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ROBUST BILEVEL OPTIMIZATION FOR AN OPPORTUNISTIC 

SUPPLY CHAIN NETWORK DESIGN PROBLEM  

IN AN UNCERTAIN AND RISKY ENVIRONMENT 

This paper introduces the problem of designing a single-product supply chain network in an agile 

manufacturing setting under a vendor managed inventory (VMI) strategy to seize a new market oppor-

tunity. The problem addresses the level of risk aversion of the retailer when dealing with the uncertainty 

of market related information through a conditional value at risk (CVaR) approach. This approach leads 

to a bilevel programming problem. The Karush–Kuhn–Tucker (KKT) conditions are employed to trans-

form the model into a single-level, mixed-integer linear programming problem by considering some 

relaxations. Since realizations of imprecisely known parameters are the only information available, 

a data-driven approach is employed as a suitable, more practical, methodology of avoiding distribu-

tional assumptions. Finally, the effectiveness of the proposed model is demonstrated through a numer-

ical example. 

Keywords: supply chain management, production-distribution planning, conditional value at risk, bilevel 

programming, robust optimization, KKT conditions, 

1. Introduction 

A supply chain (SC) is a network of facilities and distribution options that performs 

several production-distribution functions to convert raw materials into finished prod-

ucts, and transport them to the final customer. The success of an SC depends strongly 

on coordinating participants’ activities, organizational relationships, and strategic alli-
ances. Thus, supply chain network design (SCND) has become a vital issue regarding 

the SC and its management. An SCND model aims to construct the structure of a net-

work with a long-term planning horizon and, therefore, it is realistic to expect to face 
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uncertainties. The costs of transportation and shortages are imprecisely known parame-

ters, which result from uncertain market demand. Uncertainties reduce the predictability 

of the performance of an SC and increase risk [1]. Due to the importance of agility in 

such unpredictable environments, the SC agility has become an important issue in en-

hancing the performance of the chain. An agile SC is, by definition, capable of operating 

in a competitive environment and dealing with market opportunities that are continually 

emerging and changing with uncertainty [2]. A review of the research on agility in SCs 

and individual enterprises has been provided in [3], and some real-life agile networks, 

such as the networks of Zara, H&M, the Oberalp group, Calida, C&A, Mango, and 

Puma, have also been presented in [4].  

A manufacturer’s agility, as well as its partners’ diversity, can enhance the agility 
of the SC. Therefore, the concept of a virtual supply chain (VSC) emerges as a potential 

corporation of a group of agile enterprises. Chauhan, Proth [5] introduced the concept 

of the opportunistic supply chain (OSC) network design to deal with the problem of 

designing a VSC to take advantage of new market opportunities. Usually, the resulting 

SC is anything but lean, due to its forecast-based structure. A demand-driven system is 

capable of obtaining leanness, which in turn enhances the effectiveness of the SC 

through a vendor managed inventory (VMI) strategy [6]. However, the uncertainty of 

market information is magnified and makes the SC more vulnerable. A VMI strategy 

can be organized according to the theory of the Stackelberg games. This theory can be 

mathematically formulated using bilevel programming (BLP) which is adapted to un-

certain systems [7].  

The uncertainties of market related information, i.e., on demand and the costs of 

transportation and shortages, are operational risks of the SC [1]. The importance of tak-

ing risk into account, together with the decentralized nature of the SC, makes a robust 

approach attractive when dealing with the SCND problem under uncertainty [8]. Bert-

simas and Sim [9] introduced an approach to constructing a robust linear counterpart of 

the initial linear problem with uncertainty based on polyhedral uncertainty sets. 

Natarajan, Pachamanova [10] integrated uncertainty sets into risk measures (RMs). 

A given function   is called a RM if it satisfies the axioms of monotonicity and trans-

lation in variance. Bertsimas and Brown [11] constructed uncertainty sets based on the 

concept of coherent risk measures (CRM). A particular RM is called a CRM if it satis-

fies the additional axioms of convexity and positive homogeneity. A finite number of 

conditional value at risk (CVaR) measures may generate a class of RMs, called distor-

tion RMs [11]. CVaR is tractable in the context of robust optimization (RO) [12]. It 

takes into account a decision maker’s (DMs) level of risk aversion. Traditionally, the 

classical IPDP problems obtain the maximum expected profit or the minimum expected 

cost that are suitable for risk-neutral DMs [15]. However, supporting potential losses 

resulting from demand uncertainty is very costly for companies. Taking into account 

risk-aversion preference is, therefore, suitable for such companies [16]. To better define 
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the concept, suppose that a risk-averse DM would like to satisfy the constraint t u x  

with at least a (1 – ) level of confidence. The DM may enforce   1t
p    u x

through a value at risk (VaR) constraint, as in the classical example of the RM defined 

as   VaR ( ) inf R;p 0 1 .t t
b



       u x u x  This approach is computationally 

complex, due to its non-convex feasible region. CVaR, in contrast, allows a DM to ob-

tain any degree of confidence, (1 – ), while retaining convexity [13]. It transforms the 

problem into  max CVaR t

x
 u x , where 0,1 reflects the level of risk aversion of 

the DM [14].  

This paper builds on OSC design through integrated production-distribution plan-

ning (IPDP) under an uncertain and risky environment. The proposed BLP takes into 

account the DMs subjective level of risk aversion when dealing with market-related 

uncertainties. The contributions of this paper are summarized as follows: 

• The main objective of this paper is to develop an integrated model of designing 
an OSC network considering leanness and robustness under an uncertain and risky en-
vironment.  

