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ABSTRACT

Statistical Dialogue Systems (SDS) have proved their humon-
gous potential over the past few years. However, the lack of
efficient and robust representations of the belief state (BS)
space refrains them from revealing their full potential. There
is a great need for automatic BS representations, which will
replace the old hand-crafted, variable-length ones. To tackle
those problems, we introduce a novel use of Autoencoders
(AEs). Our goal is to obtain a low-dimensional, fixed-length,
and compact, yet robust representation of the BS space. We
investigate the use of dense AE, Denoising AE (DAE) and
Variational Denoising AE (VDAE), which we combine with
GP-SARSA to learn dialogue policies in the PyDial toolkit.
In this framework, the BS is normally represented in a rela-
tively compact, but still redundant summary space which is
obtained through a heuristic mapping of the original master
space. We show that all the proposed AE-based represen-
tations consistently outperform the summary BS representa-
tion. Especially, as the Semantic Error Rate (SER) increases,
the DAE/VDAE-based representations obtain state-of-the-art
and sample efficient performance.

Index Terms— denoising autoencoder, variational au-
toencoder, statistical dialogue system, dialogue manager,
belief state representation

1. INTRODUCTION

In the past few years, there has been a rising interest in in-
corporating Spoken Dialogue Systems [1, 2, 3] in real-life ap-
plications. Many industries, like social robots [4], tourist in-
formation [5], banks [6], navigation [7], health care [8] and
calling centers [9], have already incorporated Spoken Dia-
logue Systems to improve performance and offer better ser-
vices. At its core, a Dialogue System utilizes a Dialogue
Manager (DM) [10], which keeps track of the dialogue’s state
and predicts an action based on that state. So far, handcrafted
DMs [11] have shown great performance in many domains,
but their building complexity, cost of scalability, sensitivity to
semantic errors, need for continuous supervision and domain-
restricted usage have turned the research interest towards the
development of Statistical DMs (SDMs) [10]. Their growth

of popularity is a consequence of the numerous training cor-
pora that became available online in the past few years, the
fact that they enable the introduction of a continuous state
space to the models and their generalization capability.

There are policy managers for the SDMs based on i)
non-linear Reinforcement Learning algorithms, such as Deep
Q-learning Networks (DQN) [12], Advantage Actor Critic
(A2C) [13], episodic Natural Actor Critic (eNAC) [14], and
ii) linear, like Gaussian Process SARSA (GP-SARSA) [15].
In [11] there is a comparison between those algorithms on
different simulated environments and domains in which GP-
SARSA seems to outperform all the other deep Neural Net-
work (DNN) approaches. For the benchmarking procedure
they use the summary BS (sumBS) representation [16, 17]
to train the policy managers. The sumBS space is a heuris-
tic mapping of the master (full) BS space. However, since
it uses the domain ontology the sumBS vectors produced
are domain-dependent, relatively high-dimensional, sparse
and redundant. They also require domain expertise and they
cannot be easily generalized and adapted to new domains.

Furthermore, in [11] the performance of the dialog man-
ager degrades significantly in the presence of noise or when
the domain complexity increases. This performance degrada-
tion could be attributed to the highly-dimensional and redun-
dant sumBS vector. We believe that a more efficient BS repre-
sentation could result in large performance gains particularly
in difficult environments. In this paper, we investigate the use
of dense AE, Denoising AE (DAE) and Variational Denoising
AE (VDAE) to automatically extract robust and noise tolerant
BS space representations.

1.1. Related Work

An alternative to the sumBS space representation is the Do-
main Independent Parameterization (DIP) [18]. DIP produces
BS vectors using domain-independent dialogue features.
They have therefore, a standard dimension for all domains
and can be more compact than the sumBS vectors. How-
ever DIP mostly consists of hand-engineered features by the
system designer which do not make use of domain-specific
information and can still be noise sensitive, redundant and
correlated. The BinLin/BinAux BS introduced in [19] is an-



other alternative which considers limited information from
the sumBS to build extremely compact BS representations.
The main drawback of this featurization is that they need to
be explicitly defined depending on the domain. Furthermore,
they do not exhibit a stable performance under all conditions
and they are sensitive to the input’s uncertainty.

