beam-

formers employed by Bob and Eve to determine z, so that

ẑb = wH
b yb = wH

b (Hbatz +Hbaz
′ + nb) (6)

ẑe = wH
e ye = wH

e (Heatz +Heaz
′ + ne) . (7)

The resulting SINR available for Bob and Eve to decode z
will be given by

SINRb =
ρP |wH

b Hbat|2
wH

b

(

HbaQ′
zH

H
ba + σ2

b I
)

wb

(8)

SINRe =
ρP |wH

e Heat|2
wH

e (HeaQ′
zH

H
ea + σ2

eI)we
. (9)

Intuitively, as long as SINRb > SINRe, there will exist mod-

ulation and coding schemes that allow Bob but not Eve to

reliably decode z.

III. FIXED-SINR BEAMFORMING WITH PERFECT

CSI

In many applications, it is impractical to assume that any

information about the eavesdropper’s CSI is available. To

increase communications security in such cases, we propose

an approach that attempts to achieve the following two per-

formance objectives: (1) maintain a certain guaranteed level

of link quality (e.g., SINR) for the intended receiver, and

(2) maximize the power available for a jamming signal that

makes the unintended reception of the signal more difficult.

Obviously, the performance of such a scheme cannot be

guaranteed; a fortuitous eavesdropper in the right location

could end up with a better quality signal. Here the goal is to

reduce the likelihood of such an event. Note that this approach

does not imply that a low-power transmission from Alice to
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Bob will be more secure; reducing the power of the desired

signal may allow one to better degrade Eve’s channel, but it

also reduces the requirements for Eve to decode the signal as

well. To illustrate the proposed artificial interference concept,

we assume here that the CSI is perfectly known by all parties,

Alice, Bob and Eve. The case where Bob and Alice have

imperfect or perturbed CSI is examined in Section IV.

A. Unknown Eavesdropper CSI

The proposed approach can be generally outlined as follows,

using SINR as the QoS metric:

1) Specify a target SINR for Bob.

2) Allocate the smallest possible fraction ρ of the available

transmit power to achieve the desired SINR (if possible)

assuming Bob experiences no interference other than the

background noise of power σ2
b .

3) Allocate all of Alice’s remaining power to a jamming

signal that is uniformly distributed in space, subject to

the constraint that when the interference is received by

Bob, it lies in a subspace orthogonal to the desired

signal.

Obviously, a given Hba may not support the desired SINR with

a total transmit power P ; in such cases, the link is assumed

to be in outage.

Let S denote the target SINR for Bob. To minimize the

fraction of the transmit power required to achieve S, Alice

should choose t to be the right singular vector of Hba with

largest singular value, and Bob should choose wb = Hbat as

his receive beamformer. Using this approach, we have

ρ =
σ2
bS

tHHH
baHbatP

=
σ2
bS

σ2
1P

, (10)

where σ1 is the largest singular value of Hba. As long as

ρ < 1, Alice has power available for generating artificial

interference.

Since the CSI of the eavesdropper is unknown, the best

option available to Alice is to uniformly spread the remaining

transmit power along spatial dimensions that will produce no

interference for Bob. In particular, we require that

Hbat ⊥ Hbaz
′ (11)

for all z′. With t chosen as above, it is easy to see that z′ must

be chosen as a linear combination of the Na−1 right singular

vectors of Hba with smallest singular values, which we denote

by T′. Uniformly distributing the remaining transmit power

over these vectors yields the following transmit covariance for

the artificial interference:

Q′
z =

(1− ρ)P

Na − 1
T′T′H . (12)

As a consequence, the optimal (in the maximum SINR

sense) receive beamformer for Bob is simply the maximal

ratio combiner, wb = Hbat, since Bob experiences only white

noise. For Eve, the beamformer that maximizes SINR is given

by

we =
(

HeaQ
′
zH

H
ea + σ2

eI
)−1

Heat, (13)

where Q′
z is given by (12). The use of an optimal beamformer

here presumes that Eve is aware of Heat, as well as the spatial

covariance matrix of the transmitted interference. With this

choice for we, the SINR experienced by Eve can be expressed

as

SINRe = ρP tHHH
ea

(

HeaQ
′
zH

H
ea + σ2

eI
)−1

Heat . (14)

Since ρ is proportional to σ2
b , two observations are immediate

for the case of low background noise (σ2
b , σ

2
e → 0):

1) If HeaQ
′
zH

H
ea is full rank, which will generically be

true if Alice has more antennas than Eve, then

lim
σ2

b
→0

SINRe = 0 ,

regardless of σ2
e .

