
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002 1377

Robust Boolean Reasoning for Equivalence Checking
and Functional Property Verification

Andreas Kuehlmann, Senior Member, IEEE, Viresh Paruthi, Florian Krohm, and Malay K. Ganai, Member, IEEE

Abstract—Many tasks in computer-aided design (CAD), such as
equivalence checking, property checking, logic synthesis, and false
paths analysis, require efficient Boolean reasoning for problems
derived from circuits. Traditionally, canonical representations,
e.g., binary decision diagrams (BDDs), or structural satisfiability
(SAT) methods, are used to solve different problem instances.
Each of these techniques offer specific strengths that make them
efficient for particular problem structures. However, neither
structural techniques based on SAT, nor functional methods using
BDDs offer an overall robust reasoning mechanism that works
reliably for a broad set of applications. The authors present a
combination of techniques for Boolean reasoning based on BDDs,
structural transformations, an SAT procedure, and random
simulation natively working on a shared graph representation of
the problem. The described intertwined integration of the four
techniques results in a powerful summation of their orthogonal
strengths. The presented reasoning technique was mainly devel-
oped for formal equivalence checking and property verification
but can equally be used in other CAD applications. The authors’
experiments demonstrate the effectiveness of the approach for a
broad set of applications.

Index Terms—BDD, Boolean reasoning, equivalence checking,
formal verification, property checking, SAT.

I. INTRODUCTION

M
ANY tasks in computer-aided design (CAD) such

as equivalence or property checking, logic synthesis,

timing analysis, and automatic test-pattern generation, require

Boolean reasoning on problems derived from circuit structures.

There are two main approaches used alternatively for such ap-

plications. First, by converting the problem into a functionally

canonical form such as binary decision diagrams (BDDs), the

solution can be obtained from the resulting diagram. Second,

structural satisfiability (SAT) procedures perform a systematic

search for a consistent assignment on the circuit representation.

The search either encounters a solution or, if all cases have been

enumerated, concludes that no solution exists. Both approaches

generally suffer from exponential worst case complexity.

However, they have distinct strengths and weaknesses which

make them applicable to different classes of practical problems.

Manuscript received December 28, 2001; revised April 18, 2002. This paper
was recommended by Associate Editor J. H. Kukula.

A. Kuehlmann is with the Cadence Berkeley Labs, Berkeley, CA 94704 USA
(e-mail: kuehl@cadence.com).

V. Paruthi is with the IBM Enterprise Systems Group, Austin, TX 78758 USA
(e-mail: vparuthi@us.ibm.com).

F. Krohm is with the IBM Microelectronic Division, Hopewell Junction, NY
12533 USA (e-mail: florian@edamail.fishkill.ibm.com).

M. K. Ganai is with the NEC C&C Research Labs, Princeton, NJ 08540 USA
(e-mail: malay@nec-lab.com).

Digital Object Identifier 10.1109/TCAD.2002.804386

A monolithic integration of SAT and BDD-based techniques

could combine their individual strengths and result in a pow-

erful solution for a wider range of applications. Additionally,

by including random simulation its efficiency can be further

improved for problems with many satisfying solutions.

A large fraction of practical problems derived from the

above-mentioned applications have a high degree of structural

redundancy. There are three main sources for this redundancy:

first, the primary netlist produced from a register transfer

level (RTL) specification contains redundancies generated by

language parsing and processing. For example, in industrial

designs, between 30% and 50% of generated netlist gates are

redundant [1]. A second source of structural redundancy is

inherent to the actual problem formulation. For example, a

miter structure [2], built for equivalence checking, is globally

redundant. It also contains many local redundancies in terms of

identical substructures used in both designs to be compared. A

third source of structural redundancy originates from repeated

invocations of Boolean reasoning on similar problems derived

from overlapping parts of the design. For example, the indi-

vidual paths checked during false paths analysis are composed

of shared subpaths which get repeatedly included in subsequent

checks. Similarly, a combinational equivalence check of large

designs is decomposed into a series of individual checks of

output and next-state functions which often share a large part of

their structure. An approach that detects and reuses structural

and local functional redundancies during problem construction

could significantly reduce the overhead of repeated processing

of identical structures. Further, a tight integration with the

actual reasoning process can increase its performance by

providing a mechanism to efficiently handle local decisions.