In recent work [20, 21], a feed forward network (FNN)
and a recurrent neural network (RNN) are used to automati-
cally train feature extractors in the form of feature functions
for each slot to obtain dialogue BS abstractions. The train-
ing is performed jointly with a DQN-based policy. However,
the resulting system is prone to non-optimal and slow conver-
gence.

In [22, 23] feature selection is used to obtain lower-
dimensional BS representation. However, most of the algo-
rithms are tied to specific Reinforcement Learning algorithms
such as LSPI, and cannot be generalized to other policy
models. Furthermore, they do not exhibit robustness in the
presence of noise.

1.2. Contribution

The contribution of this work is summarized as follows:
- Although AEs have been successfully used for non-linear
feature extraction at several application domains, to the best
of our knowledge, this is the first time that they are used to
automatically obtain BS space representations in the frame-
work of a SDS.
- We concentrate on noise-tolerant variations of the AEs such
as the DAE and VDAE.
- We propose a novel training scheme which concurrently
trains the AEs and performs policy optimization.

2. BACKGROUND AND METHODOLOGY

2.1. Dense Autoencoders

AEs are a family of NN topologies used for unsupervised
learning which have been successfully employed for non-
linear feature extraction in several application domains [24,
25, 26, 27]. Due to their architecture, AEs are forced to learn
lower dimensional and more robust representations of the in-
put vector x. Typically, AEs can be seen as the concatenation
of two networks. The first one is the encoder, which projects
the input layer to a lower-dimensional latent space. The sec-
ond one is the decoder, which takes the encoded compact
representation and projects it back to the original input. Their
architecture exhibits a perfect symmetry with regards to the
central hidden layer which is the lowest-dimensional one and
serves as the coding layer.

In this paper, the AEs are build as deep, feed-forward and
dense NNs. The input x ∈ Rdx×1 denotes the sumBS vec-
tor which has a variable length dx depending on the chosen
domain. The input layer is then projected to the first hidden

layer h1(x) ∈ Rdh1×1 through a typical mapping of the form:

h1(x) = α (Wh1x ∗ x) (1)

where α() denotes the activation function, here tanh, and
Wh1x ∈ Rd1×dx defines the matrix of weights connecting
the input and the first hidden layer. Several hidden layers
j ∈ 1, · · · , dN2 e, can then be added with gradually reduced
dimensions until the central, bottleneck layer j = dN2 e, which
serves as the output of the encoder. N denotes the total num-
ber of hidden layers of the AE. The corresponding hidden rep-
resentation of any hidden layer j is then defined as a mapping
from the previous layer j − 1 as follows:

hj(x) = α
(
Whjhj−1

∗ hj−1(x)
)

(2)

The latent representation from the bottleneck layer z =
hdN2 e

(x) is then mapped back to the input x through a reverse
mapping function using the corresponding weight matrices of
the decoder W dec. In this work, the decoder’s weight matri-
ces are tied to the corresponding encoder’s weight matrices
W dec =WT .

2.2. Denoising Autoencoders

DAEs [28] are essentially dense AEs which are trained to
represent the corrupted or noisy input vectors, providing ro-
bustness. In a typical SDS, noise can be introduced due to
a multitude of factors, including the errors of the recognizer,
the semantic errors (e.g. acoustic confusability, ambiguity of
natural language, incomplete utterances, etc.), as well as the
uncertainty of user’s goal. In specific, the input of a DAE is a
corrupted version x̃ of the clean sumBS vector x:

x̃ = x+ n (3)

where x is the target in the output layer, and n denotes the
noise vector, produced by an unknown distribution, which has
the same size as the clean sumBS x. Noise n is added to
x artificially using the SER percentage as probability PSER.
Specifically, the corrupted vector x̃ is obtained by keeping,
with probability 1− PSER, the true semantic information for
a slot, and making random selections from all the available
values in the ontology, with probability PSER. It is worth
noting that this artificial corruption process can be applied to
data from both real and simulated dialogues.