• The model leads to a strong linear relationship between the expected cost of the 
chain and the retailer’s level of risk aversion.  

• The model aggregates the problem of OSC network design and risk management 
in a robust manner. Although the model was originally based on coherent risks, it can 
be adapted to incoherent risks, according to [10]. 

This paper is organized as follows. A literature review and the motivation of the 

study are given in Section 2. The problem and its mathematical formulation will be fully 

described in Section 3. The formulation of the model and method of solution will be 

introduced in Section 4, and computational results will be presented in Section 5. Fi-

nally, conclusions and potential areas of future research will be presented in Section 6.  

2. Literature review 

Integrating decisions with different functions into a single optimization model is an 

appropriate approach to formulating a production-distribution system. The IPDP prob-

lem is an important issue in supply chain management (SCM). It integrates the two main 

concerns of SCM to meet demand on time, while attaining minimum cost through an 

effective production-distribution network [17]. These concerns are, firstly, production 

planning and control, and, secondly, distribution and logistics. The first area contains 

the entire manufacturing process, including inventory control, scheduling, and handling 
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materials. The second area, on the other hand, embraces the processes of inventory re-

trieval, product transportation, and meeting demand [18]. Extensive research has been 

done using an integrated approach to a production-distribution system. Klibi, Martel [8] 

and Fahimnia et al. [18] provided a comprehensive review of recent IPDP models and 

techniques. Kopanos et al. [19] and Yu and Nagurney [20] developed their network- 

-based SC model for a food company. Bilgen and Çelebi [21] studied the problem in 

a yoghurt production line of multi-product dairy plants within the framework of mixed 

integer linear programming (MILP). Baghalian, Rezapour [22] addressed a stochastic 

path-based IPDP problem for a multi-product SC under uncertain demand. Liu and 

Papageorgiou [23] investigated a capacitated IPDP problem in a global SC using 

a multi-objective MILP model. Hashim, Nazim [24] employed a BLP approach to an 

IPDP model in constructing an SC under a fuzzy environment. Golpîra [25] proposed 

an IPDP to formulate an SCND problem under uncertainty. The resulting robust MILP 

model aims to minimize the total cost of the network. It takes into account the retailer’s 
level of risk aversion to obtain a more realistic model regarding uncertain demand. 

Taxakis and Papadopoulos [26] proposed two mixed integer programming models for 

the production-distribution and inventory planning problem. The number of customers 

and suppliers, and their demand and capacities were assumed to be known in these mod-

els. Khalili, Jolai [27] presented a two-stage scenario-based mixed stochastic-possibil-

istic programming model for an IPDP problem with a two-echelon SC over a midterm 

horizon under risk. In their research, possibilistic parameters were introduced to deal 

with operational risks, while the risk of disruption was addressed by stochastic scenar-

ios. CVaR was employed in their paper to ensure the robustness of the solution. How-

ever, the model does not reflect all of the uncertainty in demand. Lalmazloumian, Wong 

[28] addressed agility and the level of customer service in their research. In their model, 

a robust, scenario-based approach to optimization was used to deal with uncertainties.  

Furthermore, some recent research has been carried out to tackle OSC network de-

sign via an IPDP approach. Chauhan et al. [6] used an IPDP approach considering 

prequalified partners in order to seize a new market opportunity. In their model, the 

market was characterized by a deterministic forecast over a planning horizon. The ob-

jective was to design an SC by selecting one partner from each echelon to meet demand 

without any backlog. The model was also designed to minimize the production and lo-

gistics costs over the given planning horizon. Pan and Nagi [17] extended this model by 

using an RO approach to deal with uncertain demand. The objective of their study was 

to choose one partner for each echelon and, simultaneously, choose the inventory level, 

production plan, and amount of shortages. Pan and Nagi [2] addressed demand from 

multiple customers as an extension of the model proposed by Pan and Nagi [17]. Se-

lecting multiple companies in each echelon was also permitted to avoid demand remain-

ing unfulfilled. Su, Huang [29] presented an IPDP approach to dealing with the problem 

of partner selection in SCND. The chain was assumed to operate under a multi-product, 
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multi-stage, multi-production route, multi-machine, and multi-period manufacturing en-

vironment. They claimed that a problem often occurs when all of the companies estab-

lish partnerships to form a virtual organization in order to capture market opportunities 

when they arise. 

The main motivation of this study was to develop an integrated model for designing 

an OSC network taking into account robustness, leanness, and agility under an uncertain 

and risky environment. The resulting bilevel mixed integer linear programming model 

incorporates the concept of BLP and the problem of designing a single-product OSC 

network in a robust manner. The model considers the level of risk aversion of the re-

tailer, as well as the uncertainties of a network’s downstream costs and customer de-
mand. The resulting network is optimally organized with a set of pre-qualified partners 

willing to participate to seize a new market opportunity. The final objective is to select 

one partner for each echelon to achieve the minimum total cost. Thus, the preliminary 

objective function contains two overall terms, i.e. the deterministic total cost of a sup-

pliers’ subsystem and the uncertain total cost of a retailers’ echelon. The first term con-

tains a fixed level of production, alliance formation, and transportation costs, and the 

second term contains uncertain backorder and transportation costs. Reformulation of the 

second term leads to the BLP problem via the concept of CVaR under a VMI strategy. 