In this paper, we present an incremental Boolean reasoning

approach that integrates structural circuit transformation, BDD

sweeping [3], a circuit-based SAT procedure, and random sim-

ulation in one framework. All four techniques work on a shared

AND/INVERTER graph [3] representation of the problem. BDD

sweeping and SAT search are applied in an intertwined manner

both controlled by resource limits that are increased during each

iteration [4]. BDD sweeping incrementally simplifies the graph

structure, which effectively reduces the search space of the SAT

solver until the problem can be solved. The set of circuit trans-

formations get invoked when the sweeping causes a structural

change, potentially solving the problem or further simplifying

the graph for the SAT search. Furthermore, random simulation

can efficiently handle problems with dense solution spaces.

This paper is structured as follows. Section II summarizes

previous work in the area and contrasts it to our contributions.

Section III presents the AND/INVERTER graph representation,

0278-0070/02$17.00 © 2002 IEEE

1378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

which is shared among all reasoning mechanisms and outlines

the set of transformations that are applied for its simplification.

Section IV presents the BDD sweeping algorithm and Sec-

tion V outlines the details of the circuit-based SAT procedure.

The random simulation algorithm and overall reasoning flow

are described in Sections VI and VIII, respectively. The last

two sections present experimental results and conclusions.

II. PREVIOUS WORK

SAT search has been extensively researched in multiple com-

munities. Many of the published approaches are based on the

Davis–Putnam procedure [5], [6], which executes a systematic

case split to exhaustively search the solution space. Over the

years, many search tactics improvements have been published.

The most notable implementations of CNF-based SAT solvers

are GRASP [7] and Chaff [8]. Classical CNF-based SAT solvers

are difficult to integrate with BDD methods and dynamically

applied circuit transformations because they use a clause-based

representation of the problem. In this paper, we describe an

implementation of an SAT procedure that works directly on

an AND/INVERTER graph allowing a tight interaction with BDD

sweeping, local circuit graph transformations, and random sim-

ulation. We describe a modified implementation of nonchrono-

logical backtracking and conflict-based learning and present an

efficient means to statically learn implications.

Trading-off compactness of Boolean function representations

with canonicity for efficient reasoning in computer-aided design

(CAD) applications has been the subject of many publications.

BDDs [9], [10] map Boolean functions onto canonical graph

representations and thus are one extreme of the spectrum. De-

ciding whether a function is a tautology can be done in con-

stant time, at the possible expense of an exponential graph size.

XBDDs [11] propose to divert from the strict functional canon-

icity by adding function nodes to the graph. The node function

is controlled by an attribute on the referencing arc and can rep-

resent an AND or OR operation. Similar to BDDs, the functional

complement is expressed by a second arc attribute and struc-

tural hashing identifies isomorphic subgraphs on the fly. The

proposed tautology check is similar to a technique presented in

[12] and is based on recursive inspection of all cofactors. This

scheme effectively checks the corresponding BDD branching

structure sequentially, resulting in exponential runtime for prob-

lems for which BDDs are excessively large.

Another form of a noncanonical function graph representa-

tion are BEDs [13]. BEDs use a circuit graph with six pos-

sible vertex operations. The innovative component of BEDs is

the application of local functional hashing, which maps any

four-input substructure onto a canonical representation. Tau-

tology checking is based on converting the BED structure into

a BDD by moving the variables from the bottom of the diagram

to the top. Similar to many pure cutpoint-based methods, this

approach is highly sensitive to the ordering in which the vari-

ables are pushed up. In our approach, we apply an extended

functional hashing scheme to an AND/INVERTER graph represen-

tation. Since our graph preserves the AND clustering, the hashing

can take advantage of its commutativity which makes it less sen-

sitive to the order in which the structure is built. If the structural

method fails, we apply BDD sweeping on the circuit graph for

checking tautology. Due to the multiple frontier approach de-

scribed later, it is significantly more robust than the BED to

BDD conversion process.

There are numerous publications that proposed the applica-

tion of multiple methods to solve difficult reasoning instances.

For example, in [14] and [3] the authors presented a random

simulation algorithm and the mentioned method based on

structural hashing and BDDs, respectively, and suggested their

application in a multiengine setting. In [15], a comprehensive

filter-based approach is described that successively applies

multiple engines including structural decomposition, BDDs,

and ATPG to solve combinational equivalence checking prob-

lems. All these techniques have in common that they apply

multiple specialized techniques in a sequential independent

manner. In contrast, the presented approach tightly intertwines

the use of structural methods, BDD-based techniques, and an

SAT search and applies them on a single uniform data represen-

tation. The proposed setting allows an automatic adaptation of

the combined algorithm to match a given problem structure that

results in a significant increase in the overall reasoning power.