2) If HeaQ
′
zH

H
ea is rank deficient, for example if Eve has

more antennas than Alice, then

lim
σ2
e
→0

(

HeaQ
′
zH

H
ea + σ2

eI
)−1

=
1

σ2
e

RRH ,

where R is an orthonormal basis for the subspace

orthogonal to HeaQ
′
1/2
z . In this case, if σ2

b → 0 but

σb/σe ≃ O(1), then in general SINRe remains non-zero.

B. Known Eavesdropper CSI

While our focus is on the case where Eve’s CSI is unknown,

it is useful to compare the performance of the artificial noise

scheme with the optimal transmission strategy that takes

knowledge of Eve’s CSI into account. If perfect CSI of the

eavesdropper’s channel is available, then it is known that

the use of artificial interference is suboptimal. The optimal

approach to the problem posed in this paper is for Alice to

transmit with full power using the beamformer that minimizes

the eavesdropper’s SINR given that the intended receiver’s

SINR is S:
min
t

SINRe

s.t. SINRb = S.
(15)

It is straightforward to show that the solution to (15) is

the generalized eigenvector t corresponding to the largest

generalized eigenvalue λmax in the equation

HH
baHbat = λmaxH

H
eaHeat , (16)

where t is scaled to ensure that SINRb = S, provided that the

transmit power P is large enough. Clearly, if Ne < Na, then t

will lie in the nullspace of Hea and SINRe = 0. In such cases,

it is preferable from a numerical point of view to calculate t

as the generalized eigenvector with the smallest generalized

eigenvalue in this equation:

HH
eaHeat = λminH

H
baHbat . (17)

IV. IMPACT OF IMPERFECT CSI

The assumption of perfect CSI at the transmitter is ob-

viously impossible to achieve in practice. CSI uncertainty

at Alice can be due to a number of different phenomena,

including estimation error, quantized feedback, or channel

mobility. CSI at the receiver is typically much more accurate,
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due to the receiver’s ability to employ rapid channel tracking

techniques based on, for example, decision direction. In this

section, we examine the effect of inaccurate or mismatched

CSI between Alice and Bob using a second-order perturbation

analysis of the singular value decomposition (SVD) of Hba,

assuming that the channel error is described as a zero-mean

random matrix with a given covariance. In the simulation

section, we will demonstrate two important aspects of our anal-

ysis. First, we will show that the analysis accurately captures

the effect of imperfect CSI even for relatively large channel

errors, where the magnitude of the perturbation approaches

that of the elements of the channel matrix itself. Second, our

analysis will show that the previously proposed beamforming

algorithms are very sensitive to imperfect CSI, and result in

large degradations in SINR even when the channel perturba-

tion is relatively small. This provides motivation for us to

consider beamforming schemes that are robust to CSI errors,

as developed in Section V.

For the analysis, we assume that Hba is of full rank F =
min (Nb, Na), and we define the singular value decomposition

of the unperturbed channel as follows:

Hba = UΣVH (18)

= [Us uF ]

[

Σs 0
0 σF

]

[Vs vF ]
H

(19)

= UsΣsV
H
s + σFuFv

H
F , (20)

where Us,Vs contain respectively the first F − 1 left and

right singular vectors whose singular values are found in the

diagonal matrix Σs, and uF ,vF are respectively the left and

right singular vectors corresponding to the smallest singular

value σF . The partitioning of the SVD will be useful as we

use the perturbation analysis of [25].