Using an adequately large number of [x, x̃] sample pairs,
a DAE can be trained to approximate the noise distribution
and appropriately filter out the noise. The parameters of the
DAE are trained so as to minimize the average reconstruction
error J defined as the mean squared error:

J(x,y) = E
[
||x− y||2

]
(4)

where y is the prediction obtained at the output of the net-
work’s decoder when we input the noisy x̃, and x is the orig-
inal non-corrupted vector.



2.3. Variational Denoising Autoencoders

The AE and DAE networks may suffer from poor generaliza-
tion to unseen data, particularly considering the sparse and
continuous nature of the sumBS vector in the input. This is
mainly attributed to the form of the latent space in which the
training data are projected, which may contain gaps corre-
sponding to forms of training samples that were never used as
input. The generation of latent representations for these un-
seen data forms could be very poor, influencing the accuracy
of the system.

To overcome this problem, we investigate the use of Vari-
ational AEs (VAEs) [29, 30]. VAEs create continuous la-
tent spaces, since the latent vectors z are generated randomly
from a parametric inference model defined as a multivariate
Gaussian distribution q(z|x : λ) = N (z : µ,σ), where
λ = {µ,σ}, µ is the mean vector of the Gaussian and σ is
the corresponding vector of standard deviations. The µ and
σ vectors are approximated through a corresponding pair of
weight matrices Wµ and Wσ in the bottleneck layer hdN2 e,
which are optimized as parameters of the neural network.

Optimization of the VAE is made on the basis of the fol-
lowing loss function:

JV AE(x,y) = J(x,y) +DKL (q(z|x : λ)||p(z)) (5)

whereDKL denotes the KL-Divergence among the true latent
variable distribution p(z) which is typically chosen to follow
the standard GaussianN (0, 1) and the approximation q(z|x :
λ) learned by the encoder.

In the proposed Variational DAE (VDAE) scheme, the in-
ference model q(z|x̃ : λ) learns to generate latent vectors
from corrupted sumBS state vectors x̃ that have been injected
with noise using the method described in Section 2.2. In this
way, the VDAE will be trained to be tolerant in noise.

2.4. Concurrent Training

In this work, both the policy manager and the parameters of
the AEs are optimized in parallel using batches of dialogue
episodes. The AEs take as input sumBS vectors x, while
the policy manager takes as input the AE’s bottleneck layer
hdN2 e

(x). To speed up the convergence of this parallel pro-
cess we perform pre-training on the AEs based on randomly
generated sumBS vectors. The pre-training process is termi-
nated when the loss function drops below a threshold. Further
optimization is then performed on-line to dynamically adapt
the models to the environment’s uncertainty. This process is
summarized in Algorithm 1.

3. EXPERIMENTAL SETUP

For our experiments, we used the GP-SARSA policy algo-
rithm in the PyDial framework on simulated standard users

Algorithm 1 Concurrent Training Scheme

1: AE.preTrain()
2: for iteration ∈ (1, NumOfDialogueBatches) do
3: for Dialogue in DialogueBatch do
4: DialSimulation.Start()
5: while !(DialSimulation.Ended()) = True do
6: Policy.saveToBatch(Episode)
7: AE.saveToBatch(Episode)
8: if AE.BatchisFull() = True then
9: AE.train()

10: Policy.train()
11: Policy.evaluate()

[31]. The choice of GP-SARSA was made upon its outstand-
ing performance in comparison to other approaches [11]. We
evaluated our algorithms in the following three domains:
- Cambridge Restaurants (CR), which is the most common
domain in the literature. It produces a 268-dimensional
sumBS vector.
- San Francisco Restaurants (SFR), which has a higher-
dimensional (636-dimensions) sumBS vector.
- Laptops11 (LAP11), which is among the most difficult
domains, especially for higher SER. LAP11 has a 257-
dimensional sumBS vector.

For each domain we defined a different domain-specific
AE/DAE/VDAE network. Although the input and the output
layer of these networks had a different dimension for each
domain, the rest of the network topology shared exactly the
same characteristics for all the domains. Particularly, we con-
sidered networks of 5 fixed-size hidden layers h1 : 200, h2 :
100, h3 : 50, h4 : 100, h5 : 200, where the number indi-
cates the hidden nodes in each layer. We also examined a
deeper 7 hidden layer architecture with hidden layers dimen-
sions h1 : 200, h2 : 100, h3 : 50, h4 : 30 h5 : 50 h6 : 100,
h7 : 200. The latent space of the bottleneck layer which also
defines the dimension of the BS space representation is there-
fore 50 or 30 respectively.