Several publications have suggested an integration of SAT

and BDD techniques for Boolean reasoning. Cutpoint-based

equivalence checking uses a spatial problem partitioning and

can be employed as a base to apply SAT and BDDs in distinct

parts of the miter structure. A particular approach [16] first

builds a partial output BDD starting from the cutset where

auxiliary variables are introduced. It then enumerates the onset

cubes of this BDD and applies an SAT search for justifying

those cubes from the primary inputs. This method becomes

intractable if the BDD includes many cubes in its onset. Further,

the actual justification of individual cubes may timeout if the

cutset is chosen unwisely. A modification of this approach

suggests searching through all cofactors of the BDD instead of

enumerating all cubes [17]. Another proposal to combine BDD

and SAT is based on partitioning the circuit structure into a set

of components [18]. As most cutpoint-based methods, all these

approaches are highly sensitive to the chosen partitioning.

A common problem with the mentioned integration ap-

proaches is the insertion of BDD operations into the inner loop

of a structural SAT search. Structural SAT is efficient if the

underlying problem structure can be exploited for effective

local search heuristics. BDDs work well if redundancy of

the problem structure eludes an exponential growth during

construction. A spatial partitioning of the application space for

BDDs and SAT blurs their individual global scope and sepa-

rates the application of their orthogonal strengths to different

parts. In this paper, we apply BDD sweeping and structural

SAT search, both working in an interleaved manner on the

entire problem representation. This keeps both mechanisms

focused on the global structure without being constrained by

an arbitrary prepartitioning. In this setting, BDD sweeping

incrementally reduces the search space for the SAT solver until

the problem is solved or the resource limits are exhausted.

Structural transformations are used to facilitate local decisions.

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1379

Fig. 1. Algorithm create_and2 for the AND constructor.

III. PROBLEM REPRESENTATION AND STRUCTURAL

TRANSFORMATIONS

In this section, we describe the basic AND/INVERTER graph

representation that is employed as an underlying data structure

for all Boolean reasoning algorithms described in the following

sections. We also present several hashing schemes that remove

structural and local functional redundancies during graph con-

struction.

A. AND/INVERTER Graph Representation and Structural

Hashing

A directed acyclic graph is used as a structural representation

of the functions to be reasoned about. There are three types of

graph vertices: a unique terminal vertex represents the constant

“0” (“1”) value when it is referenced by a noncomplemented

(complemented) arc. A second type of vertex has no incoming

arcs and models primary inputs. The third vertex type has two

incoming arcs and represents the AND of the vertex functions

referenced by the two arcs. INVERTER attributes on the graph

arcs indicate Boolean complementation. Using this graph rep-

resentation, a reasoning problem is expressed as an obligation

to prove a particular graph vertex to be constant “0” or “1”.

Similar to the construction of BDDs, the AND/INVERTER

graph is built from the inputs toward the outputs using a set

of construction operators. There are three basic constructors:

(1) create_input, (2) create_and2, and (3) create_inverter.

Other operators for alternative or more complex operations are

composed of these basic constructors. Intermediate functions

are passed between constructors by arc handles, which consist

of a reference to the source vertex and a possible INVERTER

attribute. The same handles are applied by the reasoning

application to refer to functions that are stored by the graph.

The implementation of the construction operation

create_input is straightforward. It allocates and initial-

izes a corresponding vertex data structure and returns a handle

pointing to it. Similarly, the operation create_inverter simply

toggles the attribute of the handle. Fig. 1 shows the pseudo-code

for the operati2pon create_and2. The algorithm takes two

arc handles as input parameters and returns an arc handle that

represents the output of the AND operation. In the code, the

symbol “ ” denotes Boolean complemention using the proce-

dure create_inverter. The first part of the algorithm performs

constant folding, which automatically simplifies redundant and

Fig. 2. Algorithm new_and_vertex for allocating a new graph vertex,
including restarting of BDD sweeping (Section IV) and static learning
(Section V).

trivial expressions in the graph structure. Next a hash-lookup

identifies isomorphic graph structures and eliminates them

during construction. For this the procedure hash_lookup

checks whether an AND vertex with the requested input arcs

has been created before. If found the existing ver2ptex is

reused, otherwise a new vertex is created using the function

new_and_vertex. Before applying the hash-lookup the two

operators and are ordered using a unique ranking criteria.

This assures that commutative expressions, such as and

, are merged onto the same graph vertex.

