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ABSTRACT

Motivation: Over the past decade, several biclustering approaches
have been published in the field of gene expression data analysis.
Despite of huge diversity regarding the mathematical concepts of
the different biclustering methods, many of them can be related
to the singular value decomposition (SVD). Recently, a sparse
SVD approach (SSVD) has been proposed to reveal biclusters in
gene expression data. In this article, we propose to incorporate
stability selection to improve this method. Stability selection is a
subsampling-based variable selection that allows to control Type
I error rates. The here proposed S4VD algorithm incorporates this
subsampling approach to find stable biclusters, and to estimate
the selection probabilities of genes and samples to belong to the
biclusters.
Results: So far, the S4VD method is the first biclustering approach
that takes the cluster stability regarding perturbations of the
data into account. Application of the S4VD algorithm to a lung
cancer microarray dataset revealed biclusters that correspond to
coregulated genes associated with cancer subtypes. Marker genes
for different lung cancer subtypes showed high selection probabilities
to belong to the corresponding biclusters. Moreover, the genes
associated with the biclusters belong to significantly enriched
cancer-related Gene Ontology categories. In a simulation study, the
S4VD algorithm outperformed the SSVD algorithm and two other
SVD-related biclustering methods in recovering artificial biclusters
and in being robust to noisy data.
Availability: R-Code of the S4VD algorithm as well as a
documentation can be found at http://s4vd.r-forge.r-project.org/.
Contact: m.sill@dkfz.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Clustering methods belong to the most commonly used statistical
tools in the analysis of high-dimensional datasets. If additional
information about the sample class labels is lacking, other types
of analysis like supervised classification methods or testing for
differentially expressed genes cannot be performed. In this case,
unsupervised clustering allows to reveal unknown structures that are
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possibly hidden in the gene expression data matrix. These structures
may be characterized by groups of genes that are coregulated by a
common transcription factor and thus belong to the same pathway
or samples that share a similar gene expression pattern.

One disadvantage of commonly used clustering algorithms like
hierarchical clustering or k-means clustering is that the cluster
assignment of objects are based on the complete feature space, e.g. in
case of clustering the samples, the resulting clusters are derived with
respect to all genes. But groups of genes may only be coregulated
within a subset of the samples and samples may share a common
gene expression pattern only for a subset of genes. Such clusters
that exist only in a subspace of the feature space can hardly be
detected by these classical one-way clustering algorithms. To find
such clusters, other clustering concepts are needed.

In the past decade, the concept of biclustering has emerged in the
field of gene expression analysis. Biclustering which is also known
as coclustering or two-way clustering describes the simultaneous
clustering of the rows and the columns of a data matrix. The first
biclustering algorithm, the so-called Block Clustering, has been
developed by Hartigan (1972). Cheng and Church (2000) proposed
the first biclustering algorithm for the analysis of high-dimensional
gene expression data. Since then, many different biclustering
algorithms have been developed. Currently, there exists a diverse
spectrum of biclustering tools that follow different strategies and
algorithmic concepts. Among others, popular algorithms are the
Coupled Two-Way Clustering (CTWC) by Getz et al. (2000) , Order
Preserving Sub Matrix (OPSM) algorithm by Ben-Dor et al. (2003),
the Iterative Signature Algorithm (ISA) by Bergmann et al. (2003),
the Plaid Model by Lazzeroni and Owen (2002) and the improved
Plaid Model (Turner et al., 2005), SAMBA by Tanay et al. (2004),
biclustering by non-smooth non-negative matrix factorization by
Carmona-Saez et al. (2006), the Bi-correlation clustering algorithm
(BCCA) by Bhattacharya and De (2009) and factor analysis for
bicluster acquisition (FABIA; Hochreiter et al., 2010). Prelic et
al. (2006) developed a fast divide-and-conquer algorithm (Bimax)
and conducted a systematic comparison of different biclustering
algorithms. Santamaria et al. (2007) published an article on
validation indices for the evaluation of biclustering results and
the comparison for biclustering algorithms. Comprehensive reviews
about the concept of biclustering and the different biclustering
approaches have been written by Madeira and Oliveira (2004) and
Van Mechelen et al. (2004).

In a more theoretical review, Busygin et al. (2008) emphasized
the mathematical concepts behind several biclustering algorithms
and pointed out that the SVD represents a capable tool for finding
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biclusters. Furthermore, most existing biclustering algorithms use
the SVD directly or have a strong association with it. To keep track
of the huge diversity, regarding the mathematical properties of the
existing biclustering algorithms, Busygin et al. (2008) suggest to
relate new and existing biclustering algorithms to the SVD.

A major drawback of many biclustering methods is that they rely
on random starting seeds and thus are inconsistent and results may
vary even when the algorithm is applied to the same dataset. As often
in unsupervised clustering it is difficult to judge the biclustering
results regarding their stability. For one-way clustering, several
resampling approaches to validate the stability of the clustering
results are known, e.g. multiscale bootstrap hierarchical clustering
(Suzuki and Shimodeira, 2006) and consensus clustering (Monti,
2005). In case of biclustering, similar methods that take the stability
of the results into account are not yet available.

