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Abstract—Information about person identity is multimodal. Yet,
most person-recognition systems limit themselves to only a single
modality, such as facial appearance. With a view to exploiting the
complementary nature of different modes of information and in-
creasing pattern recognition robustness to test signal degradation,
we developed a multiple expert biometric person identification
system that combines information from three experts: audio,
visual speech, and face. The system uses multimodal fusion in
an automatic unsupervised manner, adapting to the local perfor-
mance (at the transaction level) and output reliability of each of
the three experts. The expert weightings are chosen automatically
such that the reliability measure of the combined scores is max-
imized. To test system robustness to train/test mismatch, we used
a broad range of acoustic babble noise and JPEG compression to
degrade the audio and visual signals, respectively. Identification
experiments were carried out on a 248-subject subset of the
XM2VTS database. The multimodal expert system outperformed
each of the single experts in all comparisons. At severe audio
and visual mismatch levels tested, the audio, mouth, face, and
tri-expert fusion accuracies were 16.1%, 48%, 75%, and 89.9%,
respectively, representing a relative improvement of 19.9% over
the best performing expert.

Index Terms—Biometric fusion, expert reliability, hidden
Markov models, image information loss, mouth features, multi-
modal, person recognition, robustness, tri-expert.

I. INTRODUCTION

B
IOMETRICS is a field of technology devoted to verifica-

tion or identification of individuals using physiological or

behavioural traits. Verification, a binary classification problem,
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involves the validation of a claimed identity whereas identifi-

cation, a multiclass problem, involves identifying a user from

a set of enrolled subjects; and becomes more difficult as the

number of enrollees increases. This paper deals with the task

of closed-set person identification, thus, a reject option is also

required to perform open-set identification. In audio-video

processing, the video modality lends itself to two experts,1

the face expert and the visual-speech expert. For this paper,

the visual-speech expert is defined as a classifier utilizing a

sequence of mouth images extracted from a video utterance,

and will simply be referred to as the mouth expert. Person

recognition systems based on the audio modality achieve high

performance when the audio signal-to-noise ratio (SNR) is

high. Yet, the performance degrades quickly as the test SNR

decreases (referred to as a train/test mismatch), as shown in

[1] and elsewhere [2], [3]. Similarly, face-based identification

is susceptible to pose/illumination variation, occlusion, and

also poor image quality [4]–[6]. Visual-speech-based person

identification usually under-performs audio and face-based

experts, and is generally treated as a supplement to audio and

face-based recognition [1], [7].

To combat these limitations of unimodal audio and video-

based experts, a multimodal fusion approach can be adopted,

similarly to that for audio-visual speech recognition [8], [9], and

both improve robustness and overall performance. The audio,

face, and mouth modalities contain nonredundant, complemen-

tary information about person identity. In order to exploit this,

issues arise, such as how to account for the reliabilities of the

modalities and at what level to carry out the fusion. Only a few

studies have investigated the combination of audio, face, and

temporal mouth information for the purpose of person recogni-

tion2 [10], [11]. The majority of studies are bimodal, employing

either the audio and face modalities, [2], [12] or the audio and

temporal mouth modalities (and ignoring face) [1], [3], [13],

[14].

The benefits of audio-visual fusion for the purpose of speaker

identification has been shown in [1], with the fusion method

employing modality weightings found by supervised exhaus-

tive search, such that the audio-visual accuracy was maximized.

1The term expert refers to a particular person identification classifier, which
gives an opinion for each class, of the likelihood that class produced the test
observation (see Section III).

2The term speaker recognition is used when recognition is based on speech
experts, i.e., the audio and visual-speech experts. The more general term person

recognition is used when nonspeech-based experts are considered, e.g., a face
expert.
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This highlights the potential of audio-visual fusion, yet it is not

practical in a real-world scenario. An automated audio-visual

speaker identification fusion approach was presented in [15];

however, the issue of an audio train/test mismatch was not ad-

dressed. In [3], audio-visual speaker verification experiments

were carried out on 36 subjects; however, only experiments on

an audio train/test mismatch were carried out. A visual train/test

mismatch was not considered. In [16], robust audio-visual clas-

sifier fusion under both audio and visual train/test mismatch

conditions was described. The adaptive fusion results were en-

couraging, with improved audio-visual accuracies over either

modality alone. User-specific weighting schemes have also been

investigated [17]; which are more suitable in the verification sce-

nario. The audio, mouth, and face experts were combined in [10]

and [11]; yet neither study employed expert weights that adapt

automatically to local test conditions.

The aim of this study was to develop a tri-expert person recog-

nition fusion system, combining audio, mouth sequence, and

face information in an automatic unsupervised manner. Specif-

ically the tri-expert information was to be combined, such that

the fused system provided improved performance beyond ex-

isting systems, exhibiting higher robustness to mild through ad-

verse test levels of both audio and visual noise (train/test mis-

match). Therefore, to fully fulfill the aims of this study, the con-

tribution from each source of information to the final decision

must be weighted dynamically by taking the current reliability

of each source into account. A cascade approach is adopted,

where the video information (mouth and face) is first combined,

and subsequently combined with the acoustic information.