The algorithm new_and_vertex is shown in Fig. 2. It is used

to allocate a new graph vertex and add a corresponding entry to

the hash table. This procedure also handles the reactivation of

the BDD sweeping algorithm and static learning as described in

Sections IV and V, respectively.

The construction of the AND/INVERTER graph for a simple ex-

ample is illustrated in Fig. 3. Fig. 3(a) represents a circuit built

for proving equivalence of nets and , which are functionally

identical but have different structural implementations. Func-

tionally equivalent nets are labeled using identical numbers with

one or more apostrophes. Fig. 3(b) shows the result of the graph

construction using the algorithm create_and2 of Fig. 1. The

vertices of the graphs represent AND functions and the filled

dots on the arcs symbolize the INVERTER attributes. Note that

in several cases structurally isomorphic nets are mapped onto

the same graph vertices. For example, the functions (net 1

of the upper circuit) and (net 1” of the lower circuit) are

identified as structurally equivalent and represented by a single

vertex.

B. Functional Hashing

The simple two-level hashing scheme of algorithm

create_and2 can eliminate structurally isomorphic graph

vertices but cannot handle functionally identical vertices that

are implemented by different structures. For example, the

equivalence of vertices and of the circuit in Fig. 3 cannot

be shown by simple hashing. In this section, we present a

generalized hashing scheme that identifies functionally iden-

tical subcircuits of bounded size independent of their actual

structural implementation.

A natural way to increase the scope of structural hashing

would be to divert from the two-input graph model and use ver-

tices with higher fanin degree. The set of possible functions of a

vertex with more than two inputs cannot be encoded efficiently

1380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

(a)

(b)

(c)

(d)

Fig. 3. Example for the construction of an AND/INVERTER graph: (a)
functionally redundant structure generated to check functional equivalence
of outputs x and y; (b) corresponding two-input AND/INVERTER graph built
by algorithm create_and2 of Fig. 1; (c) alternative graph representation with
four-input vertices; and (d) resulting two-input graph after functional hashing
using the algorithm create_and of Fig. 4.

using uniform vertex operations and arc attributes only. Instead,

the vertex function should be represented by an attribute

which is hashed in conjunction with the input references to

find structurally identical circuit parts. Since the number of

possible vertex functions grows exponentially, this method is

only practical for vertices with up to four inputs. For the circuit

example of Fig. 3(a), part (c) shows the graph model based on

Fig. 4. Algorithm create_and for an AND constructor that includes local
functional hashing.

vertices with a maximum fanin degree of four. Note that this

method can identify the equivalence of the net pair (5, 5’) but

still fails to show the same for pair (7, 7’), and therefore for

and .

A more comprehensive approach denoted as functional

hashing [1] is based on the presented two-input graph and

an extension of the structural analysis that includes the two

graph levels preceding a vertex. As a result, the granularity

of identifying functionally identical vertices is comparable to

the granularity of the hashing technique based on four-input

vertices. Moreover, by applying this method on all intermediate

vertices in an overlapping manner, this approach can take

advantage of additional structural similarities that otherwise

remain internal to four-input vertices.

Fig. 4 outlines the overall flow of the functional hashing

scheme. The first part, which performs constant folding and

structural hashing, is identical to the algorithm create_and2

of Fig. 1. In case of a hash miss, the second part includes an

extended two-level lookup scheme, which converts the local

function of the four grandchildren into a canonical representa-

tion. During graph construction from the primary inputs, the

first level of vertices does not have four grandchildren and,

thus, must be treated specially. If both immediate children are

primary inputs, the algorithm creates a new vertex using the

procedure new_and_vertex, which is shown in Fig. 2. If only

one of the children is a primary input, a canonical three-input

substructure is created by applying the procedure create_and3,

and for the remaining case the procedure create_and4 is

called. Since the algorithms of the procedures create_and3

and create_and4 are fairly similar, we limit the description

to the latter. Its pseudo-code is given in Fig. 5. The procedure

create_and3 simply implements a subset of the shown cases.

The algorithm create_and4 first analyzes the local sub-

structure using the procedure analyze_case. It computes a

signature which reflects: 1) the equality relationship of the

four grandchildren and 2) the inverter attributes of the six arcs.

This signature is mapped to one of 235 different cases (for

the algorithm create_and3, the signature is mapped to one of

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1381

Fig. 5. Sketch of the algorithm create_and4 which handles vertex
construction for substructures with four grandchildren.

(a) (b)

Fig. 6. Example for merging the structures of functions g = XOR(a; b) and
h = XNOR(a; b) using the algorithm create_and4. (a) Resulting structure
without functional hashing. (b) Structure with functional hashing.