Recently, Lee et al. (2010) proposed a sparse SVD (SSVD)
method to find biclusters in gene expression data. Singular vectors
of an SVD are interpreted as regression coefficients of a linear
regression model. The SSVD algorithm alternately fits penalized
regression models to the singular vector pair to obtain a sparse matrix
decomposition. The sparseness of the resulting singular vectors
strongly depends on the choice of the penalization parameter. In
this article, we propose to choose the penalization parameters by
stability selection (Meinshausen and Bühlmann, 2010), which is a
subsampling procedure that can be applied to penalized regression
models to select stable variables. In addition, stability selection
offers the possibility to control Type I error rates (Dudoit et al.,
2003), e.g. the per-family error rate (PFER) or the per-comparison
wise error rate (PCER). Applying the new combined algorithm, the
sparse SVD algorithm with nested stability selection (S4VD) to a
lung cancer gene expression dataset reveals biclusters that represent
lung cancer subtypes characterized by relevant sets of coregulated
genes. In a simulation study, we compare the S4VD with the SSVD
algorithm as well as the improved Plaid Model (Turner et al., 2005)
and the ISA (Bergmann et al., 2003).

2 METHODS

2.1 SVD and biclustering
Let X= (xij)∈R

p×n be the gene expression matrix with indices i=1,...,p
and j=1,...,n. The number of genes p is usually by multiple greater than
the number of samples n. The SVD of X can be written as:

X≈UDVT =
r∑

k=1

dkukvT
k , (1)

where r is the rank of X and the columns of the matrix U= (u1,...,ur ) are
the orthonormal left-singular vectors and the columns of V= (v1,...,vr ) are
the orthonormal right-singular vectors. The elements of the diagonal matrix
D are the corresponding positive singular values d1 ≥d2 ≥ ...≥dr >0. Thus,
the SVD is the sum of rank of one matrices dkukvT

k , herein after also called
SVD-layers. According to Busygin et al. (2008), biclustering can be related
to the SVD by considering an idealized data matrix. This matrix has a block
diagonal structure where each block represents a bicluster and the elements
outside these blocks are equal to zero:

X=

⎛
⎜⎜⎜⎝

X1 0 ··· 0
0 X2 0 ···
.
.
.

.

.

.
. . . 0

0 0 ··· Xr

⎞
⎟⎟⎟⎠, (2)

where Xk , k =1,...,r are submatrices of X. If we decompose X by the SVD,
then each submatrix Xk will be associated with a singular vector pair (uk,vk)
such that the non-zero coefficients in uk represent the rows that belong to Xk

and the non-zero coefficients vk represent the columns that belong to Xk . In
the presence of noise and if the data matrix has no block diagonal structure,
the SVD will still be able to detect the rows and columns of the submatrices
as the prominent coefficients in the singular vector pair. These properties
make the SVD a practical method for biclustering.

2.2 The SSVD algorithm
Asparse SVD method for biclustering high-dimensional gene expression data
has been proposed by Lee et al. (2010). The idea is to interpret the singular
vectors of a regular SVD as regression coefficients of a linear regression and
use sparsity-inducing penalties to obtain sparse singular vector pairs.

According to Eckart and Young (1936), the first SVD-layer gives us the
best rank-one approximation of X with respect to the squared Frobenius
norm, i.e.

(d1,u1,v1)=arg min
d,u,v

∥∥X−duvT
∥∥2

F , (3)

where ‖·‖2
F indicates the squared Frobenius norm, which is the sum of

squared elements of the matrix. Lee et al. (2010) showed how this rank-one
approximation can be related to linear regression. Suppose u1 is fixed, then
the minimization of (3) with respect to (d1,v1) is equivalent to a minimization
with respect to ṽ1 = (d1v1). Accordingly, the loss function can be written as:∥∥X−u1ṽT

1

∥∥2
F =∥∥y−(In ⊗u1)ṽ1

∥∥, (4)

where y= (xT
1 ,...,xT

n )T ∈R
pn with xj being the j-th column of X. Then the

minimization of (4) can be interpreted as least squares problem with y as
the response vector, In ⊗u1 as the design matrix and the ṽ1 as vector of
regression coefficients. The least squares estimator of ṽ1 is:

ˆ̃v1 = {
(In ⊗u1)T (In ⊗u1)

}−1
(In ⊗u1)T y (5)

= (uT
1 x1,...,uT

1 xn)T

= XT u1.

In the same way, we can derive the least squares estimator for the product
of the first left singular vector multiplied with the first singular value ũ1. So
without loss of generality with v1 fixed, the minimization of (3) with respect
to ũ1 = (d1u1) is given by the minimization of:∥∥X−ũ1vT

1

∥∥2
F =∥∥z−(In ⊗v1)ũ1

∥∥, (6)

where z= (x1,...,xp)T ∈R
pn with xT

i being the i-th row of X. Here z is the
response vector and (In ⊗v1) is the design matrix.
Finally, the least squares estimator of ũ1 is given by:

ˆ̃u1 = {
(In ⊗v1)T (In ⊗v1)

}−1
(In ⊗v1)T z (7)

= (xT
1 v1,...,xT

p v1)

= Xv1.