The Stackelberg leader in the resulting hierarchical IPDP problem is the supplier sub-

system and the follower is the retail section. Finally, the model is transformed into a sin-

gle level mixed integer linear programming problem by using the KKT conditions, 

which can be solved analytically.  

3. Statement of the problem 

This paper considers a production-distribution network, for example the network 

illustrated in Fig. 1, through which an SCN would like to start a new project manufac-

turing a product in different plants and delivering them to customers through potential 

transportation links. 

In such an organizational web, several virtual companies are considered to perform 

and transport a single product in a pre-defined production-distribution sequence. Denote 

the production sequence as  1, 2, ..., .A   The process sequence contains several 

echelons, ,a A  each consisting of several pre-qualified potential partners. Only one 

operation is accomplished in an echelon. Thus, the echelon contains only one selected 

company in the final network. The network’s structure is a direct network ( , ),    

where denotes the set of potential partners, and defines the set of possible arcs be-

tween potential partners. aA   denotes the set of all companies capable of accom-

plishing operation .a A aN  indicates the number of potential partners in echelon 
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.a A  No arc exists between nodes in aA  and all the arcs are directed from a node in

,aA a A  to a node in 1, .aA a A   This network delivers the final product from the 

retailer to the customer and, therefore, uncertainty regarding the parameters affects the 

network at this level. Some retailers are risk-neutral and some are risk-averse.  

 

Fig. 1. An illustration of the considered SC 

A retailer’s level of risk aversion, , is therefore considered in the formulation of 

the model. This model aims to design such a VSC in a manner that minimizes the total 

cost of the network in an uncertain and risky environment. The total cost is the sum of 

the costs of alliance formation, transportation, manufacturing, and shortages. Moreover, 

the following assumptions are applied: 

• There is no need to consider the inventory or any related costs in the model. This 
assumption is clearly discussed at the end of Section 4.1. 

• The network enters at most only one new market. 
• Only one company can be selected in each echelon. 
• Shortages are allowed in the last echelon of the network. 
• Transportation is assumed to be single-mode. 

4. Formulation of the model 

Sets and indices 

 1, 2, ...,a A    – set of operations/echelons 

i I  – set of available partners for use by the network in echelon a 

j J  – set of available partners for use by the network in echelon a + 1 
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Parameters 

Na – number of pre-qualified potential partners in echelon a 

( ) ( 1)i a j afc   – fixed cost of alliance formation between potential partner i in echelon a and 

  potential partner j in echelon a + 1 

( ) ( 1)i a j atc   – unit cost of transportation from potential partner i in echelon a to potential 

  partner j in echelon a + 1 

( )i apc  – unit processing cost for potential partner i in tier a  

( )i   – available production capacity at potential partner i in the retailers’ echelon  
m – a very large positive number  

 – fill rate parameter  

Uncertain parameters 

d  – uncertain amount of demand  

( )ig   – random unit backorder cost for potential partner i  in the retailers’ echelon 

( )il   – random unit transportation cost from potential partner i in the retailers’ 
  echelon to the set of customers 

Decision variables 

( ) ( 1)i a j ax   – amount of product shipped from potential partner i in echelon a to potential 

  partner j in echelon a + 1 

( )it   – amount of product shipped to customers from potential partner i in the 

  retailers’ echelon 

( )ib   – amount of backorders at potential partner i in the retailers’ echelon  

( )i az  – amount of product manufactured at potential partner i in echelon a 

( ) ( 1)i a j ay   

if potential partner  in echelon  is linked to potential partner   

in echelon  + 1 in the netwo
1
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4.1. Formulation of the model  

The resulting formulation of the MILP for the problem described above is defined 

by Eqs. (1)–(18): 

 

 

1

1

1

( ) ( 1) ( ) ( 1) ( ) ( )

1 1 1 1 1

1

( ) ( 1) ( ) ( 1) ( ) ( ) ( ) ( )

1 1 1 1

min
a a a

a a

N N N

i a j a i a j a i a i a

a j i a i

NN N

i a j a i a j a i i i i

a j i i

fc y pc z

tc x l t g b

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
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





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

 
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
 


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

 

 
 

(1)

 

subject to: 

 
( )

1

1, 1, 2, ...,
aN

i a

i

w a 


   (2) 

 ( ) ( 1) ( ) , ( , ) , 1, 2, ..., 1i a j a i ay w i j A a         (3) 

 ( ) ( 1) ( 1) , ( , ) , 1, 2, ..., 1i a j a j ay w i j A a         (4) 

 ( ) ( 1) ( ) ( 1) 1, ( , ) , 1, 2, ..., 1i a j a i a j ay w w i j A a           (5) 

 ( ) ( ) ( ) , 1, 2, ..., , 1, 2, ...,i a i a i a az w i N a      (6) 

 
1

( ) ( 1) ( )

1

, 1, 2, ..., , 1, 2, ..., 1
aN

i a j a i a a

j

x mw i N a 





      (7) 

 
( ) ( 1) ( 1) 1

1

, 1, 2, ..., , 1, 2, ..., 1
aN

i a j a j a a

i

x mw j N a   


      (8) 

 
1

( ) ( 1) ( )

1

0, 1, 2, ..., , 1, 2, ..., 1
aN

i a j a i a a

j

x z i N a 





       (9) 