Furthermore, they shared the same hyperparameters and
optimization methods. For instance, we used ADAM opti-
mizer and we applied dropout in the encoder with a dropout
rate of 0.6 to avoid over-fitting. The learning rate (LR) was
configured as time-based, exponential decaying and the initial
value was set to 10−4 with a decay parameter of 10−2. Off-
line training was performed in 10 batches of 300 dialogues
each and we evaluated each batch on 300 test dialogues.

3.1. Experimental Results

Although we used both the shallower and deeper topologies
for all of our AE variations, we only present results concern-
ing the best performing topology, that is, the 5 hidden layer
for the dense AE and the deeper, 7 hidden layer one, for each
of the DAE and VDAE. To obtain fair results, we performed



Episodes: 3000 Domains
SER BS CR LAP11 SFR
0% sumBS 98.4%(±1.1) 86.8%(±3.9) 95.2%(±1.3)

AE 99.3%(±0.5) 92.6%(±1.9) 95.3%(±0.8)

DAE 97.3%(±0.8) 90.9%(±1.7) 95.4%(±2.1)

VDAE 96.5%(±2.7) 94.7%(±1.7) 93.7%(±2.1)

15% sumBS 96.4%(±2.2) 66.5% (±2.3) 81.6% (±1.6)

AE 96.5%(±1.1) 68.9%(±10.1) 89.3%(±1.8)

DAE 91.9%(±2.9) 89.7%(±3.1) 95.1 %(±1.4)

VDAE 95.5%(±0.8) 91.7%(±0.5) 93.6%(±1.0)

30% sumBS 88.5%(±4.1) 51.4%(±9.3) 66.3%(±5.3)

AE 92.2%(±1.1) 50.1%(±10.3) 69.4%(±2.3)

DAE 92.9%(±2.4) 84.3%(±4.0) 94.9%(±1.28)

VDAE 92.9%(±1.3) 90.2%(±1.8) 89.9%(±2.7)

45% sumBS 78.0%(±3.4) 24.1%(±5.5) 53.9%(±6.8)

AE 78.1%(±3.2) 38.7%(±5.3) 36.9%(±7.9)

DAE 91.2%(±5.4) 88.0%(±2.9) 81.9 %(±7.8)

VDAE 92.3%(±3.3) 87.9%(±2.7) 88.6%(±2.9)

Table 1: Average success comparison with the sumBS base-
line for 3000 dialogue episodes. Standard deviation in paren-
thesis. Best score in bold.

five independent runs of the same experiment using different
initialization of the random generator and we calculated av-
erage dialogue success rates. Table 1 summarizes the perfor-
mance for all the domains and BS representations. We used
four different levels of SER (0%, 15%, 30% and 45%), con-
sistently in both training and evaluation.

It can be seen that the dialogue manager benefits from the
AE-based representation for 0% SER, but is unable to provide
noise-robust features for higher SERs. On the other hand, as
the presence of noise increases, the representation based on
DAEs and VDAEs shows great potential. Specifically, they
both maintain a performance close to 90% even for noise lev-
els as high as 45%. Their dominance in performance is even
more apparent in the difficult domains of LAP11 and SFR
[11] , where the performance of sumBS and dense AEs dra-
matically degrades . Although we only show the performance
of the best performing 7 hidden layer DAE/VDAE architec-
ture, it is important to note that even their shallower 5 hid-
den layer topologies maintain a performance only 6%− 12%
lower than the deeper ones and they still dramatically outper-
form the baseline representations of sumBS and AE.