In order to obtain sparse singular vector pairs, Lee et al. (2010) suggest
to find the first SVD-layer that minimizes the Frobenius norm subject to
sparsity-inducing penalty terms P1(d1u1) and P2(d1v1):∥∥X−d1u1vT

1

∥∥2
F +λu1 P1(d1u1)+λv1 P2(d1v1), (8)

where λu1 and λv1 are tuning parameters. Possible penalty functions are the
adaptive lasso penalties (Zou, 2006). The corresponding penalized function
is given by:

P1(d1u1)=d1

p∑
i=1

w1,i|u1,i|, P2(d1v1)=d1

n∑
j=1

w2,j|v1,j|, (9)

where w1,i and w2,j are weights that can be chosen according to Zou (2006),
e.g. for w1,i =w2,j =1 we obtain the lasso penalty. Thus, the penalty functions
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are weighted sums of the absolute values of the elements of the first singular
vector pair. Fixing u1 and using the adaptive lasso penalty, the minimization
of (8) becomes:

∥∥X−d1u1vT
1

∥∥2
F +λv1

n∑
j=1

w2,j|v1,j| (10)

=‖X‖2
F +

n∑
j=1

{
ṽ2

1,j −2ṽ1,j(XT u1)j +λv1 w2,j|ṽ1,j|
}
.

To solve this penalized regression and estimate the sparse right singular
vector, Lee et al. (2010) proposed an algorithm that incorporates a
simple component-wise thresholding rule. The component-wise minimizer
of (10) is:

ˆ̃v1,j =sign
{
(XT u1)j

}
(|(XT u1)j|−λv1 w2,j/2)+. (11)

This is the well-known soft threshold estimator proposed by Tibshirani
(1996). Then ˆ̃v1 = ( ˆ̃v1,1,..., ˆ̃v1,n)T , is an estimate for the product of the first
right singular vector multiplied with the first singular value. In order to get
an estimate for the first sparse right singular vector, we have to update the
first singular value. The first update of d1 is d1,v1 =‖ˆ̃v1‖ and accordingly

the estimated sparse singular vector becomes v̂1 = ˆ̃v1/d1,v1 . The penalized
regression for the left singular vector can be solved in the same way. For
fixed v1 and with the adaptive lasso penalty, the loss function of (8) becomes:

∥∥X−d1u1vT
1

∥∥2
F +λu1

p∑
i=1

w1,i|u1,i| (12)

=‖X‖2
F +

p∑
i=1

{
ũ2

1,i −2ũ1,i(Xv1)i +λu1 w1,i|ũ1,i|
}
.

The component-wise minimizer of (12) is:

ˆ̃u1,i =sign{(Xv1)i}(|(Xv1)i|−λu1 w1,i/2)+. (13)

The updated singular value is d1,u1 =‖ˆ̃u1‖, with ˆ̃u1 = ( ˆ̃u1,1,..., ˆ̃u1,p)T .

Finally, the estimated sparse left singular vector is û1 = ˆ̃u1/d1,u1 .
The degree of sparsity, which is defined as the number of non-zero

coefficients in the singular vector pair, depends on the choice of the
penalty parameters. Lee et al. (2010) proposed to choose the optimal
degree of sparsity by computing the complete penalization path and
apply the penalty parameter that minimizes the Bayesian information
criterion (BIC). In the SSVD algorithm, the two regressions with the
corresponding parameter tuning are alternated until convergence is reached,
which is if either

∥∥v1 − v̂1
∥∥<ε or

∥∥u1 −û1
∥∥<ε, where ε>0 is an arbitrary

convergence threshold. After convergence the final estimate of the first
singular value of the sparse SVD-layer is d̂1 = ûT

1 Xv̂1. The next sparse rank-
one approximation can be obtained by subtracting the sparse SVD-layer and
applying the SSVD method to the residual matrix X− d̂1û1v̂T

1 .

The SSVD algorithm

1. Apply the standard SVD to X. Let {d1,u1,v1} denote the first SVD
triplet.

2. Update:

(a) Set ˆ̃u1,i =sign{(Xv1)i}(|(Xv1)i|−λu1 w1,i/2)+, where λu1

minimizes the BIC. Let ˆ̃u1 = ( ˆ̃u1,1,..., ˆ̃u1,p)T , d1,u1 =‖ˆ̃u1‖, and

û1 = ˆ̃u1/d1,u1 .

(b) Set ˆ̃v1,j =sign
{
(XT û1)j

}
(|(XT û1)j|−λv1 w2,j/2)+, where λv1

minimizes the BIC. Let ˆ̃v1 = ( ˆ̃v1,1,..., ˆ̃v1,n)T , d1,v1 =‖ˆ̃v1‖, and

v̂1 = ˆ̃v/d1,v1 .

(c) Set v1 = v̂1, u1 = û1 and repeat 2(a) and 2(b) until convergence.

3. Set d̂1 = ûT
1 Xv̂1.

4. To obtain the next layer apply steps 1–3 to the residual matrix X−
d̂1û1v̂T

1 .