This paper is organized as follows. Section II describes

how person identification based on audio, mouth features, and

face was performed. Section III investigates classifier fusion

methods; specifically dealing with audio-visual-based fusion,

and develops the proposed fusion strategy. In Section IV, the

audio-visual corpus employed and its augmentation for the

specific experiments is described. In Section V, we present

results of extensive evaluations examining individual expert

performance and fusion performance. The results are discussed

in Section VI, and finally in Section VII, conclusions are drawn.

II. AUDIO- AND VIDEO-BASED IDENTIFICATION

In this paper, the audio-video signal is divided into three

separate modalities, namely, acoustic speech, visual speech

(or mouth sequence), and face. We use the notation , ,

and to respectively denote the observations arising from

the three aforementioned modalities, where and take

the form of a temporal sequence of features, whereas, is a

single still image.

A. Audio-Based Identification

Audio-based speaker identification is a mature topic, [18].

Standard acoustic methods were employed. The audio signal

was divided into frames using a Hamming window of length

20 ms, with overlap of 10 ms to give an audio frame rate of 100

Hz. Mel-frequency cepstral coefficients (MFCCs) of dimension

16 were extracted from each frame [19]. The energy [19] of

each frame was also calculated and used as a 17th static feature.

Static features refer to features extracted from individual audio

frames that do not depend on other frames. Seventeen first-order

derivatives or delta features were calculated using adjacent

static frames, where is the delta window size. The delta

frames were appended to the static audio features to give an

audio feature vector of dimension 34. These are calculated using

the available hidden Markov model (HMM) toolkit (HTK) func-

tions [19] employing a value of five frames. Cepstral mean

normalization [19] was performed on the audio feature vectors

(to each audio utterance).

A text-dependent speaker identification methodology was

tested. For text-dependent modeling [20], the same utterance

is spoken by the subject for both training and testing. It was

employed, as opposed to text-independent modeling [18],

due to its suitability to the database used in this study (see

Section IV). The subject classes are represented by

speaker HMMs [21] denoted by , . The

speaker utterance that is to be classified is a sentence, which is

represented by a sequence of speech feature vectors or obser-

vations, , where is the speech

observation (frame) at time and denotes the number of

observation vectors in the sentence. We obtain class-con-

ditional joint probabilities, , that the observation

sequence was produced by the class (speaker model) .

Assuming equal prior probabilities, then is referred

to as the likelihood that was caused by . For HMM

classifiers, the scores are in log-likelihood form: . The

classification task (speaker identification) is to find the class

with the maximum log-likelihood, i.e.,

(1)

B. Mouth Features Expert

In tandem with audio-visual-speech processing, vi-

sual-speech feature analysis has also received much attention

recently [22], [23]. It has been consistently shown in several

visual-speech studies, that pixel-based features outperform

geometric features [23], [24]. Geometric features/lip-contours

require significantly more sophisticated mouth-tracking tech-

niques compared to just locating the mouth region of interest

(ROI) for pixel-based features. This may be difficult, particu-

larly when the visual conditions are poor. Pixel-based features

employ linear transforms to map the image ROI into a lower

dimensional space, removing the redundant information while

retaining the salient speech features. Many types of transforms

are examined in the literature, including the discrete cosine

transform (DCT) [7], [23], discrete wavelet transform (DWT)

[23], and principal component analysis (PCA) [24]. The DCT

is one of most commonly employed image transforms. It has

good de-correlation and energy compaction properties [25] and

has been found to outperform other transforms [24].

For the mouth expert employed in this study, features derived

from pixels were used to represent the visual information based

on the DCT. The visual mouth features were extracted from the

mouth ROI, which consists of a 49 49 color pixel block (see

Fig. 4). To account for varying illumination conditions across

sessions, the gray-scale ROI was histogram equalized and the
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mean pixel value was subtracted. The two dimensional DCT was

applied to the pre-processed gray-scale pixel blocks.

A popular method of extracting the most important transform

coefficients, consists of applying a mask to the transform coef-

ficient matrix [23]. Considering that most of the information of

an image is contained in the lower DCT spatial frequencies [25],

the first 15 DCT coefficients were selected, using a mask that se-

lects the coefficients in a tri-angular fashion (upper-left region

of the transform matrix). Only 14 of these features are used for

modeling since the first feature was zero valued due to the mean

removal.

The visual sentences were modeled using HMMs as in

Section II-A. The static features consist of the 14 DCT co-

efficients. Delta features were also calculated. Second order

frame derivatives or acceleration features were also calculated

from the adjacent delta feature frames, where is the

acceleration window size. These were calculated using HTK,

employing both and values of five frames. The three

types of visual features were also concatenated to form a 42

dimensional feature vector. We have visual observations

(generally and the sequence of visual-speech

feature vectors is denoted by .

Each mouth expert HMM gives the log-likelihood ,

that the observation sequence was produced by the

mouth expert model .

C. Face Expert

Most current face recognition algorithms can be categorized

into two classes, image template-based or geometry feature-

based. The template-based methods compute the correlation be-

tween a face and one or more model templates to estimate the

face identity. Statistical tools such as Kernel Methods [26], [27],

linear discriminant analysis (LDA) [28], principal component

analysis (PCA) [29], [30] and neural networks [31] have been

used to construct a suitable set of face templates. While these

templates can be viewed as features, they mostly capture global

features of the face images. Pose variation and facial occlusion

are often difficult to handle in these approaches [32].