For purposes of our analysis, we assume that the CSI error

is confined to Alice, who is assumed to have available the

following perturbed channel estimate:

H̃ba = Hba +∆Hba (21)

where ∆Hba is modeled as a zero-mean circularly-symmetric

random matrix with covariance matrix given by

C∆Hba
= E

{

(vec(∆Hba)) (vec(∆Hba))
H
}

,

and vec(·) denotes the column stacking operator. The singular

value decomposition of the perturbed channel can be written

as

H̃ba = ŨsΣ̃sṼ
H
s + σ̃F ũF ṽ

H
F , (22)

where

Ũs = Us +∆Us ũF = uF +∆uF

Σ̃s = Σs +∆Σs σ̃F = σF +∆σF

Ṽs = Vs +∆Vs ṽF = vF +∆vF ,

(23)

and quantities preceded by ∆ are perturbations to those in (20).

The analysis of [25] assumes either a fat or square matrix

(Na ≥ Nb in our case), so we perform our derivation for this

case. A similar analysis holds when Nb > Na, except that

we would work with the transpose of the channel matrix, and

we would focus on perturbations to the left rather than right

singular vectors.

It will be convenient for our analysis to also define ∆σ1

and ∆v1 as the perturbation to the largest singular value

and the corresponding right singular vector v1, respectively.

Furthermore, we define ∆T′ as the perturbation to the Na−1
right singular vectors of Hba with smallest singular values.

With ∆σ1 defined, the perturbed power allocation factor can

be expressed as:

ρ̃ =
σ2
bS

σ̃2
1P

= ρ
1

(

1 +
2σ1∆σ1+∆σ2

1

σ2

1

) (24)

≈ ρ

(

1− 2∆σ1

σ1

− ∆σ2
1

σ2
1

)

,

(25)

If Alice has an inaccurate estimate of the CSI and both Alice

and Bob are unaware of the CSI mismatch, then the SINR for

Bob is expected to be significantly degraded. There are three

factors that contribute to this degradation:

1) Alice will incorrectly allocate power for data and artifi-

cial noise based on ρ̃ = (σ2
bS)/(σ̃

2
1P ).

2) Alice continues to use (12) to generate the interference

signal, although with imperfect CSI the artificial noise

covariance matrix becomes

Q̃′
z =

(1− ρ̃)P

Na − 1
(T′ +∆T′)(T′ +∆T′)H . (26)

3) Alice will use t = ṽ1 = v1 + ∆v1 as the transmit

beamformer, whereas Bob continues to use wb = Hbav1

as his receive beamformer. Bob’s beamformer will no

longer cancel the artificial interference, causing a sig-

nificant loss of SINR and the bulk of the resulting

performance degradation.

This case of mismatched beamformers and erroneous power

allocation due to imperfect CSI is referred to as the “naive”

scheme.

In the presence of CSI errors, Bob’s average SINR can be

approximated as the ratio of the expected value of the received

signal power to the expected value of the received noise and

interference power. This approximation is valid to the order

of the perturbation analysis assumed in [25], and its accuracy

will be demonstrated later in our simulation results. Using this

approximation, the average SINR achieved by Bob under the

naive scheme can be expressed as

SINRnaive
b =

PE
{

ρ̃|vH
1 HH

baHba(v1 +∆v1)|2
}

E
{

vH
1 HH

ba

(

HbaQ̃′
zH

H
ba + σ2

b I
)

Hbav1

} ,

(27)

where the remaining expectation is with respect to ∆Hba.

Based on the distribution of ∆Hba, we can compute

E
{

vH
1 HH

baHbaQ̃
′
zH

H
baHbav1

}

= σ4
1 β̃E

{

vH
1 T̃′

(

T̃′
)H

v1

}

(28)

= σ4
1 β̃E

{

vH
1

(

I− ṽ1ṽ
H
1

)

v1

}

≈ −σ4
1βE

{

vH
1 ∆v1 +∆vH

1 v1

}

,

where β̃ = (1− ρ̃)P/(Na − 1) and β = (1− ρ)P/(Na − 1).