 ( ) ( ) 0, 1, 2, ...,i it z i N       (10) 

 
( ) ( ) , 1, 2, ..., , 1, 2, ...,i a i az dw i N a      (11) 
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( ) ( ) ( ) , 1, 2, ...,i i ib dw t i N        (12) 

 ( ) 0, 1, 2, ...,it i N    (13) 

 ( ) 0, 1, 2, ...,ib i N    (14) 

 ( ) 0, 1, 2, ..., , 1, 2, ...,i a az i N a     (15) 

 ( ) ( 1) 0, ( , ) , 1, 2, ..., 1i a j ax i j A a        (16) 

 ( ) ( 1) {0,1}, ( , ) , 1, 2, ..., 1i a j ay i j A a        (17) 

 ( ) {0,1}, 1, ..., , 1, 2, ...,i a aw i N a      (18) 

The first term in Eq. (1) describes the total cost of alliance formation. The second 

term represents the total manufacturing cost of the network. The third term explains the 

total cost of transportation, excluding the uncertain transportation costs of the retailers. 

The last term contains the total transportation and backorder costs of the last echelon. 

Constraints (2)–(5) ensure that the final SC includes only one company from each eche-

lon. According to the set of constraints (6), the amount of production in each company 

is limited to its capacity. Constraints (7) and (8) impose that goods are only produced 

by the finally selected companies. Constraints (9) and (10) balance the production-dis-

tribution flow. The set of constraints (11) ensures that the uncertain demand is met at 

a pre-defined rate. The set of constraints (12) represents the fact that the unmet demand 

is backordered. Constraints (13)–(16) indicate the non-negativity of the decision varia-

bles, and constraints (17) and (18) define ( ) ( 1)i a j ay  and ( )i aw as binary variables. It is 

noteworthy that unless ( )i aw is used, the structural integrity of the network is not guar-

anteed. Suppose that, for example, 2(1)2(2) 1y   and, therefore, 2(1) 2(2) 1w w  . To ensure 

the integrity of the network, it is obvious that the potential arc between the second eche-

lon and the third one should be started from the second node of the second echelon, i.e.,

2(2)·(3) 1y  . This is not obtained unless such binary variables are used to describe the 

nodes of the web. In other words, in the absence of such variables, any arc is feasible 

when previously selected arcs are not considered. For example, when 2(1)2(2) 1,y 

3(2)·(3) 1y   and 1(2)·(3) 1y   are both feasible. This affects the integrity of the network. 

According to the aforementioned information, assumption 1 can now be described. 

Integrating constraints (10)–(12) with constraints (13)–(15) makes the model VMI- 
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-structured via their demand-driven basics, which in turn leads to a zero level of inventory. 

For any  > 1, it is obvious from the set of constraints (11) that
( )i az d and, therefore, the 

amount of shortages is enforced to be negative, according to constraints (10) and (12). This 

is inconsistent with the type of 
( ) ,ib   defined by the set of constraints (14). Thus,  should 

be equal to or less than one. This means that the inventory level is necessarily equal to 

zero in the last echelon of the chain. To understand what happens with the inventory at 

other tiers, additional descriptions are given in Section 4.2.  

4.2. Robust mathematical model 

The literature provides several definitions of the word robustness. It can be divided 

into the concepts of robustness of a solution and robustness of a model [30]. The robust-

ness of a solution means that the optimal solution according to a model remains close 

to optimum for any scenario. The robustness of a model means that the solution remains 

almost feasible for any realization of the scenarios. Close to optimum means that the 

solution is near-optimal, while almost feasible means that the penalty function, which 

is assigned to measure and control the infeasibility, takes a low value. Bertsimas and 

Brown [11] introduced an approach for constructing uncertainty sets according to CRM 

for robust linear optimization problems. Discrete probability space, which is motivated 

by sampling considerations, is directly leveraged to construct a relationship between 

CRM and corresponding uncertainty sets. This paper employs the same approach as 

Bertsimas and Brown [11] to deal with the uncertainty of the network’s last echelon. 
Accordingly, the corresponding robust formulation for Eq. (1) can be defined as: 

 

1

1

1

( ) ( 1) ( ) ( 1) ( ) ( )

1 1 1 1 1

1

( ) ( 1) ( ) ( 1)

1 1 1

min
a a a
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i a j a i a j a i a i a

a j i a i
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i a j a i a j a

a j i

fc y pc z

tc x
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

 
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

 
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





  


 
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(19)

 

subject to: 

 ( ) ( ) ( ) ( )

1

( )

N

i i i i

i

l t g b


    


   (20) 

Let 
( ) ( ) ( )( , ) , 1, ...,i il g i N    U be a matrix describing imprecisely known con-

straints, where ( ) . U    is an unknown uncertainty set for
1 2

( ) .
N


U  The con-

cept of RO leads to an optimal solution that is feasible for all realizations of ( )U based 
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on the set defined according to the concept of CVaR with respect to the DM’s risk pref-
erences. Accordingly, suppose that the functionμ is a CRM, and the uncertain vector 

( ) u U  is defined as a random vector in 
2N on a finite probability space. There ex-

ists s( ) s( ) u u , where the support of ( )u is defined by 1( ) ( ){ , ..., },S   u u  which can 

be considered as the set of realizations of the problem’s uncertain data. A form of con-
straint (20) which takes risk aversion into account can be defined as ( )( ) 0,  μ u x  

where ( ) ( )( , ) , 1, ..., .t

i it b i N   x  This leads to ( )P{ } 1    u x  as a non-convex 

constraint. To deal with the non-convexity of this constraint, an alternative formulation 

is used in the form of CVaR, which can be defined by Eq. (21). 