The geometry feature-based methods analyze explicit local

facial features, and their geometric relationships. Lanitis et al.

have presented an active shape model in [33] extending the ap-

proach by Yuille [34]. Wiskott et al. developed an elastic bunch

graph matching algorithm for face recognition in [35]. HMM

methods [36] and Gaussian mixture model (GMM) methods

[37] have also been examined. Penev and Atick [38] developed

PCA into local feature analysis (LFA) which is the basis for

the commercial face recognition system FaceIt. LFA addresses

two major problems of PCA. The application of PCA to a set

of images yields a global representation of the image features

that is not robust to variability due to localized changes in the

input. Furthermore, the PCA representation is non topographic,

so nearby values in the feature representation do not necessarily

correspond to nearby values in the input. LFA overcomes these

problems by using localized image features in form of multi-

scale filters. Once extracted, the feature images are then encoded

using PCA to obtain a compact description. The local features

are then matched independently and fused at the score level to

a combined matching score which is reported by the algorithm

[39].

FaceIt was among the top-performing systems in a number

of independent evaluations [5], [6], [40]. It has been shown to

be robust against variations in lighting, facial expression and

lower face occlusion. FaceIt can handle pose variations of up to

35 degrees from frontal. However, performance drops signifi-

cantly for larger pose changes and for occlusion of the eyes (dark

sunglasses) [6]. This suggests that the FaceIt algorithm places

a lot of emphasis on the eye region and provides motivation for

combining the face and mouth experts. Each of the registered

subjects is represented by a face template . Unlike for the

audio and mouth experts employed here, FaceIt gives a confi-

dence score, denoted by , rather than a log-likelihood.

For FaceIt, the set of templates, , , receives

maximum and minimum scores of ten and zero, respectively,

i.e., .

III. CLASSIFIER FUSION

The fusion of classifiers is a research topic that predates

work on audio-visual speech fusion [41]. A nonexhaustive

list of levels at which fusion can take place includes: the

signal, feature, model, score, and decision level. A mapping

(classifier or expert), “transforms” the feature-space to give

a hypothesis that the observation belongs to a specific class.

The mapping output can take two forms: 1) a decision or 2) a

confidence/score. A classifier outputs a decision (class label)

with no associated confidence, whereas an expert outputs a

confidence score. Confidence scores can take many forms, e.g.,

posterior probabilities, likelihood scores, and feature space

similarity measures (e.g., the Euclidean distance).

At the higher levels of integration, it is easier to add addi-

tional experts to an existing system. Also, it becomes easier to

drop or de-emphasize an existing expert that performs poorly

for a particular classification test. Thus, higher-level integration

strategies may be more robust if it is possible to account for the

reliability of each expert, and this may compensate for the loss

of information.

A. Levels of Fusion

The earliest level of fusion is signal fusion, followed by fea-

ture fusion. Both signal and feature fusion can be grouped into

early-integration [20]. Feature fusion simply consists of con-

catenating the feature vectors into a larger dimensional feature

vector, that has several disadvantages: 1) the “curse of dimen-

sionality” [42]; 2) the difficulty to take the reliability of either

modality into account (a corrupted modality can compromise

the entire audio-visual feature vector and catastrophic fusion

may occur; this has been demonstrated in [1]); and 3) inability to

combine nonspeech-based modalities (e.g., a single face image).

Also, the features from some experts may not be available due

to proprietary issues. FaceIt, for instance, outputs confidence

scores but no lower-level information. The next level available

for fusion is at the mapping/modeling stage and is referred to as

middle integration. Coupled HMMs in speech recognition are a

common example of this approach. [8], [43], [44].
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Multiple experts can be combined in the score-space and

multiple classifiers combined in the decision-space. Both are

grouped into late-integration. Integration can also take place

at the post-classifier level, for example a secondary classifier

employs the output scores from the primary classifiers as new

features and performs a further classification [2]. Example

decision combination rules include, the AND rule (all classifier

decisions must agree), the OR rule (a decision is made if any

classifier makes a decision), and the majority vote rule (a

majority of the classifiers must agree). For decision fusion,

the number of classifiers should be higher than the number of

classes. This is reasonable for person verification. For person

identification, the number of classes is large, rendering decision

fusion unsuitable.

We will first consider the fusion of the expert output scores

without the use of weights, and with the scores treated as

probabilities [41]. Consider experts operating in fea-

ture spaces. An observation from the feature space is

denoted by . Given classes/models, , , the

posterior probability that was produced by the class

is , which is formed using the probability density

function and the class prior probability .

In order to attain a probability based on all observations,

we need to calculate , where

all observations are considered simultaneously, implying

that a joint probability density function must be determined,

which generally is an intractable problem. It is more feasible to

consider the output due to each observation individually,

and then combine them in some manner.

The product rule consists of multiplying the posteriors

together and is theoretically the statistically optimal method of

classification. It is sensitive to expert errors; in the extreme case,

if any single expert produces a close to zero posterior estimate

for a specific class; the combined posterior for that class will be

close to zero. The sum rule is defined as

(2)

and is also referred to as the mean rule. It is less sensitive to ex-

pert errors and will outperform the product rule when the expert

errors are large. The robustness of the sum rule to expert errors

was shown theoretically and verified experimentally in [41].