Let Υ = 2∆σ1

σ1

+
∆σ2

1

σ2

1

. Using the familiar relations

Hbav1 = σ1u1 and HH
bau1 = σ1v1, and after dropping



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, XXXX 2010 6

higher-order perturbation terms from the numerator and

denominator, we obtain the following expression for

SINRnaive
b :

σ2
1ρP

[

1 + E
{

vH
1 ∆v1

}

+ E
{

∆vH
1 v1

}

−E {Υ}
]

−σ2
1β

[

E
{

vH
1 ∆v1

}

+ E
{

∆vH
1 v1

}]

+ σ2
b

. (29)

It is apparent that when perfect CSI is available at Alice (i.e.,

∆v1 → 0 and ∆σ1 → 0), (29) reduces to (10).

Next, we obtain the expected values of the perturbation

terms vH
1 ∆v1, ∆σ1, and ∆σ2

1 in (29), the derivations of

which are relegated to the Appendix. For convenience, let

Cij = E
{

(∆Hba):,i (∆Hba)
H
:,j

}

represent the covariance of

columns i and j from ∆Hba, i.e., Cij is the (i, j) block

of C∆Hba
. We also define the matrix G whose (i, j) entry

is given by [G]i,j = vH
F CijvF . The expressions needed to

evaluate Bob’s SINR are given in (30)-(36):

E
{[

VH
s ∆Vs

]}

= −σ2
F

2
DVH

s GVsD (30)

− σ2
F

2
Σ−1

s D
([

(σ2
F + 1)I+D−1

]

×

. . .×UH
s GUsD+ D−1UH

s GUs

)

Σ−1
s

E {∆Σs} ≈
(

σ2
FU

H
s GUsD+UH

s GUs

)

Σ−1
s (31)

−D
(

ΣsV
H
s GVsΣs + . . .

. . .+ σ2
FU

H
s GUs

)

DΣs

+ΣsE
[

VH
s ∆Vs

]

E
{

vH
1 ∆v1

}

= E
{[

VH
s ∆Vs

]}

1,1
(32)

D =
(

ΣsΣ
H
s − σ2

F I
)−1

(33)

E {∆σ1} = E
{

[∆Σs]1,1

}

(34)

E
{

∆σ2
1

}

=
[

UH
s KUs

]

1,1
(35)

[K]i,j = Tr
(

VH
s CijVs

)

. (36)

Therefore, the naive SINR at Bob expressed in terms of the

second-order statistics of ∆Hba is obtained by substituting the

expected values in (32), (34), and (32) into (29). For the special

case of i.i.d CSI errors where C∆Hba
= σ2

HI, the expressions

above simplify considerably since in this case G = σ2
HI.

Note that Alice’s use of imperfect transmit beamformers

does not implicitly impact the SINR available to Eve. As far

as Eve is concerned, use of v1 + ∆v1 rather than v1 as the

transmit beamformer for the desired signal, and T′ + ∆T′

rather than T′ as the interference precoder, has on average no

effect on her performance since we assume that Hba and Hea

are unrelated.

V. ROBUST BEAMFORMING APPROACHES

While the instantaneous CSI perturbation cannot be de-

termined, if Bob has information about the statistics of the

perturbation, then he may take remedial measures to overcome

at least some of the significant SINR degradation that occurs

with the naive scheme. In particular, if Bob has knowledge of

C∆Hba
, then the spatial covariance of the artificial interference

that impacts Bob can be calculated, and incorporated into the

maximum SINR beamformer. In this section, we examine two

such approaches for the case where Alice does not possess

CSI for Eve. The first case corresponds to a frequency-

division duplex (FDD) scenario where Bob estimates the CSI,

quantizes it, and sends this information to Alice via a feedback

channel. In this case, Bob is aware of the CSI used by Alice

for her transmission parameters. In the second case, which

corresponds to a time-division duplex (TDD) scenario, Alice

and Bob obtain individual channel estimates on their own,

and neither is aware of the other’s CSI. In both cases, we

assume that (1) Alice’s transmission allows Bob to obtain an

exact estimate of the current CSI Hba (the estimation error

will be negligible compared with errors due to quantization

and channel time variations), and that (2) Bob informs Alice

of the power fraction ρ needed to obtain his desired SINR.