 
 ( ) ( )

: 1/( )

CVaR { } inf [ ]
S

s

V
V v S

E


   
 

   u x u x  (21) 

in which { : 1}S S t  p e p  with e being a vector of ones and / .s Se e  s is the num-

ber of scenarios remaining after trimming to the level , s = S(1 – ) +   S(1 – ), and 

( )Sx


is the thS  best component based on the objective function of the problem. The 

corresponding CRM, as a combination of CVaR for various values of , can be for-

mulated as ( )

1

CVaR { },
s

S

s

s

  


 u x  which leads to 
( )

( )
1

min { }
s

S
t

s

s




 





p
u

u x  from 

Eq. (21). 
( ) ( )

1

( ) conv : ( )
S

s s

s

p S   


  
   

  
p

u  is called the b-permuthall of ,  

and s  can be defined by Eq. (22), where 
1

S

s s

s




p p in which sp and 1.s sp p   

( )S denotes the set of all permutations of S elements. 

 
11

. ,
, 1

( )( ), 1, 2, ..., 1

S
s

s s

sS s S s

s p s S

S s p p s S
 

  


     

  (22) 

Accordingly, constraint (20) can be defined as:  

 

( ) ( ) s ( )

1 1

( ) ( ) s ( )

1

max

N S S

s i k i

i s k s

S S

s i k i

s k s

p l t

p g b



  

  

 

 

  

 

          
   

    
   

  

 
 

(23)
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On the other hand, the demand in constraints (11) and (12) is uncertain. Defining 

( )( )q u as the -quantile of 
( ) ,u  it can be derived from [31] and Eq. (21) that 

( ) ( ) ( )CVaR E[ : ( )]q     U U U  for all realizations of ( )U ( ) ( )1 ( )( { , ..., })s  U u u

is given by 

  ( )

1

1
CVaR

s

s s
s

s s
d d

s s





 


 

  

  


           
  (24) 

Taking into account Eqs. (19), (23), and (24), the model is written as a BLP prob-

lem, which was first introduced by Von Stackelberg in 1934 to model the leader-fol-

lower game. The objective of the player at the upper level is indicated by Eq. (19), while 

the objective function of the player at the lower level is given by Eq. (23). Constraints 

(10), and (12)–(14) are embedded in the model’s lower level. Constraints (2), (11), (15), 

and (18) are separated into two subsets, i.e. subsets of upper and lower level constraints, 

each of which is embedded in the appropriate level. The other constraints are embedded 

in the model’s upper level. In such a game, the leader makes the first move, taking into 

account that the follower reacts in an optimal way to the leader’s choice, and then the 
follower reacts optimally to the leader’s action. Thus, it is logically obvious that the 

leader should anticipate the follower’s response, in order to optimize its objective func-

tion. This can provide some additional explanations about why assumption 1. ( )iz   is 

obtained directly from the model’s lower level, which is completely described at the end 
of Section 4.1. The amount of goods produced in the suppliers’ subsystem is conse-
quently calculated from the amount ( )iz  that is predefined directly from market de-

mand. This is because of the structure of the BLP, which in turn implements a VMI 

strategy according to the set of constraints (11). Therefore, the level of inventory is en-

forced to be equal to zero in the entire SCN and therefore there is no need to consider 

the inventory or any related costs in the model.  

The resulting BLP problem can be solved using its KKT conditions, which is an 

appealing way of dealing with general BLP problems. In this way, the lower level prob-

lem can be replaced by its Karush–Kuhn–Tucker (KKT) conditions to obtain the corre-

sponding single level problem. This approach is applicable when the lower-level prob-

lem is convex and regular. However, the lower level problem of the model proposed in 

this paper is not convex with respect to the variables ( )iw  defined by constraints (18). 

Accordingly, the term ( ) ( )(1 )i imw w   is added to the corresponding objective function 

to penalize deviance of ( )iw   from 0 or 1. Thus, Eq. (23) is transformed into Eq. (25), 

and the variables ( ) , 1, ...,i aw i N  are defined by the set of constraints (26). After ap-

plying this relaxation, the KKT conditions for the model’s lower level problem are obtained 
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from equations (27) to (54). The symbol  , in the constraints, is used to denote the orthog-

onal relationship which exists between the follower’s complementary conditions. 

 



( ) ( ) s ( )

1 1

( ) ( ) s ( ) ( ) ( )

1

max

(1 )

N S S

s i k i

i s k s

S S

s i k i i i

s k s

p l t

p g b mw w



  

    

 

 

  

 

           
   
      

  

  

 
 

(25)

 

 ( )0 1, 1, ...,i aw i N    (26) 

 
1

( ) ( ) 0 0, 1, 2, ...,i i it z i N         (27) 

 
2

( ) ( ) 0 0, 1, 2, ...,i i it z i N         (28) 

 
3

( ) ( ) ( )

1

1
0 0, 1, 2, ...,

s

i s i is
s

s s
z d d w i N

s s





 
  

 

 
  

  


                   
   (29) 

 
4

( ) ( ) ( ) ( )