B. Existing Methods for AV Integration

Before the proposed method of fusion is described, we pro-

vide a brief review of existing methods that integrate audio with

mouth, audio with face, and all three experts to carry out person

recognition.

In [13], the audio- and visual-speech modalities were com-

bined to perform person identification using a secondary classi-

fier to determine the audio and visual weights. Robustness to

visual degradation was not tested. Face and speech informa-

tion was combined in [2], using secondary classifiers, yielding

higher performance compared to the face and speech experts.

Audio and visual speech was combined for person identifica-

tion in [45] using audio and visual reliability measures. Face

information was not considered.

The audio, visual speech, and face modalities were combined

in [10] to perform person recognition. The fusion methods were

basic, employing a choose two from three approach (agreement

of any two experts), and an AND decision combination of all

three experts. Due to fusion at the decision level, no individual

expert reliability information could be considered. This system

was again presented in [46]; this time the weighted sum rule was

also employed. The weights could only be varied manually, and

hence could not adapt automatically to changing testing condi-

tions. The audio, visual speech, and face modalities were also

combined in [11] to carry out verification of automatic person

identification. The audio and mouth features were concatenated

and jointly modeled using an audio-visual HMM. The audio-

visual score was combined with the face expert score using

weighted summation, thus giving an audio-visual-face score.

The weights were global and set empirically, i.e., there was no

adaptation to local variation of the signal reliability or expert

confidence.

C. The Proposed Method

For the proposed method, the following design criteria were

taken into account. Information from the audio, mouth, and face

signals are to be combined to perform closed-set person identi-

fication. The fusion method should easily allow the addition of

other experts. The system must be robust to mild through ad-

verse test levels of both audio and visual (both face and mouth)

noise. The contribution from each source of information to the

final decision must be weighted dynamically by taking the cur-

rent reliability of each source into account. The expert score

weightings must be determined in an automatic unsupervised

manner. Given these criteria, we chose score level late-integra-

tion based on the weighted sum rule. It should be noted here that

when used to combine log-likelihoods, the sum rule is a variant

of the product rule.

D. Score Normalization

Expert scores can take many forms such as posteriors, like-

lihoods, and distance measures. Nonnormalized scores cannot

be integrated sensibly in their raw form, as it is impossible to

fuse incomparable numerical scales. Example normalization

methods include min-max, Z-norm, decimal-scaling, Me-

dian-MAD, and the transformation [47]. The min-max

technique is the most basic form of score normalization,

which shifts and scales the scores into the range [0,1]. The

min-max norm is most suitable when the pre-normalized

scores have known bounds (e.g., for the face expert employed

, however, it can still be used otherwise

but will be extremely sensitive to outlier scores. While being

straightforward to implement, the min-max norm has been

found to have comparable performance to more complicated

normalization methods [47], hence, it was used for experiments

reported here. The poor robustness of min-max score normal-

ization to outlier scores can be circumvented (in the person

identification scenario) by considering only the top ranked

class scores for normalization and integration. This omits the

worst (outlier) expert scores.

A fusion strategy was first developed for fusing any two ex-

perts (e.g., audio with face). Then this general bi-expert fusion
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strategy was cascaded to include an additional third expert. We

use to denote the confidence score output from the

expert representing the general likelihood that the obser-

vation was caused by the subject model/template ,

, where . Each expert provides a list of

scores which are ranked into descending

order and, by using the min-max rule (applied to only the top

ranked scores), are normalized to give ,

where

(3)

and denotes the ranked subject model (based on the

observation score). Using a high value for may retain out-

lier scores, which could unfairly skew the distribution. A very

low value, would result in loss of information, the limit being

, where all confidence information has been lost. Tests

showed that the system performance degraded for and

. A value for of 75 was employed for this study,3

although this value will depend on . The set of ranked nor-

malized scores is denoted by . The fusion

module should take the local testing conditions into account

and adapt the fusion parameters accordingly. Thus, we have

the weighted sum rule (for the specific case of two experts; i.e.,

)

(4)

where represents the nonnormalized combined

likelihood that the observations and were produced by

the subject class ; and is the weight of the expert,

subject to the constraints that and for

. A reliability measure must be devised, which

takes the confidence associated with each expert into account,

and thus used to determine the values.

E. Reliability Measures

Expert reliability parameters can be calculated at the signal

or at the score level. Signal-based reliability measures are de-

rived directly from signal observations prior to feature extrac-

tion. Audio examples include estimations of the signal-to-noise

ratio [43] and the degree of voicing [48], and in [49], fingerprint

image quality was employed. An audio only reliability measure

is undesirable, as the integrity of the visual signal is not consid-

ered. Even if an observation signal is of high quality, the expert

may still give a misclassification for two (nonexhaustive) rea-

sons: 1) the correct subject class may be indistinguishable for

the given expert, and may be consistently misclassified and 2)

the model/template for the correct subject may be a poor repre-

sentation. A signal-based reliability measure cannot take these

scenarios into account. The distribution of the set of expert con-

fidence scores contains information not only about the integrity

of the observation signal, but also the reliability of that experts’

3The overall performance did not vary significantly for 50 < K < 100.

decision. Taking these points into account, it is better to calcu-

late the reliability measure based on the expert scores.