In practice, we observed that choosing the regularization parameters
according to the BIC results in singular vector pairs with a relative low
degree of sparsity. In addition, the SSVD algorithm does not offer a stopping
criterion and so the choice of the number of SVD-layers is arbitrary.

2.3 Stability selection
In this article, we propose to choose the penalization parameters and to
control the degree of sparsity of the resulting SVD-layers using stability
selection (Meinshausen and Bühlmann, 2010). The idea of stability selection
is to combine resampling with variable selection methods, e.g. penalized
regression models. For each variable, its probability of being selected is
estimated by resampling the data and calculating relative frequencies of
being selected. Meinshausen and Bühlmann (2010) provide a theoretical
framework for controlling Type I error rates of falsely selecting variables
based on the maximum of these selection probabilities over the range of
regularization parameters.

Suppose we want to infer the true set of non-zero coefficients in the
left singular vector Su1 ={

i :u1,i �=0
}
. The set of possible penalization

parameters that can be applied within the adaptive lasso regression is �u1 .
Each λu1 ∈�u1 leads to a different estimated subset of indices of non-zero

coefficients Ŝ
λu1
u1 ⊆{1,...,p}. Meinshausen and Bühlmann (2010) illustrate

the stability selection with the so-called stability paths that show the selection
probabilities of each coefficient along the range of penalization parameters.

Given any λu1, the estimated set Ŝ
λu1
u1 can be written as a function of the

samples J ={1,...,n}, e.g. Ŝ
λu1
u1 = Ŝ

λu1
u1 (J). If J∗ ⊂J is a subsample drawn

without replacement, then the estimated selection probability is:

�̂
λu1
i =P(i∈ Ŝ

λu1
u1 (J∗)). (14)

The selection probability can be estimated by calculating the relative
selection frequencies of i with regard to all subsamples. Given an arbitrary
threshold πthr ∈ (0.5,1) and the set of penalization parameters �u1, the set of
non-zero coefficients estimated with the stability selection is:

Ŝstable
u1

=
{

i : max
λu1 ∈�u1

�̂
λu1
i ≥πthr

}
. (15)

According to Meinshausen and Bühlmann (2010), the value of πthr has a
negligible influence and they recommend to choose values in the range of
[0.6,0.9]. Let Ŝ�u1 =∪λu1 ∈�u1

Ŝλu1 be the union of the estimated sets of
selected coefficients with regard to all λu1 ∈�u1 . Then the average number
of selected coefficients is q�u1

=E(|Ŝ�u1 (J∗)|). Let Nu1 denote the set
of zero coefficients, then the number of falsely selected coefficients with
stability selection is given by Vu1 =|Nu1 ∩ Ŝstable

u1
|. Following Theorem 1 in

Meinshausen and Bühlmann (2010), the expected number of falsely selected
coefficients is bounded by:

E(Vu1 )≤ 1

(2πthr −1)

q2
�u1

p
. (16)

Interpreting Equation (16), the expected number of falsely selected
coefficients decreases by either reducing the average number of selected
coefficients q�u1

or by increasing the threshold πthr . Supposing that πthr

is fixed, the stability selection controls the desired error level of E(Vu1 ) as
long as the average number of selected coefficients is less then e�u1

, where

e�u1
=√

E(Vu1 )p(2πthr −1) is an upper bound for the average number of
selected coefficients that can be controlled by reducing the length of the
regularization path �u1 . In multiple testing, the expected number of falsely
selected variables is also known as PFER and if divided by the total number
of the variables, it will become the PCER (Dudoit et al., 2003). The stability
selection allows to control these Type I error rates.
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2.4 The SSVD algorithm with nested stability selection
Here, we propose to replace the BIC-based penalty parameter selection of the
SSVD algorithm by the stability selection. This combined approach allows
to control the expected number of falsely selected non-zero coefficients in
the singular vector pair and therefore the degree of sparsity of the resulting
SVD-layers. Furthermore, the error control also serves as stopping criterion
for the improved SSVD algorithm and determines the number of reasonable
layers.

We aim to estimate the left singular vector û1 and at the same time infer
the true set of non-zero coefficients Su1. For each possible λu1, we draw

subsamples and estimate the selection probabilities �̂
λu1
i . Given a threshold

πthr and the desired Type I error E(Vu1 ), the regularization region �u1 is
defined so that q�u1

≤e�u1
. Then the estimated set of non-zero coefficients is:

Ŝstable
u1

=
{

i : max
λu1 ∈�u1

�̂
λu1
i ≥πthr

}
(17)

To estimate ˆ̃u1, we apply the component-wise minimizer of Lee et al. (2010)
with the smallest penalization value of the regularization path λmin

u1
.