A. Robust Beamforming - FDD Case

When Alice has imperfect CSI for Bob and applies a

mismatched transmit beamformer, the interference-plus-noise

portion of Bob’s received signal is, from (3),

ñb = Hbaz
′ + nb ,

with covariance

E
{

ñbñ
H
b

}

= Qint . (37)

In the FDD case, Bob is aware of the value of H̃ba since this

was information he computed and fed back to Alice. He can

thus determine the exact value of Qint as follows:

Qint = H̃baQ̃
′
zH̃

H
ba + σ2

b I , (38)

as well as the exact beamformer t̃ = ṽ1 that Alice uses for the

information-bearing signal. He is then in turn able to calculate

the optimal receive beamformer that maximizes SINR:

wopt = Q−1
intHbat̃ . (39)

The resulting SINR at Bob is given by

S = ρP t̃HHH
baQ

−1
intHbat̃ . (40)

B. Robust Beamforming - TDD Case

In the TDD case, Bob is unaware of the exact values of

Q̃′
z and ṽ1 that Alice uses. However, assuming Bob knows

the statistics of the CSI error, in particular C∆Hba
, he can

compute expected values for these quantities and use these

as estimates to determine his receive beamformer. Using the

second-order perturbation analysis of the previous section, the

expected interference-plus-noise covariance matrix Q̂int can

be computed as

Q̂int = E
{

Hbaz
′z′

H
HH

ba + nbn
H
b

}

(41)

= β̃
(

HbaH
H
ba − σ2

1u1u
H
1

)

− βσ2
1u1E {∆v1}HH

ba

− βσ1HbaE {∆v1}uH
1 + σ2

b I.

Furthermore, Alice’s transmit beamformer can be estimated as

t̂ = E (ṽ1) = v1 + E (∆v1) . (42)
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Both of the above quantities require knowledge of ∆v1. In

the Appendix, we show that

E {∆v1} = E
{

[∆Vs]:,1

}

, (43)

where

E {∆Vs} = vFE
{

P̄1

}

+VsE
{

P̄2

}

(44)

E
{

P̄1

}

= (1 + σ2
F )v

H
F GVsD

H + σ2
Fv

H
F G′′VsD

H

− σFu
H
F G′Us

(

I+ σ2
FD

H
)

Σ−1
s (45)

+ σFu
H
F GUsD

H
(

σ2
FD

H + I
)

Σ−1
s

[G]i,j = vH
F CijvF (46)

[G′]i,j = Tr
(

VsD
HVH

s Cij

)

(47)

[G′′]i,j = Tr
(

UsD
HUH

s Cij

)

, (48)

and where the expected value of P̄2 = VH
s ∆Vs is given in

(30). The interference-plus-noise covariance matrix is obtained

by substituting (43) into (42). Bob’s receive beamformer is

calculated as

ŵopt = Q̂−1
intHbat̂ . (49)

Since Q̂int ̸= Qint, the resulting SINR for Bob must be

determined as follows:

SINRb =
ρP

∣

∣

∣
t̂HHH

baQ̂
−1
intHbat̃

∣

∣

∣

2

t̂HHH
baQ̂

−1
intQintQ̂

−1
intHbat̂

. (50)