If the highest ranked class receives a high score and all of the

other classes receive relatively low scores, then the confidence

level is high. Conversely, if all the classes receive similar scores,

the confidence is low. Various metrics exist, which can be used

to capture this confidence information. Examples include score

entropy [48], dispersion [48], variance [3], cross classifier co-

herence [16], and difference [13]. For a test observation vector

, we have the set of ranked normalized scores .

We define , the difference between the two highest ranked

scores, normalized by the mean score

(5)

where and are the subject classes achieving the highest

and second highest ranks, respectively, denotes the expert,

and the mean is calculated over the first ranked values of

. was employed as the reliability measure for

this study because it is computationally cheap and is not specific

to any expert or noise type.

F. Reliability Mapping

A mapping between the reliability estimates and the expert

weightings is required. In [7], [8], and [48] a sigmoidal mapping

was used to map the reliability estimates to the fusion weights.

The parameters of the sigmoid curve required training, which is

difficult when the amount of audio-visual data is scarce. Also,

these parameters may be specific to the noise type. In [43],

an empirical regression was used to map the test SNR values

to . This is unsuitable here, as we need to consider the vi-

sual reliability also. Considering the small amount of audio-vi-

sual training data generally available, it was decided to use a

nonlearned approach to map the reliability estimates to the

values. This was carried out as follows.

1) For each specific identification trial (user interaction), the

system is presented with two expert observations, and

.

2) The two experts each generate a set of match scores,

and , which are normalized to give

the sets of ranked scores and ,

and the reliability estimates and are calculated, using

(5).

3) The fusion parameter is varied from 0 to 1 in steps of

0.05. For each value, the expert score lists

and are combined using (4) (with

), to give the set of nonnormalized combined scores

.

4) The combined score set is subsequently normalized as be-

fore, to give , and the combined score re-

liability estimate, denoted by , is calculated, similarly

to (5), using

(6)

5) We choose the value that maximizes for the given

test according to (7), to give the fusion parameters

and . The maximum value should
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Fig. 1. Illustration of the weight selection procedure. The variation of the combined score reliability estimate w.r.t. � ; and the individual expert reliability esti-
mates are shown for four scenarios: (a) expert 1 is more reliable, (b) expert 2 is more reliable, (c) experts 1 and 2 have similar reliabilities, and (d) expert 2 has a
very low reliability estimate, consequently � = 0.

correspond to the combined scores of highest confidence,

i.e., maximize the score separation between the highest

ranked class and the other classes. Finally, we combine

and using , , and (4),

to form the combined score list which

is used to make the final identification decision.

(7)

It should be noted that the above procedure is carried out

for every identification transaction, and thus the fusion

weights are determined online and automatically in an un-

supervised manner. The weights can adapt to the local per-

formance of each expert, i.e., the confidence of the score

given by each expert for a given user transaction is consid-

ered. No assumptions are made here as to which experts

are employed, i.e., and above can represent any of

the face, mouth, or audio experts. To illustrate this pro-

cedure Fig. 1 gives four examples of the specific case of

fusing the scores arising from audio and mouth test obser-

vations, i.e., and . For Fig. 1(a), the

audio and mouth score reliability estimate values, and

, are 0.74 and 0.11, respectively. The audio-mouth relia-

bility estimate reaches a maximum value at an value

of 0.15. Thus, 0.15 and 0.85 (1–0.15) are chosen for and

, respectively, i.e., the scores of expert 1 are weighted

more heavily. Similarly, for Fig. 1(b) the scores of expert

2 are weighted more heavily. In Fig. 1(c), due to the sim-

ilarity of and , the two experts receive approximately

equal weightings. For Fig. 1(d), expert 2 has no contribu-

tion to the final decision. These four examples show that

the weight selection procedure has the ability to adapt the

weights to the reliability of each expert. Fig. 2 illustrates

the fusion procedure described above, which is also for the

specific case of fusing audio and mouth observations.

G. Fusion of the Three Experts

In order to carry out tri-expert fusion of the audio, mouth, and

face experts, a cascade approach is employed. Firstly, the two vi-

sual-based experts (face and mouth) are combined, thus giving

“face-mouth” scores. This is shown in the first block of Fig. 3,

where “ Score Integrationrdquo; refers to the general bi-ex-

pert fusion block as illustrated in Fig. 2. It is intuitive to fuse the

two visual experts initially, as a noisy visual observation signal

is likely to affect both the face and mouth experts; in which case,

the audio scores can be weighted highly to counteract this. The

“face-mouth” scores are subsequently fused with the audio

scores to give the “audio-face-mouth” scores and a tri-expert
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Fig. 2. Block diagram of the fusion strategy, for the specific case of audio and mouth observations.

Fig. 3. Flow diagram for the fusion of all three experts.

Fig. 4. Left: sample still images for nine subjects from the XM2VTS database. Right: ten levels of JPEG compression and corresponding mouth ROI images.

identification decision. We will now describe the fusion experi-

ments that were carried out using the proposed method.