1

1
0 0, 1, 2, ...,

s

i i s i is
s

s s
b t d d w i N

s s





 
   

 


  

  


                   
  (30) 

 
5

( ) ( ) ( ) ( )

1

1
0 0, 1, 2, ...,

s

i i s i is
s

s s
b t d d w i N

s s





 
   

 


  

  


                    
  (31) 

  
6

1

1 0, 1, 2, ...,

N

i i

i

w i N


 


     
(32) 

  
7

1

1 0, 1, 2, ...,

N

i i

i

w i N


 


       (33) 

  
80 0, 1, 2, ...,ii

t i N       (34) 

  
90 0, 1, 2, ...,ii

b i N       (35) 
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  
100 0, 1, 2, ...,ii

z i N        (36) 

  
110 0, 1, 2, ...,ii

w i N       (37) 

  
121 0, 1, 2, ...,ii

w i N      (38) 

 4 5 9

( ) ( ) s

1

, 1, 2, ...,
S S

i i i s i s

s k s

p l i N     
 

 
     

 
   

(39) 

 1 2 4 5 8
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1
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i i i i i s i s
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 
       

 
   (40) 

 
1 2 3 10 0, 1, 2, ...,i i i i i N          (41) 
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  

  


                               
                    

 

 .., N

 
(42)

 

 
1

( ) ( )( ) 0 , 1, 2, ...,i i it z i N        (43) 
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( ) ( )( ) 0 , 1, 2, ...,i i it z i N        (44) 
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
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  

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1
0, 1, 2, ...,

s

i i i s s
s

s s
b t d d i N

s s





 
  

 


  

  

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6

( )

1

1 0, 1, 2, ...,

N

i i

i

w i N


 


 
    

 
  (48) 

 
7

( )

1

1 0, 1, 2, ...,

N

i i

i

w i N


 


 
     

 
  (49) 

 
8

( )( ) 0, 1, 2, ...,i it i N      (50) 

 
9

( )( ) 0, 1, 2, ...,i ib i N      (51) 

 
10

( )( ) 0, 1, 2, ...,i iz i N       (52) 

 
11

( )( ) 0, 1, 2, ...,i iw i N       (53) 

 
12

( )( 1) 0, 1, 2, ...,i iw i N      (54) 

Even under suitable assumptions regarding convexity, the above mathematical pro-

gram is not easy to solve, due mainly to the non-convexities that occur in the comple-

mentarity and Lagrangian constraints, i.e. Eqs. (43)–(54). Several researchers suggest 

complete enumeration algorithms to deal with such a condition, see e.g., [32]. However, 

applying complete enumeration to find all the solution points for the model proposed in 

this paper is a time-consuming procedure. It is therefore necessary to introduce an ap-

propriate relaxation approach to overcome this complexity. In this way, given the binary 

variable i = (0, 1),  = 1, ..., 12, i = 1, 2, ..., N, each non-linear constraint is substituted 

by two linear ones. For instance, constraint (52) is relaxed as follows:  

 
10

10 , 1, 2, ...,i im i N     (55) 

 ( ) 10( ) (1 ) , 1, 2, ...,i iz m i N      (56) 

 5. Computational results, discussion and sensitivity analysis 

The problem considers 48 potential partners in a 4-tier network as an organizational 

web to seize a new market opportunity. It can be shown (Fig. 2) that there exist 20 736 

feasible routes in the network. The data for this example are illustrated in Table 1. 

CPLEX 9.0 is executed on a PC that has a 2.20 GHz Intel (R) Core (TM)2 Duo CPU 
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and 3.0 G RAM to solve the resulting MILP problem. The mean time consumed to solve 

the problem is 174 s.  

 

Fig. 2. The organizational web for the numerical example 

Table 1. Data used in the problem 

Data type  Distribution 

Demand Unif (50, 600) 

Unit cost of transportation  Unif (10, 30) 

Fixed cost of forming an alliance Unif (1000, 5000) 

Unit cost of production Unif (20, 60) 

Unit cost of backorder  Unif (10, 30) 

Production capacity Unif (500, 700) 

 

The results illustrated in Fig. 3 clearly demonstrate the sensitivity of the optimal 

value of the objective function to the retailer’s level of risk aversion, , while Fig. 4 

illustrates the sensitivity of the network’s structure to the parameter . Figure 4 shows 

the four different logistic chains chosen in response to. This figure illustrates that the 

chain 2-1-1-1 is selected when the retailer’s level of risk aversion is sufficiently large. 
The chain 2-12-12-12 is the optimal chain when the retailer’s level of risk aversion is 
sufficiently small. The retailer assigned to node 1 in the retailer tier is risk-neutral, and 

makes its decision based on expected profit. On the other hand, the retailer assigned to 

node 12 in the retailer tier is risk-averse, and makes its decision based on worst possible 

case. A retailer’s readiness to sacrifice mean profit to avoid risk increases, while the param-

eter  decreases. As a result, the demand of a risk-averse retailer decreases. That is to 

say, the retailer itself decreases the level of production and the expected total cost of the 

chain, which is clearly demonstrated in Fig. 3.  
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Fig. 3. Expected costs with respect to 

This is consistent with constraints (11) and Eq. (23). According to Eq. (23), a risk-

averse retailer would like to minimize its expected cost, while it would like to satisfy con-

straints (11) with at least 1 –  level of confidence. In other words, the retailer could enforce 

( ) ( )( ) 1i a i ap z dw     for any value of . It is obvious that a smaller value of re-

tailer’s level of risk aversion leads to a higher value of 1 – . This means that the retailer 

would like to be at a higher level of confidence which results from a small amount of 

demand, according to constraints (11). Not only does Fig. 3 illustrate the logical rela-

tionship between the expected costs and the retailer’s level of risk aversion, but also it 

provides some more details about this relationship. It clearly indicates a strong almost 

linear relationship (R2 = 0.9983) between the expected total cost and the values of .  