ˆ̃u1,i =sign{(Xv1)i}(|(Xv1)i|−λmin
u1

w1,i/2)+ (18)

Like in the original SSVD approach, the first update of the singular value
is d1,u1 =‖ˆ̃u1‖, with ˆ̃u1 = ( ˆ̃u1,1,..., ˆ̃u1,n)T . The estimated sparse singular

vector is û1 = ˆ̃u1/d1,u1 . Without loss of generality, we estimate the sparse
right singular vector v̂1 and infer the respective set of non-zero coefficients

Sv1 . The selection probabilities �̂
λv1
j for each λv1 are estimated by drawing

subsets of the genes I∗ ⊂ I, where I ={1,...,p}. Again, given the desired Type
I error E(Vv1 ) and the threshold πthr the regularization region is delimited
such that q�v1

≤e�v1
, where e�v1

=√
E(Vv1 )n(2πthr −1). Consequently, the

estimated set of non-zero coefficients in the right singular vector is:

Ŝstable
v1

=
{

j : max
λv1 ∈�v1

�̂
λv1
j ≥πthr

}
(19)

Given the smallest parameter of the penalization path λmin
v1

, the components
of ṽ1 are:

ˆ̃v1,j =sign
{
(XT u1)j

}
(|(XT u1)j|−λmin

v1
w2,j/2)+ (20)

Finally let ˆ̃v1 = ( ˆ̃v1,1,..., ˆ̃v1,n)T , the updated first singular value is d1,v1 =
‖ṽ1‖ and estimated sparse singular vector is v̂= ˆ̃v1/d1,v1 .

These two penalized regression models with the nested stability selection
are alternated until convergence, e.g. that is if either ‖v1 − v̂1‖<ε or
‖u1 − û1‖<ε, where ε>0. After convergence, the estimated singular value
is d̂1 = ûT

1 Xv̂1 and finally those coefficients that are not in the two sets
of stable coefficients Ŝstable

u1
and Ŝstable

v1
are set to zero. So the components

of û1 become û1,i =1(i∈ Ŝstable
u1

)û1,i and the components of v̂1 become

v̂1,j =1(j∈ Ŝstable
v1

)v̂1,j , where 1(·) is an indicator function.
The high degree of sparsity of the resulting SVD-layers may lead to a

poor matrix factorization that might induce noise to the residual matrix
when subtracted from the data matrix. Like for multivariate regression
models, this can be seen as a trade-off between a high degree of sparsity
and hence interpretability for the cost of losing prediction power. Regarding
the sequential fitting procedure of the S4VD algorithm, the acceptance
of a poor matrix approximation might induce noise into the residual
matrix. This induced noise may perturb the fitting process for subsequent
biclusters. In order to avoid a propagation of errors induced by a poor
matrix approximation, we propose to apply the regular SVD to the submatrix
defined by the stable subsets of rows and columns identified with the
S4VD algorithm. According to Eckart and Young (1936), the rank-one SVD
approximation of this submatrix is the best rank-one approximation of the
submatrix with respect to the Frobenius norm. The next bicluster can be
detected by subtracting this rank-one approximation of the submatrix from
the corresponding submatrix of the input data matrix and applying the S4VD
algorithm to the resulting residual matrix.

Alternatively non-overlapping biclusters can be detected by excluding
either the rows or the columns (or both) that correspond to the non-zero
coefficients in the singular vector pair and apply the S4VD method to the
submatrix. By incorporating the stability selection, a stopping criterion can
be defined. If in any iteration an estimated set of non-zero coefficients is an
empty set, the sequential fitting of sparse rank-one layers will be interrupted.

Due to the element of resampling the S4VD algorithm will not necessarily
converge to the exact same result when applied to the same dataset. However,
the element of resampling also allows to take the bicluster stability into
account by controlling the Type I error levels of falsely assigning rows and
columns. As demonstrated by the simulations presented in Section 3, the
S4VD algorithm shows a better performance in revealing the true bicluster
structure and is more robust to noise.

The S4VD algorithm

1. Apply the standard SVD to X. Let {d1,u1,v1} denote the first SVD
triplet. Choose the desired Type I errors E(Vv1 ) and E(Vu1 ) and the
threshold πthr .

2. Update:

(a) For each λu1 draw subsamples J∗ and estimate �̂
λu1
i . Define

�u1 such that q�u1
≤e�u1

and estimate the set of non-zero

coefficients Ŝstable
u1

.

Set ˆ̃u1,i =sign{(Xv1)i}(|(Xv1)i|−λmin
u1

w1,i/2)+
Let ˆ̃u1 = ( ˆ̃u1,1,..., ˆ̃u1,p)T , d1,u1 =‖ˆ̃u1‖, and û1 = ˆ̃u/d1,u1

(b) For each λv1 draw subsamples I∗ and estimate �̂
λv1
j . Define

�v1 such that q�v1
≤e�v1

and estimate the set of non-zero

coefficients Ŝstable
v1

.

Set ˆ̃v1,j =sign
{
(XT û1)j

}
(|(XT û1)j|−λmin

v1
w2,j/2)+

Let ˆ̃v1 = ( ˆ̃v1,1,..., ˆ̃v1,n)T , d1,v1 =‖ˆ̃v1‖, and v̂1 = ˆ̃v/d1,v1

(c) Set v1 = v̂1, u1 = û1 and repeat 2(a) and 2(b) until convergence.

3. After convergence set d̂1 = ûT
1 Xv̂1.

The components of û1 become û1,i =1(i∈ Ŝstable
u1

)û1,i.

The components of v̂1 become v̂1,j =1(j∈ Ŝstable
v1

)v̂1,j .