IV. AUDIO-VISUAL CORPUS

A 248-subject subset of the XM2VTS audio–visual database

[50] was used for the experiments described in this paper. The

database consists of video data recorded from 295 subjects in

four sessions, spaced monthly. The first recording per session

of the phonetically balanced sentence (“Joe took father’s green

shoe bench out”) was used. The original frame resolution of

720 576 was downsampled to 360 288. Sample stills are

shown in Fig. 4. The position of the mouth ROI was determined

by manually labeling the left and right labial corners and taking

the center point. This was carried out for every tenth frame only;

the ROI positions for the other frames were interpolated.

In order to examine the robustness of the proposed system,

both the audio and visual (face sequence) test signals were

degraded to provide a train/test mismatch. Ten levels of audio

and visual degradation were applied. Babble noise, taken

from the NOISEX database [51], was applied to the clean

audio data at SNR levels ranging from 24 to 6 dB in decre-

ments of 2 dB. The video frame images were compressed
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using JPEG compression, with ten levels of quality factor

, where a QF

of 100 represents the original image. The compression was

applied to each video frame individually. The mouth ROI was

then extracted from the compressed images. Mouth coordinates

determined on the uncompressed images were employed for the

compressed images, so that any drop in performance would be

due to mismatched testing rather than poorer mouth tracking.

The variation of the face and corresponding mouth ROI images

w.r.t. JPEG QF is shown in Fig. 4. Blocking artefacts are

evident at the lower QF levels.

V. EXPERIMENTS AND RESULTS

The proposed tri-expert classifier fusion system was applied

to the specific problem of closed-set person identification. It

is not restricted to this application, and can also be applied to

the more general problem of open-set person identification. For

closed-set identification, there is prior knowledge that only en-

rolled subjects will access the system, i.e., the test subject will

be identified as one of the enrollees.

A. Audio Expert Experiments and Results

The HMMs were trained using the Baum Welch algo-

rithm (with the maximum likelihood criterion) and tested using

the Viterbi algorithm, both carried out using HTK [19], where

here. There was one background HMM. The first three

sessions were used for training and the last session was used for

testing. The background HMM was trained using three of the

sessions for all subjects, which was initialised using a pro-

totype model; consisting of zero means, the unit matrix, equal

mixtures, and left-to-right state transition probabilities of 0.5.

This background model captures the audio speech variation over

the entire database. The background model was used to initialise

the training of the speaker models. All models were trained

using the clean speech and tested using the various SNR levels.

This provides for a mismatch between the audio testing and

training conditions. The number of audio HMM states that max-

imized the audio accuracy was found empirically to be eleven,

with a mix of two Gaussians per state. Fig. 5 and Table III show

how the audio methodology performs w.r.t. the audio SNR. A

maximum accuracy of 96.8% was achieved at 24 dB. At 6 dB,

the accuracy dropped to 16.1%.

B. Mouth Expert Experiments and Results

The effect of the number of HMM states on the performance

of the four visual feature types (static (S), delta (D), accelera-

tion (A), and S-D-A) was tested. These tests were carried using

matched train/test data, i.e., the original images. For a HMM,

each state is associated with a locally stationary section of the

speech signal, whereas the state transitions model the temporal

nature [21]. It would be expected that the delta and accelera-

tion features would perform better using more states compared

to the static visual features.

The number of states was increased from one, until a per-

formance trend became apparent. In each case one Gaussian

per state was used. The results of this are shown in Fig. 6. The

number of states, that maximized the visual accuracies for each

Fig. 5. Effects of audio degradation on person identification accuracy for
“babble” noise.

of the four feature types, are given in Table I. The static features

performed best with just one state and decreased steadily with

increasing number of states. The number of states, that max-

imized the accuracies for the delta and acceleration features,

were 18 and 15, respectively. The concatenated S-D-A feature

vector was modeled best using four states. For the visual exper-

iments, the mouth expert HMMs were trained on the uncom-

pressed images and tested on the degraded images. This pro-

vided for a visual train/test mismatch. The tests on the degraded

mismatched visual data were carried out using the number of

states, which maximized the accuracies, for each of the four vi-

sual feature types. Table I and Fig. 7 show how the visual fea-

tures perform w.r.t. JPEG degradation.

C. Face Expert Experiments and Results

The face gallery set, comprising of three images, was formed

by arbitrarily extracting the ninth image frame from each of the

first three training sessions. These were used to form a face tem-

plate for each of the subjects. In all the face experiments,

the probe images used for testing were obtained from the final

(fourth) session (again, the 9th frame). The gallery sets con-

sisted of the original uncompressed images and the probe sets

consisted of degraded images at the ten levels of JPEG com-

pression. This provided for a gallery/probe mismatch. The face

(FaceIt) performance w.r.t. JPEG QF is given in Table II and

Fig. 8(c).

D. Fusion Experiments and Results

Four fusion experiments were carried out using the proposed

fusion method: 1) the face and mouth experts; 2) the audio and

mouth experts; 3) the audio and face experts; and 4) the audio,

face, and mouth experts (tri-expert fusion). By comparing the

results of these four experiments, we can observe the perfor-

mance gained with the addition of each expert. For comparison,

the nonweighted sum rule was also employed for tri-expert fu-

sion.

For the mouth expert, the static features exhibited the highest

robustness to JPEG QF mismatch. Hence, the mouth expert

using only the static features was employed for the fusion
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Fig. 6. Visual performance versus number of HMM states for each of the four types of mouth expert visual features, namely: static, delta, acceleration, and S-D-A.