 

Fig. 4. Optimal chains and their preferences with respect to  

Figure 4 shows the effect of  on the chain’s preferences that in turn can be used to 
measure the robustness of the model according to the results illustrated in Fig. 3. It is 

noteworthy that in order to validate the robustness of the model, the preference for the 

preferred chain should show a clear relationship with . Thus, the expected preferences 

of the chains, illustrated in Fig. 4, indicate that the model is robust. It is noteworthy that 

only 4 routes are selected from the 20 736 possible ones, which also indicates that the 
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model is robust, by itself. On the other hand, as the level of risk aversion increases the 

cost variability ratio is logically decreases, while the expected total cost increases re-

garding the SCs greater production level.  

 

Fig. 5. Variability of expected cost with respect to  

Figure 4 illustrates the sensitivity of the variability of the costs to the retailer’s level 
of risk aversion. Therefore, the retailer makes a trade-off between the network’s ex-
pected cost and its variability with respect to its level of risk aversion. On the other 

hand, the figures show that the variability of the expected cost is small in comparison 

to the corresponding expected total cost for any value of  . These results also indicate 

that the solution is robust.  

6. Conclusion and future potential 

The main motivation of this study was to develop an integrated design for an SCN 

taking into account robustness, leanness, and agility, under an uncertain and risky envi-

ronment. The research aimed to provide an analytic framework for such a network, 

which is absent in the literature. The resulting robust model successfully considers un-

certain backorder and transportation costs under a VMI strategy using binary variables 

and well-defined constraints. It guarantees a certain level of customer service and achieves 

the optimal total cost for the chosen chain. The network is organized from pre-qualified 

partners in an organizational web to seize a new market opportunity. To deal with the 

uncertainty in demand and the risky environment, a CVaR approach is successfully em-

ployed using a data driven procedure based on a retailer’s level of risk aversion. This 

approach provides the appropriate aggregation of the problem of designing an OSC net-

work with hazard management. To analytically solve the model, i.e. obtain a globally 
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optimal solution using the KKT conditions, some relaxations are considered in the 

model. The resulting single-level problem is an MILP problem that may be easily solved.  

The computational results make evident the desirable properties of the model as 

follows:  

• The level of risk aversion of a retailer has a significant impact on the structure of 
the SC.  

• Integrating a CVaR approach and the BLP concept with a VMI strategy makes the 
SC well-organized in a robust manner, taking into account leanness.  

• Using CVaR to deal with uncertainties leads to a strong near linear relationship 
between the retailer’s level of risk aversion and the final expected total cost of the chain. 
This enables the DM to establish a trade-off between the total cost of the chain and the 
level of the retailer’s risk aversion. 

To encourage future research on the basis of the results presented here, the follow-

ing are some potential research areas. It is obvious that the proposed framework is static, 

but it is more realistic that the DM wants the SCN to evolve over time. In this way, an 

inventory of raw materials and products, and related lead times with certain/uncertain 

costs might need to be considered in such a model. Another area of future research is to 

design a model for a multi-product SCN taking into account different modes of trans-

portation. This may significantly enhance the applicability of the model, particularly to 

global SCNs. Applying multi-level optimization to deal with other sources of risk may 

be another direction for future research. The model presented here uses the framework 

of bilevel programming with a particular concept of CVaR to deal with uncertainties 

regarding the costs. It is clear that the uncertainty regarding demand could also be han-

dled in the same way. This may transform the model to three-level optimization. Other 

sources of uncertainties (e.g. exchange rate, tax, travel times, and price) could also be 

dealt with to obtain a more realistic model. Another future direction could be addressing 

some other aspects, such as greenness and service functions. This may lead to bilevel 

multi-objective programming, which has been extensively reviewed by Lu, Han [33].  

References 

[1] HECKMANN I., COMES T., NICKEL S., A critical review on supply chain risk. Definition, measure and 

modeling, Omega, 2015, 52, 119–132. 

[2] PAN F., NAGI R., Multi-echelon supply chain network design in agile manufacturing, Omega, 2013, 41 

(6), 969–983. 

[3] FAYEZI S., ZUTSHI A., O’LOUGHLIN A., Understanding and development of supply chain agility and 

flexibility. A structured literature review, Int. J. Manage. Rev., 2016, 00, 1–30. 

[4] TURKER D., ALTUNTAS C., Sustainable supply chain management in the fast fashion industry. An anal-

ysis of corporate reports, Eur. Manage. J., 2014, 32 (5), 837–849. 

[5] CHAUHAN S., PROTH J., SARMIENTO A., NAGI R., Opportunistic supply chain formation from qualified 

partners for a new market demand, J. Oper. Res. Soc., 2006, 57 (9), 1089–1099. 



 H. GOLPÎRA 40 

[6] KANG J.-H., KIM Y.-D., Inventory control in a two-level supply chain with risk pooling effect, Int. J. 