The diagrams in Figures 1 and 2a show the evolution
of the average dialogue success rates in the LAP11 domain,
which is the most difficult one, for different SER levels and
the different BS representations considered in the paper. It
can be seen that in all these diagrams, the policy shows a
relatively smooth and fast convergence for all the AE-based
representations. However, the performance of the VDAE
clearly excels not only as the best performer, but also as the
representation which achieves high performance even with as
little as 300 episodes. Although there are similar findings for
the remaining domains considered, we choose to present in
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Fig. 1: LAP11 Domain in Multiple Environments

Figure 2 the corresponding performance only in the extremely
noisy environment (45% SER) across all the domains. These
diagrams demonstrate the consistent behaviour of the VDAE
among all the domains since in all cases it achieves the high-
est accuracy with the smallest number of training episodes.

3.2. Discussion

A direct comparison with the state-of-the-art is not feasible
due to the different experimental protocols, domains, and
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Fig. 2: LAP11, CR and SFR domains in 45% SER

policies of previous works. For example, in [18], a first ver-
sion of the DIPs in conjunction with GP-SARSA is tested on
both the CR and a precursor of the LAP11 domain. After
training on 1000 dialogues with 15% SER, the reported accu-
racy is approximately 95% for the CR, which is comparable
to the average accuracy of 94.6% that we obtain using dense
AEs and lower than the accuracy of 96.2% of the VDAE in the
same environment and domain after 900 dialogues. In [19],
where the CR domain is studied, the examined BS represen-
tation is DIPs, BinLin, and BinAux and the policy manager is

SER/ Model CR LAP11 SFR
ENV Succ Rew Succ Rew Succ Rew
0% DAE 97.3% 13.1 90.9% 10.6 95.4% 11.9

VDAE 96.5% 11.3 94.7% 8.1 93.7% 7.8
Env.1 Feudal-DQN 89.3% 11.7 65.5% 5.7 71.1% 7.1
15% DAE 91.9% 11.7 89.7% 10.1 95.1% 11.5

VDAE 95.5% 10.3 91.7% 6.6 93.6% 7.5
Env.3 Feudal-DQN 92.6% 11.7 89.6% 9.4 90.0% 9.7
30% DAE 93.0% 11.9 84.3% 9.0 94.9% 11.2

VDAE 92.9% 9.5 90.2% 6.0 89.9% 5.9
Env.6 Feudal-DQN 90.6% 10.4 78.5% 6.0 83.0% 7.1

Table 2: DAE and VDAE average success and reward (3000
episodes) compared to the Feudal-DQN system [21] (4000
episodes)

A2C, whereas the number of training dialogues is 2000. The
reported accuracy ranges from 17% to 35% lower compared
to our VDAE system, depending on the environment.

In [20, 21] DIP, FFN and RNN Feudal features are ex-
ploited. The policies considered are NN-based and the results
presented are for 4000 episodes. Nevertheless, since they con-
sider the same domains and matching conditions for the envi-
ronments 1, 3 and 6 which correspond to 0%, 15% and 30%
respectively, we show in Table 2 a comparison of both the av-
erage success and the reward. It can be seen that the proposed
VDAE with GP-SARSA dominates in all cases in terms of
success rate, although it is trained on less episodes. DAE on
the other hand, obtains the highest reward.

It is worth noting that since the AE/DAE/VDAE topol-
ogy in our proposed scheme is domain-independent with the
exception of the input and output layer, new AEs could be
rapidly optimized in a transfer learning framework [32, 33].
This is particularly useful when new entries in a domain’s on-
tology are introduced, as well as for optimizing new AEs for
new domains with limited data, making our approach domain-
transferable.

4. CONCLUSIONS

In this paper, we propose a novel use of AEs, DAEs, and
VDAEs for representing the BS for SDMs. Our motivation
is to create low-dimensional, fixed-size, and robust repre-
sentations which are automatically extracted from a set of
training dialogues. Using corrupted training data we ob-
tain representations tolerant in SER noise. Furthermore, the
learned representations are trained concurrently with the pol-
icy manager in a novel training scheme. The experimental
results show that the proposed scheme is very efficient, out-
performing significantly, even with limited training samples,
the baseline sumBS, and other state-of-the-art approaches for
different domains and noise levels. The highest gain refers
to environments with 45% SER and difficult domains such as
the demanding Laptops11, where an absolute improvement of
63.79% is achieved, confirming the proposed methods ability.
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[11] Iñigo Casanueva, Pawel Budzianowski, Pei-Hao Su,
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