TABLE I
NUMBER OF STATES THAT MAXIMIZED THE ACCURACY FOR EACH OF THE FOUR TYPES OF VISUAL FEATURES, AND THE PERFORMANCE

ACROSS THE TEN LEVELS OF JPEG QF. ACCURACIES ARE PERCENTAGE CORRECT OF N = 248

experiments. The face, mouth, and face-mouth performance

w.r.t. JPEG QF mismatch is given in Table II and Fig. 8(c).

The results for each of the three fusion experiments are pre-

sented in Fig. 8 and Table III, with the audio-mouth results in

Fig. 8(a), the audio-face results in Fig. 8(b), and the audio-face-

mouth (tri-expert), results in Fig. 8(d).

VI. DISCUSSION

With regard to the specific experiments, the audio expert per-

formed very well under near “clean” testing conditions, how-

ever the accuracy roll off w.r.t. SNR is very high, which can be

seen in Fig. 5. For the mouth expert experiments, the fact that

the static visual features performed best with just one state indi-

cates that HMMs may not be required to model visual speech

when using static features, rather, a simpler GMM approach

[18] would be sufficient. Other person recognition studies based

on the mouth ROI have ignored the temporal mouth informa-

tion and modeled the statistical distribution of the mouth shape

over the training utterances using GMMs [13], [52]. The higher

number of HMM states required for the delta and acceleration

features was expected due to the dynamic visual-speech infor-

mation contained in these features. The fact that the S-D-A fea-

ture vector was modeled best using four states suggests a conflict

between the static and dynamical features, with static features

performing best with a single-state model whereas dynamical

features perform better with a multistate model. Hence, a score-

level integration-based approach of the , , and scores, may

yield higher S-D-A performance than the feature-concatenation

fusion approach used here.

The best mouth expert performance of 92% is surprisingly

high, considering that only mouth information was employed.

While the S-D-A features outperform the static features for

high QFs (S-D-A 90.4% versus static 85.7% at a QF of 50), the

performance at a QF of 2 is 34.7%, which is poorer than the

static performance of 48.2%. The dynamic features perform

very poorly for low QF levels, both falling to around 2% at a

QF of 2. It should be noted that in an applied scenario, where

the ROI is automatically segmented, rather than manually,
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TABLE II
MOUTH, FACE, AND FACE-MOUTH FUSION ACCURACIES FOR THE TEN LEVELS OF JPEG QF

Fig. 7. Effects of visual degradation on the person identification accuracy for
ten levels of JPEG QF and for each of the four types of mouth visual features
examined.

poorer robustness to visual degradations would be expected.

The results also show that the static features are more important

and more robust than the dynamic features for person identi-

fication and also, that nontemporal GMM modeling may be

more suitable than temporal HMM modeling.

It was expected that FaceIt, a commercial system, employing

features located throughout the entire face would outperform

an expert employing features extracted from just the mouth

ROI. The face expert outperformed the mouth expert at all

levels of train/test mismatch. The highest face expert accuracy

of 98.8% is 15% higher (relative) than the highest mouth

expert accuracy of 85.9%. The face expert also exhibits higher

robustness to JPEG compression, when compared to the mouth

expert, with accuracies exceeding 98%, for all test mismatch

levels exceeding a QF of 4. At the highest mismatch QF level

of 2, the face expert accuracy was 75%, and the mouth expert

accuracy was 48%, a relative difference of 56%. The superior

performance of FaceIt is more impressive when considering

that the FaceIt gallery consists of only three images, whereas

the mouth expert model has the advantage of “seeing” three

sequences of video frames and hence more variation in the

subjects’ appearance. Nonetheless, it is still interesting to

examine if the combination of the FaceIt and mouth experts

would yield any improvement in performance and robustness.

The robustness of the face expert against JPEG compression

is in line with results from the Face Recognition Vendor Test

2000 [5] where similar observations were made.

For the fusion of the face and mouth experts, a perfect face-

mouth accuracy of 100% is achieved at several levels of JPEG

QF mismatch. Also, the face-mouth accuracies are higher than

either of the face or mouth expert accuracies for all levels of

JPEG QF mismatch, i.e., enhancing fusion. The most significant

improvements are yielded for the higher levels of mismatch,

for example at the lowest QF level of 2, the face-mouth, face,

and mouth accuracies are, 87.5%, 75%, and 48%, respectively,

representing a 17% relative improvement over the face expert

alone. The improved face-mouth performance indicates that the

mouth features complement the facial features that the FaceIt

engine employs. The improvement may be due to two factors: 1)

the face expert emphasizes eye information and hence the mouth

expert is complementary and 2) the fact that the mouth expert

can capture the variation of the mouth ROI over the training

video frame sequences.

The audio-mouth accuracies represent an improvement over

the individual audio and mouth expert accuracies at the lower

levels of audio and visual train/test mismatch, e.g., at the (16 dB,

8QF) operating point, the audio, mouth, and audio-mouth ac-

curacies are 89.5%, 80.2%, and 98.4%, respectively. However,

the fusion results are disappointing for the higher levels of mis-

match, e.g., at the (6 dB, 8QF) operating point, the audio, mouth,

and audio-mouth accuracies are 16.1%, 80.2%, and 65.7%, re-

spectively. The audio-face results show an improvement over

the individual experts at all levels of mismatch. At the (10 dB,

2QF) operating point, the audio, face, and audio-face accuracies

are 51.2%, 75%, and 87.5%.