4. To obtain the next layer, apply steps 1–3 to the residual matrix after
subtracting the rank-one approximation derived by applying a regular
SVD to the submatrix defined by Ŝstable

u1
and Ŝstable

v1
.

5. Stop steps 1–4 if either Ŝstable
v1

=∅ or Ŝstable
u1

=∅.

The subsampling steps of the stability selection makes the S4VD
algorithm computationally very demanding. To reduce the computation
time, we implemented the pointwise error control suggested by Meinshausen
and Bühlmann (2010). To examine how the pointwise error control reduces
the computation time, the runtimes of the SSVD algorithm, S4VD algorithm
and S4VD algorithm with the pointwise error control have been compared.
In the first part of the simulation study described in the Section 3 at a noise
level of 0.5, the mean runtime of the SSVD algorithm was 33.9 s, for the
S4VD it was 181.7 s and for the S4VD with the pointwise error control it
was 5.8 s. The simulations have been carried out using a notebook with an
Intel®Core™2 Duo Processor T7700 2.4 GHz and 4 GB DDR2 SDRAM.
Details about the pointwise error control and boxplots of the runtimes are
shown in the Supplementary Material.

3 RESULTS
In order to demonstrate that the here proposed S4VD algorithm is
able to find biologically relevant biclusters, we applied it to a known
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Fig. 1. Heatmap showing the biclusters identified in the lung cancer dataset. Note that the heatmap shows only those genes that have been selected in at least
one bicluster. The rectangles indicate the genes and samples that correspond to the three biclusters (the rectangle on the left side corresponds to Bicluster 1,
the two rectangles in the middle correspond to Bicluster 2 and the two rectangles on the right side to Bicluster 3).

lung cancer gene expression dataset (Bhattacharyee et al., 2001).
Furthermore, to examine the influence of increasing levels of noise
regarding the performance of the S4VD algorithm, we performed
a simulation study. The S4VD algorithm was compared with the
SSVD method, the improved Plaid Model (Turner et al., 2005) and
the ISA (Bergmann et al., 2003). The ISA and the Plaid Model are
known to be closely related to the SVD.

3.1 Evaluation of the lung cancer dataset
Here we analyzed the same subset of the lung cancer gene expression
data set (Bhattacharyee et al., 2001) that was used by Lee et al.
(2010) to illustrate the SSVD algorithm. This dataset contain 56
samples and gene expression values of 12 625 genes measured
using the Affymetrix 95av2 GeneChip. The samples comprise
20 pulmonary carcinoid samples (Carcinoid), 13 colon cancer
metastasis samples (Colon), 17 normal lung samples (Normal)
and 6 small cell lung carcinoma samples (SmallCell). Lee et al.
(2010) applied the SSVD method to this gene expression matrix
and decomposed it into the first three sparse SVD-layers. For each of
the resulting SVD-layers, the degree of sparsity was relatively low,
e.g. for the three singular vectors that correspond to the samples,
the number of non-zero coefficients were 55 for the first two and
47 for the third. The singular vectors that correspond to the genes
contained 3205, 2511 and 1221 non-zero coefficients. Scatterplots
of the sample singular vectors showed a clear grouping of the
samples into the different cancer subtypes. In addition, Lee et al.
(2010) formed 27 gene sets according to the sign of the coefficients
in the three gene singular vectors. The mean expression profiles
of these gene sets showed clear differences between the cancer

subtypes. However, despite these results a direct interpretation of
each singular vector pair is not possible. To obtain SVD-layers
with a higher degree of sparsity that can be interpreted as single
biclusters, we applied the S4VD algorithm controlling a PCER of
0.5 for falsely selecting coefficients in the sample singular vector
and a PCER of 0.01 for falsely selecting coefficients in the gene
singular vector. Furthermore, we did not allow the samples to
overlap, e.g. each sample is assigned to only one bicluster. Therefore,
after a sparse SVD-layer is fitted, we exclude the corresponding
columns from the data matrix and applied the S4VD algorithm
to the resulting submatrix. According to the stopping criterion of
the S4VD algorithm, three biclusters have been obtained and are
shown in the heatmap in Figure 1. The first bicluster corresponds
to a subset of 550 genes and a subset of 28 samples including 14
Normal samples and 14 Carcinoid samples. The second bicluster
comprises 12 Colon samples and one falsely assigned Carcinoid
sample together with a subset of 506 genes. The third bicluster
consists of 6 SmallCell samples and 344 genes. All other samples
and genes have not been assigned to any bicluster. To illustrate
that the selected genes represent genes that are associated with the
cancer subtypes, we performed a geneset enrichment analysis (Alexa
et al., 2006). Tables of all significantly enriched Gene Ontology
(GO) terms (p<0.01) as well as a description of the analysis
can be found in the Supplementary Material. Bhattacharjee et al.
(2001) identified several possible marker genes for the different
cancer subtypes. A list of eight of these genes together with
the corresponding selection probabilities with respect to the three
biclusters are shown in Table 1. TGF-β receptor II, tetranectin,
retinoic acid receptor responder 3 and ficolin 3 are known to be
highly expressed in normal lung tissue compared with carcinoid
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Table 1. Selection probabilities of lung cancer subclass marker genes