VI. SIMULATION RESULTS

We present some examples that show the SINR and secrecy

capacity performance of Bob and Eve for various array sizes,

target performance levels, and array perturbations. In all sim-

ulations, the channel matrices were assumed to be composed

of independent, zero-mean Gaussian random variables with

unit variance (γ2
ea = 1). The channel perturbation covariance

matrix is assumed to be C∆Hba
= σ2

HI which corresponds to

the case where the CSI errors are independent and identically

distributed. In the simulation plots, σH is specified in dB ac-

cording to 20 log10 σH . For example, a value of σH = −20dB

corresponds to σH = 0.1, indicating channel perturbations on

the order of 10% of the channel coefficients themselves. All

displayed results are calculated based on an average of 3000

independent trials. The background noise power was assumed

to be the same for both Bob and Eve: σ2
b = σ2

e = 1, and

in all cases the available transmit power was assumed to be

P = 100, or 20dB. In situations where the desired SINR for

Bob cannot be achieved with the given P , rather than indicate

an outage, we simply assign all power to Bob and zero to

artificial interference and average the resulting SINR with the

others.

A. Effects of Eavesdropper CSI

Figure 1 illustrates the performance of the algorithms when

S = 20dB and Ne ∈ [1, 20]. The number of antennas for

Alice and Bob are assumed to be equal, and results are shown

for Na = Nb = 4, 8. The desired SINR for Bob was set to

20dB, and the available transmit power was sufficient in this

simulation for the target to be met in all 3000 trials. Three
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Fig. 1. SINR versus number of antennas for Eve.

curves are included for Eve, showing the performance of the

algorithms for different assumptions about the eavesdropper’s

CSI (ECSI): (1) when it is unknown, in which case the artificial

noise approach of Section III-A is used, (2) when it is perfectly

known, in which case the generalized eigenvector approach of

Section III-B is used, and (3) when it is imperfectly known,

where again the approach of Section III-B is used, but the

ECSI perturbation is unaccounted for. The perturbed ECSI

was generated by the following equation, assuming γ = 0.05
(which corresponds to a perturbation of about -13dB):

H̃ea =
√

1− γHea +
√
γWea , (51)

where Hea and Wea are independent, zero-mean Gaussian

with unit-variance elements, and hence so is H̃ea. In the

simulations, the actual channel is Hea, but Alice assumes it is

H̃ea. The assumption of perfect ECSI provides a significant

benefit when Ne < {Na, Nb}; in fact, the eavesdropper’s

SINR can theoretically be driven to zero. The gain when

Ne ≥ {Na, Nb} is not as large, particularly for Na = Nb = 4,

when it is less than 2dB. Much of the benefit of ECSI is lost

however if it is imprecisely known; even for this case when

the perturbation is relatively small, we see that for small Ne

it is often better to ignore the ECSI than to use a perturbed

version of it.

B. SINR Degradation Analysis

In Figure 2, we compare the SINR expressions for the naive

case based on second-order perturbation theory derived in

Section IV with measured SINR values from simulations for

a range of channel perturbation powers. The set of channel

matrices have dimensions of either Na = Nb = Ne = 2
or Na = Nb = Ne = 5, and the desired SINR for Bob

is set to S = 20dB. For both antenna configurations, the

second-order approximations appear to be accurate up to about

σH = −10dB, which corresponds to σH = 0.32. This is a

relatively large perturbation for channels with unit-variance
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Fig. 2. A comparison of the 2
nd-order naive SINR approximations with

Monte Carlo SINR results for Na = Nb = Ne = 2 and Na = Ne = Nb =

5.

elements. We see that inaccurate CSI substantially impacts

Bob’s SINR, even for relatively small values of σH . For

example, when Na = 10, Bob loses 6dB of SINR for the

relatively small value σH = 0.1.

C. Robust Beamforming Results
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σ
H

=−10dB

Fig. 3. Measured SINR values versus desired SINR for Bob and Eve with
perfect and imperfect CSI at Alice for Na = Nb = Ne = 5 antennas,
σH = −10dB.

Figure 3 shows the SINR for Bob and Eve as a function of

S for various approaches, including the robust beamforming

schemes presented earlier. The channel perturbation power is

fixed at σH = −10dB, and we assume Na = Nb = Ne = 5.