For the tri-expert experiments, perfect audio-face-mouth

100% accuracies were achieved at the majority of operating

points. The tri-expert fusion attains a significant increase in ro-

bustness to both audio and visual degradations. This is evident

from the flatness of the audio–visual surface in Fig. 8(d) com-

pared to Fig. 8(a) and Fig. 8(b). From Fig. 8(d), it is evident that

the tri-expert performance exceeds the performance of either the

audio-mouth or audio-face fusion. The improvements in perfor-

mance were most significant, at the highest levels of train/test

mismatch. At the (6 dB, 2QF) operating point, the audio,

mouth, and face accuracies are 16.1%, 48%, 75%, respectively,

whereas the audio-mouth, audio-face, and audio-face-mouth

accuracies are 48.8%, 77.8%, and 89.9%, respectively. This

exemplifies the robustness of our tri-expert fusion method to

both audio and visual degradation. Importantly, integrating a

highly mismatched scenario (e.g., audio 16.1% at 6 dB) with

a “clean” test (e.g., face 75%, mouth 48% at QF2) does not

result in catastrophic fusion (audio-face-mouth 89.9%), unlike

for the audio-mouth only case and for the nonweighted sum

rule (73%). These results were achieved with the tri-expert

fusion block having no prior knowledge of the level or type

of audio or visual degradation. Hence, we have a generalized

fusion methodology, which should not be adversely affected by

varying types of audio/video mismatch noise.



FOX et al.: ROBUST BIOMETRIC PERSON IDENTIFICATION USING AUTOMATIC CLASSIFIER FUSION OF SPEECH, MOUTH, AND FACE EXPERTS 711

Fig. 8. Identification accuracies for the four fusion experiments carried out: (a) the audio and mouth, (b) the audio and face, (c) the face and mouth, and (d) the
audio, face, and mouth (tri-expert fusion). For comparison, the results for the ten levels of visual (JPEG QF) and audio (dB) degradation are displayed.

TABLE III
PERSON IDENTIFICATION ACCURACIES (%) FOR THE MOUTH (M), FACE (F), AUDIO (A), AND THE FOUR FUSION EXPERIMENTS CARRIED OUT, NAMELY

THE FUSION OF: (A) THE FACE AND MOUTH (FM), (B) THE AUDIO AND MOUTH (AM), (C) THE AUDIO AND FACE (AF), AND (D) THE AUDIO, FACE,
AND MOUTH (AFM). RESULTS FOR BOTH AUTOMATIC FUSION (AUTO) AND THE NONWEIGHTED SUM RULE (SUM) ARE GIVEN
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Fig. 9. (a) Shown is the relative percentage improvement of the automatic fusion scheme over the nonweighted sum rule, for tri-expert fusion, versus JPEG QF
and audio SNR. (b) Automatically determined “visual” weights for tri-expert fusion versus JPEG QF and audio SNR.

Fig. 9(a) shows that, at the majority of operating points, the

automatic fusion scheme yields a positive improvement com-

pared to the nonweighted sum rule, with significant improve-

ments (greater than 15% relative) attained at the lower QF and

SNR levels. In Fig. 9(b), the general profile of the automati-

cally determined “visual” weights is as expected, i.e., the vi-

sual scores receive a higher weighting when the QF is high and

the SNR is low. The profile is biased towards weighting the

“face-mouth” visual scores as all of the weights are greater than

0.5. This is due to the stronger performance of the “face-mouth”

“expert” compared to the audio expert.

Further work includes dynamically varying the order of the

fusion cascade and testing the performance of the fusion system

described in this study using different types of audio and visual

degradations. Since the reliability estimation is carried out at the

score level, and not at the signal level, it is expected that varying

the type of degradation causing the train/test mismatch will not

adversely affect the fusion performance.

VII. CONCLUSION

A multiple-expert biometric person identification system

has been presented, which combines information from three

experts, namely: audio, visual speech, and face information

in an automatic unsupervised fusion, adapting to the local

performance of each expert, and taking into account the

output-score-based reliability estimates of each of the experts.

Previous tri-expert (audio, face, and mouth) fusion studies use

nonweighted fusion or else fixed weights; expert reliability in-

formation is not considered. A benefit of the approach described

is that audio–visual training data is not required to tune the

fusion process. The results show improved fusion accuracies

for the gamut of tested levels of audio and visual degradation,

compared to the individual expert accuracies. Also, the auto-

matic fusion scheme outperforms the nonweighted sum rule,

particularly at the higher levels of audio and video degradation.

The results highlight the complementary nature of the mouth

and face experts under clean and noisy test conditions, and

in turn, the complementary nature of audio- and video-based

information. These results as a whole are important for person

recognition applications, where bandwidth is limited and un-

controlled acoustic noise is probable, such as, video telephony

and online authentication; and demonstrate the utility of a mul-

tiple-expert person identification system based on automatic

classifier fusion that is robust to both audio and visual train/test

mismatch.
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