Gene Bicluster 1 Bicluster 2 Bicluster 3

Retinoic acid receptor responder 3 0.99 0.00 0.00
Transforming growth factor, β receptor II (70/80kDa) 1.00 0.00 0.86
C-type lectin domain family 3, member B (tetranectin) 1.00 0.74 0.68
Ficolin (collagen/fibrinogen domain containing) 3 (Hakata antigen) 1.00 0.71 0.98
v-myc myelocytomatosis viral oncogene homolog 0.00 1.00 0.20
Integrin, α 6 0.00 0.93 0.00
Cyclin-dependent kinase inhibitor 2C (p18) 0.00 0.00 0.91
Thymosin β 0.00 0.15 0.98

tissue and thus have high selection probabilities for the first bicluster.
This coincides with the GO analysis, e.g. 2 of the 62 GO terms
that are significantly enriched by the genes corresponding to the
first bicluster are TGFβ receptor signaling pathway (GO:0007179)
and response to retinoic acid (GO:0032526). Integrin,α6 as well
as v-myc (c-myc) are usually overexpressed in colon cancer. These
genes have high selection probabilities with respect to the second
bicluster. In addition, among the 61 significantly enriched GO terms
corresponding to the second bicluster is the term endothelial cell
migration (GO:0043542), which coincides with the fact that the
associated samples correspond to colon cancer metastases. The
cell-cycle inhibitor protein p18 and thymosin-β are markers for
small cell carcinomas and show high selection probabilities in the
third bicluster. Among the 97 GO terms significantly enriched in
the third bicluster are many cell cycle-associated terms, e.g. cell
division (GO:0051301), mitotic spindle organization (GO:0007052)
and cell cycle checkpoint (GO:0000075). Furthermore, for the
first bicluster as well as for the third bicluster the GO term
positive regulation of Notch signaling pathway (GO:0045747) is
significantly enriched. Alterations of the Notch signaling cascade
are known to be associated with several human cancer types.

3.2 Simulation study
In the first part of the simulations, we generated 100 artificial data
matrices comprising p=1000 genes and n=100 samples, where
each entry of the data matrix is set to 0. In each dataset, we randomly
assigned 100 genes and 10 samples to a bicluster that shows constant
upregulated gene expression represented by a value of 1 in the
data matrix. Normally distributed noise N(0,σ2) was added to each
entry of the data matrix. We examined different noise levels in
the range of σ = (0,0.1,...,1). In the second part of the simulation
study, 100 data matrices of the same dimension were generated.
This time four biclusters were included where each consists of
100 genes and 10 samples. Constant up- and downregulation was
represented by values of 1,−1,0.5 and −0.5. For both scenarios, the
performance of the S4VD algorithm was examined in comparison to
the original SSVD algorithm, the improved Plaid Model (PM; Turner
et al., 2005) and the ISA (Bergmann et al., 2003). Since the SSVD
algorithm does not include a stopping criterion, we considered
only the first SVD-layer as result in the first scenario and the first
four SVD-layers as the biclustering result in the second scenario.
The clustering results were validated by application of an external
validation index based on the Jaccard coefficient. In addition, the
stability of the clustering results was assessed through the average

proportion of falsely selected rows and columns. Details on the
validation indices, the remaining biclustering algorithms and their
relation to the SVD are provided in the Supplementary Material.

3.2.1 Scenario 1 The simulation results of the first scenario are
shown in Figure 2. For low noise levels up to σ =0.3, all biclustering
algorithms except the SSVD show an almost perfect performance
with relevance and recovery scores mostly equal to one and no
falsely selected rows and columns. For noise levels of 0.1 to 0.7,
all biclusters proposed by the SSVD algorithm are too large and
on average a proportion around 0.015 of the rows and 0.012 of the
columns are falsely assigned. This results in relevance and recovery
scores around 0.8. In case of larger noise levels, the SSVD algorithm
often fails to converge and thus the relevance scores and the number
of falsely assigned rows and columns approach zero. For noise levels
above 0.3, the first bicluster detected by the Plaid Model usually
consists of a strict subset of those rows and columns that belong to
the true artificial bicluster in the data. Thus, the performance of the
Plaid Model regarding the relevance and the recovery decreases with
noise. Furthermore, the algorithm starts to fit the noise and proposes
a number of further small biclusters. This explains why the relevance
score is inferior compared with the recovery score. Most of these
small biclusters correspond to parts of the true artificial bicluster
and hence the proportions of falsely assigned rows and columns are
close to zero. Beginning with a noise level of 0.5, the ISA proposes
an increasing number of biclusters of which only one shows a strong
agreement with the true bicluster. Even after applying the additional
filtering functions available in the isa2 R-package (Csardi et al.,
2010), some nonsense biclusters remain. Thus, both scores start to
decrease with noise but are superior to the Plaid Model. The number
of falsely assigned rows and columns increases with the noise level
indicating that some of the detected biclusters correspond to fitted
noise. Regardless of the noise level, the S4VD algorithm always
detects a single bicluster that agrees with the true bicluster. For
noise levels above 0.6, the proposed bicluster becomes smaller and
represents only a part of the true bicluster. Therefore, both scores
start to decrease with noise but are superior to that of all other
biclustering methods considered in the simulation study.