Prod. Econ., 2012, 135 (1), 116–124. 

[7] PATRIKSSON M., WYNTER L., Stochastic mathematical programs with equilibrium constraints, Oper. 

Res. Lett., 1999, 25 (4), 159–167. 

[8] KLIBI W., MARTEL A., GUITOUNI A., The design of robust value-creating supply chain networks. 

A critical review, Eur. J. Oper. Res., 2010, 203 (2), 283–293. 

[9] BERTSIMAS D., SIM M., The price of robustness, Oper. Res., 2004, 52 (1), 35–53. 

[10] NATARAJAN K., PACHAMANOVA D., SIM M., Constructing risk measures from uncertainty sets, Oper. 

Res., 2009, 57 (5), 1129–1141. 

[11] BERTSIMAS D., BROWN D.B., Constructing uncertainty sets for robust linear optimization, Oper. Res., 

2009, 57 (6), 1483–1495. 

[12] GOTOH J.-Y., TAKANO Y., Newsvendor solutions via conditional value-at-risk minimization, Eur. J. 

Oper. Res., 2007, 179 (1), 80–96. 

[13] XU X., MENG Z., SHEN R., A tri-level programming model based on conditional value-at-risk for three- 

-stage supply chain management, Comp. Ind. Eng., 2013, 66 (2), 470–475. 

[14] WU M., ZHU S.X., TEUNTER R.H., The risk-averse newsvendor problem with random capacity, Eur. J. 

Oper. Res., 2013, 231 (2), 328–336. 

[15] QIN Y., WANG R., VAKHARIA A.J., CHEN Y., SEREF M.M., The newsvendor problem. Review and di-

rections for future research, Eur. J. Oper. Res., 2011, 213 (2), 361–374. 

[16] CHAHAR K., TAAFFE K., Risk averse demand selection with all-or-nothing orders, Omega, 2009, 37 

(5), 996–1006. 

[17] PAN F., NAGI R., Robust supply chain design under uncertain demand in agile manufacturing, Comp. 

Oper. Res., 2010, 37 (4), 668–683. 

[18] FAHIMNIA B., FARAHANI R.Z., MARIAN R., LUONG L., A review and critique on integrated production- 

-distribution planning models and techniques, J. Manuf. Syst., 2013, 32 (1), 1–19. 

[19] KOPANOS G.M., PUIGJANER L., GEORGIADIS M.C., Simultaneous production and logistics operations 

planning in semicontinuous food industries, Omega, 2012, 40 (5), 634–650. 

[20] YU M., NAGURNEY A., Competitive food supply chain networks with application to fresh produce, 

Eur. J. Oper. Res., 2013, 224 (2), 273–282. 

[21] BILGEN B., ÇELEBI Y., Integrated production scheduling and distribution planning in dairy supply 

chain by hybrid modelling, Ann. Oper. Res., 2013, 211 (1), 55–82. 

[22] BAGHALIAN A., REZAPOUR S., FARAHANI R.Z., Robust supply chain network design with service level 

against disruptions and demand uncertainties. A real-life case, Eur. J. Oper. Res., 2013, 227 (1), 199–215. 

[23] LIU S., PAPAGEORGIOU L.G., Multiobjective optimisation of production, distribution and capacity 

planning of global supply chains in the process industry, Omega, 2013, 41 (2), 369–382. 

[24] HASHIM M., NAZIM M., NADEEM A.H., Production-distribution planning in supply chain management 

under fuzzy environment for large-scale hydropower construction projects, Proc. 6th Int. Conf. Man-

agement Science and Engineering Management, Springer, 2012, 185, 559. 

[25] GOLPÎRA H., Supply chain network design optimization with risk-averse retailer, Int. J. Inf. Syst., Sup-

ply Chain Manage., 2017, 10 (1), 16–28. 

[26] TAXAKIS K., PAPADOPOULOS C., A design model and a production-distribution and inventory planning 

model in multi-product supply chain networks, Int. J. Prod. Res., 2016, 54 (21), 6436–6457. 

[27] KHALILI S.M., JOLAI F., TORABI S.A., Integrated production-distribution planning in two-echelon sys-

tems, A resilience view, Int. J. Prod. Res., 2016, 55 (4), 1–25. 

[28] LALMAZLOUMIAN M., WONG K.Y., GOVINDAN K., KANNAN D., A robust optimization model for agile and 

build-to-order supply chain planning under uncertainties, Ann. Oper. Res., 2016, 240 (2), 435–470. 

[29] SU W., HUANG S., FAN Y., MAK K., Integrated partner selection and production-distribution planning 

for manufacturing chains, Comp. Ind. Eng., 2015, 84, 32–42. 



Robust design for an opportunistic supply chain network: a bilevel programming approach  41 

[30] MULVEY J.M., VANDERBEI R.J., ZENIOS S.A., Robust optimization of large-scale systems, Oper. Res., 

1995, 43 (2), 264–281.  

[31] THIELE A., A robust optimization approach to supply chains and revenue management, Massachusetts 

Institute of Technology, 2004. 

[32] COLSON B., MARCOTTE P., SAVARD G., Bilevel programming. A survey, J. Oper. Res., 2005, 3 (2), 87–107. 

[33] LU J., HAN J., HU Y., ZHANG G., Multilevel decision-making. A survey, Inf. Sci., 2016, 346, 463–487. 

Received 25 August 2016 

Accepted 12 March 2017 