It is evident that the naive schemes incur a significant SINR

penalty for relatively small channel perturbations, with the

achieved SINR at the intended receiver being 15-17dB below

the target SINR and 6-7dB worse than the SINR for Eve. Note

however that the robust receive beamforming schemes are able

to restore Bob’s SINR performance at or near the desired

value. Obviously, the presence of uncancelled artificial inter-

ference due to imperfect CSI requires Alice to use additional

power for the desired signal, thus reducing the amount of noise

available to jam the eavesdropper. This is why Eve’s SINR

increases with the robust beamforming methods. As expected,

Eve’s performance is best degraded in the FDD case where

Bob has exact knowledge of Alice’s transmission scheme1.

Note also that Eve’s SINR increases slightly for high values

of S. This is due to the fact that as S increases, there will

be an increasing number of cases where no power is available

for jamming. This also inadvertently helps Bob in the naive

case, since the lack of jamming eliminates interference for the

desired signal.
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Fig. 4. Secrecy capacity versus desired SINR for Bob with perfect and
imperfect CSI at Alice for Na = Nb = Ne = 5 antennas, σH = −10dB.

Figure 4 plots the secrecy capacity that results for the case

considered here, for various CSI assumptions. The case where

Eve’s CSI is perfectly known is shown for reference, and

obviously for this case the best secrecy capacity is obtained.

As expected, the benefit of knowing the eavesdropper’s CSI is

largest when Bob demands a high QoS, and minimal for low

values of S where more resources are available for jamming.

The robust beamforming strategies provide non-zero secrecy

capacity for all values of S, and recover a reasonable fraction

of the performance available in the perfect CSI case. However,

in the naive case, the secrecy capacity is reduced to zero

since Eve’s SINR is always larger than Bob’s. This assumes

of course that Bob does nothing to counteract the interference,

while Eve uses an optimal beamformer that requires exact

knowledge of the interference covariance.

The effect of the magnitude of the channel perturbation

on SINR performance is illustrated in Figure 5 for the case

1This does not imply that FDD systems are better than TDD systems for
this application; one may expect that in practice the value for σH will be
somewhat larger in the FDD case due to quantization and the added delay
required for feedback.
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Fig. 5. Average SINR for Bob and Eve as a function of σH for Na =

Nb = Ne = 5 antennas and S = 20dB.

studied in the previous figures, assuming S = 20dB. Robust

beamforming in the FDD case realizes little performance

loss for values of σH up to -15dB, while the threshold for

degradation in the TDD case is somewhat lower. Recall that

Figure 4 showed a positive secrecy capacity for the TDD case

at σH = −10dB, even though in Figure 5 both Bob and Eve

appear to have approximately the same average SINR. This is

because the secrecy capacity must be non-negative; a positive

result is obtained when Bob’s SINR exceeds Eve’s, but the

capacity is assumed to be zero otherwise.

VII. CONCLUSIONS

We have presented beamforming-based approaches for im-

proving the secrecy of the wireless communications between

two multi-antenna nodes. The algorithms allocate transmit

power in order to achieve a target SINR for a desired user,

and then broadcast the remaining available power as artificial

noise in order to disrupt the interception of the signal by a

passive eavesdropper. The proposed approaches rely heavily

on the availability of accurate CSI, and their performance

can be quite sensitive to imprecise channel estimates. As

a result, we conducted a detailed second-order perturbation

analysis in order to precisely quantify the effects of inaccurate

CSI. Simulations were used to demonstrate the validity of the

analysis, and to illustrate the sensitivity of algorithms that

depend on precise CSI. To reduce the impact of the CSI

errors, we proposed two robust beamforming schemes that

are able to recover a large fraction of the SINR lost due to

the channel estimation errors. These techniques were shown

to perform very well for moderate CSI errors, but ultimately

a large enough channel mismatch can eliminate the secrecy

advantage of using artificial noise.