3.2.2 Scenario 2 The results of the second part of the simulation
study are shown in Figure 3. For noise levels below 0.3, the ISA
and the S4VD showed relevance and recovery scores around 1
and accordingly the average proportions of falsely assigned objects
are near zero. This indicates that both algorithms are able to
correctly detect all the four artificial biclusters present in the data.
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(a) (b)

(c) (d)

Fig. 2. Simulation results of the first scenario. The relevance score M(G,F), recovery score M(F,G) and the average proportions of falsely assigned rows
VI (G,F) and columns VJ (G,F) are described in the Supplementary Material. The boxplots show the distribution of these validation indices with respect to
the 100 simulated datasets. σ indicates the considered noise level. (a) Relevance; (b) recovery; (c) falsely selected rows; (d) falsely selected columns.

(a) (b)

(c) (d)

Fig. 3. Simulation results of the second scenario. The relevance score M(G,F), recovery score M(F,G) and the average proportions of falsely assigned rows
VI (G,F) and columns VJ (G,F) are described in the Supplementary Material. The boxplots show the distribution of these validation indices with respect to
the 100 simulated datasets. σ indicates the considered noise level. (a) Relevance; (b) recovery; (c) falsely selected rows; (d) falsely selected columns.
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The Plaid Model algorithm in some cases perfectly revealed the
hidden structure, but in other situations depending on the randomly
chosen starting values and the noise level, the algorithm falsely
assigns rows and columns to the biclusters. The stopping criterion
of the algorithm depends on a permutation test that can fail to reject
unimportant biclusters that correspond to noise. On the other hand
for higher noise levels, the permutation test also tends to reject
biclusters early in the fitting process so that only three or less
biclusters are detected. Thus, the resulting relevance and recovery
scores are highly variable and decrease with noise. Regarding low
noise levels, the SSVD algorithm mostly identifies the correct
biclusters but usually falsely assigns some additional rows and
columns. This behavior maintains for higher noise levels, but
additionally the number of correctly identified biclusters becomes
less. For noise levels above 0.7, both the SSVD algorithm and the
Plaid Model mostly do not detect any of the artificial biclusters and
hence the average proportions of falsely assigned rows and columns
approach zero. The performance of the ISA decreases due to an
increasing number of identified irrelevant biclusters, starting with
noise levels above 0.2. For noise level 0.5, the medians of both
similarity scores are around 0.5, and the relevance scores show
a high variability. For noise levels above 0.5, the two embedded
biclusters generated to have a constant up- and downregulation of
0.5 and −0.5 are masked by noise, and hence, the ISA as well
as the S4VD algorithm tend to miss these clusters. This results
in a slight increase of their relevance scores while the recovery
scores decrease. Moreover, the relevance scores for both algorithms
show a high variability at noise level 0.6. In summary, the S4VD
algorithm outperforms all other biclustering algorithms considered
in the simulation study regarding the relevance and the recovery
of the artificial biclusters for all simulation scenarios. Furthermore,
due to the stability selection the S4VD algorithm rarely assigns false
rows and columns to the proposed bicluster and does not detect any
additional nonsense clusters. Thus for all simulation scenarios, the
average proportions of falsely assigned rows and columns are close
to zero.

4 DISCUSSION AND CONCLUSION
In this article, we propose a new biclustering algorithm that
combines the SSVD algorithm suggested by Lee et al. (2010) with
the stability selection of Meinshausen and Bühlmann (2010). In
brief, the model selection-based parameter tuning of the penalized
regression models of the SSVD algorithm is replaced by a
subsampling-based variable selection that controls Type I error
rates. The S4VD approach here presented allows to control the
degree of sparsity of the resulting SVD-layers by choosing desired
Type I error levels. The stability selection estimates the selection
probabilities of the rows and columns to belong to a bicluster.
Depending on the chosen Type I error levels, the results are
robust biclusters represented by rows and columns that have high
selection probabilities. If the noise level is getting too high, the
stopping criterion leads to an interruption of the S4VD algorithm
preventing from fitting additional SVD-layers that correspond to
noise. So far, the S4VD method is the only biclustering approach
that takes the cluster stability regarding perturbations of the
data into account. We applied the S4VD algorithm to evaluate
a lung cancer microarray dataset and showed that the resulting
biclusters represent tumor subclasses together with coregulated

genes. Marker genes for the different tumor subclasses showed
high selection probabilities in the respective biclusters. In addition,
a gene set enrichment analysis revealed that the genes associated
with identified biclusters belong to significantly enriched cancer-
related GO terms. In a simulation study, the S4VD algorithm was
compared with the SSVD algorithm, the improved Plaid Model
(Turner et al., 2005) and the ISA (Bergmann, 2003). The S4VD
algorithm showed the best performance regarding the recovery of
biclusters and was more robust to noisy data compared with the
other methods. The subsampling steps of the stability selection make
the S4VD algorithm computationally very demanding. However, an
improvement that strongly reduces the computation time is presented
in the Supplementary Material.
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