APPENDIX

Define D ,
(

ΣsΣ
H
s − σ2

F I
)−1

, as well as the following

matrices:

Ess , UH
s ∆HbaVs (52)

Esn , UH
s ∆HbavF (53)

Ens , uH
F ∆HbaVs (54)

Enn , uH
F ∆HbavF . (55)

Using the results of [25], the perturbation in Vs can be

approximated up to second order in ∆Hba as

∆Vs = vF P̄1 +VsP̄2 (56)

where P̄1 ≈ −Q̄H
1 and P̄2 ≈ − 1

2
F̄F̄

H
, and

F̄ = −σFDEH
ns − σ2

FΣ
−1
s DEsn −Σ−1

s Esn, (57)

Q̄1 ≈ D
(

EssDΣsE
H
ns − σFDEH

nsE
H
nn

)

Σn (58)

−DEH
nsEnn + σ2

FD
(

EH
ssDEsn −DEH

nsEnn

)

+ σ2
FΣ

−1
s D

(

EssΣ
−1
s Esn −DEsnΣ

H
n Enn + . . .

. . .+ σ2
FEssΣ

−1
s DEsn

)

+Σ−1
s EssΣ

−1
s

(

Esn + σ2
FDEsn

)

−σFΣ
−1
s DEsnEnn

+ σFΣ
−1
s D

(

σ2
FEssDEH

ns − σ2
FDEsnE

H
nn −EsnE

H
nn

)

+ σFΣ
−1
s EssDEH

ns + F̄ .

Exploiting the circular symmetry of ∆Hba in (59) leads to

E
{

P̄1

}

= (1 + σ2
F )E

{

EH
nnEns

}

DH (59)

+ σ2
FE

{

EH
snD

HEss

}

DH

− σFE
{

EnsD
HEH

ss

} (

I+ σ2
FD

H
)

Σ−1
s

+ σFE
{

EnnE
H
sn

}

DH
(

σ2
FD

H + I
)

Σ−1
s .

Next, recall that Vs⊥vF and VH
s Vs = I, so that

VH
s ∆Vs = P̄2. After some manipulations based on the

circular symmetry of ∆Hba, we obtain

E
[

VH
s ∆Vs

]

= −σ2
F

2
Σ−1

s

(

(σ2
F + 1)DE

{

EsnE
H
sn

}

DH + . . .

. . .+ E
{

EsnE
H
sn

}

DH + E
{

EsnE
H
sn

})

Σ−1
s

− σ2
F

2
DE

{

EH
nsEns

}

DH . (60)

The perturbation to the singular values Σs can be approxi-

mated as

E {∆Σs} ≈
(

σ2
FE

{

EsnE
H
sn

}

DH + E
{

EsnE
H
sn

})

Σ−1
s

+ E
{

ΣsP̄2 −P2Σs

}

, (61)

where P2 ≈ − 1

2
FFH is a component of the perturbation in

∆Us, and

F = −D
(

ΣsE
H
ns + σFEsn

)

. (62)

From the expression for P2:

E {P2Σs} = D
(

ΣsE
{

EH
nsEns

}

Σs (63)

+ σ2
FE

{

EsnE
H
sn

}

)DHΣs.
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It remains to express (59) and (61) in terms

of the second-order statistics of ∆Hba. Let

Cij = E
{

(∆Hba):,i (∆Hba)
H
:,j

}

represent the covariance of

the ith and jth columns of ∆Hba. It is straightforward to

show that

E
{

EsnE
H
sn

}

= UH
s E

[

∆HbavFv
H
F ∆HH

ba

]

Us

= UH
s GUs (64)

E
{

EH
nsEns

}

= VH
s G′′Vs (65)

E
{

EnnE
H
sn

}

= uH
F GUs (66)

E
{

EH
nnEns

}

= vH
F G′′Vs (67)

E
{

EnsD
HEH

ss

}

= uH
F G′Us (68)

E
{

EH
snD

HEss

}

= vH
F G′′Vs , (69)

where the (i, j) entry of G is [G]i,j = vH
F CijvF , [G′]i,j =

Tr
(

VsD
HVH

s Cij

)

, and [G′′]i,j = Tr
(

UsD
HUH

s Cij

)

.

The required expected values in (32), (34), (32) and (43)

immediately follow from the results derived above.
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