44 cases). By construction, the topology of the substructure is

uniquely identified by this signature. Its value is then mapped

onto an implementation index such that all structures with

identical functions get projected onto the same index. For each

distinct index a new canonical implementation is then gener-

ated. Because of this canonicity and the applied vertex hashing

this method merges all functionally equivalent substructures,

effectively removing local functional redundancies. Fig. 5

provides pseudo-code examples to handle cases 98 and 123,

which represent the structures of an XOR and XNOR function

as shown in Fig. 6(a). Fig. 6(b) demonstrates how functional

hashing maps both functions onto the same vertex referenced

by complemented arcs.

Note that functional hashing is applied recursively as shown

in the implementation of the intermediate functions and

of cases 98 and 123 of Fig. 5. However, to ensure termination,

the final vertex must be constructed with the nonrecursive pro-

cedure create_and2 shown in Fig. 2. The recursive application

of functional hashing often results in a significant graph reduc-

tion. For example, the two outputs in Fig. 3(a) can be merged

by functional hashing resulting in the graph shown in (d).

(a) (b)

(c)

Fig. 7. Example of local rewriting: (a) original graph that cannot be reduced
by functional hashing, (b) result of rewriting using case 236 of algorithm
create_and4 (Fig. 8), and (c) result after recursive application of case 144 of
algorithm create_and4 (Fig. 5).

C. Local Rewriting

Functional hashing, as described in the previous subsection,

has the potential to compact graph representations for structures

with shared grandchildren. However, if all four grandchildren of

the two operands are distinct, the hashing does not result in any

structural reduction. Still, in some cases where the operand’s

grand-grandchildren are shared, the local structure can be re-

arranged such that they share at least one grandchild. This re-

arrangement will enable a following functional hashing step.

For example, the expression cannot

be simplified with functional hashing because it has four dis-

tinct grandchildren, { , , , }. However, after rewriting the

expression into functional hashing

can simplify the structure to . The corresponding

step-wise graph transformations are illustrated in Fig. 7.

To handle local rewriting, the algorithm create_and4

is enhanced by recognizing more cases in the procedure

analyze_case and adding the corresponding indexes to the

implementation cases. In essence, the mentioned rewriting

mechanism is applicable if: 1) at least one operand of the AND

operation is complemented and 2) the grandchildren and/or

children of the operands are shared. Fig. 8 shows a modified

version of the algorithm create_and4 that includes the addi-

tional three cases for local rewriting. The procedure share tests

whether two given vertices share any children. In the given

example of Fig. 7, the left child of vertex is inverted and

shares its children with the right–left grandchild of . Here the

depicted case 236 of the modified algorithm of Fig. 8 is applied

for rewriting. During the implementation step the procedure

create_and is called recursively after which case 144 shown

in Fig. 5 is applicable and simplifies the graph to the structure

given in Fig. 7(c).

D. Symmetric Cluster Hashing

The previously described methods, including structural

hashing, functional hashing, and local rewriting, restructure

the AND/INVERTER graph only locally by examining a limited

number of fanin vertices. A further compression of the graph

can be achieved by analyzing larger symmetric graph clusters.

The idea is that expression trees utilizing a uniform symmetric

vertex function (e.g., AND or XOR) represent the same Boolean

1382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 8. Sketch of improved algorithm create_and4 with local rewriting.

function if they have identical sets of source vertices. This

equivalence is independent of the actual tree structure and

permutation of sources.

For identifying identical symmetric cluster functions, a spe-

cial cluster hashing algorithm is applied whenever a new AND

vertex is built. The algorithm traverses the transitive fanin of

the vertex, determines the boundaries of the symmetric expres-

sion tree, and collects the set of source vertices. This set is then

hashed using a special cluster hash table. If identical entries are

found, the corresponding vertices are merged and their fanout

structures are rebuilt.

The symmetric cluster hashing is done for two function types.

AND clusters are simple to identify by just traversing the fanin

structure until inverted arcs are encountered. Due to their du-

ality, OR clusters are automatically handled by the same algo-

rithm. XOR/XNOR clusters are found by recursively searching for

the canonical XOR structure (shown in Fig. 6). Only one of the

two possible XOR/XNOR needs to be identified, since the other

structure gets rewritten by functional hashing.

Note that an alternative approach to handle symmetric

clusters would be to build AND and XOR expression trees in a

canonical manner, for example, by always building a balanced

tree structure using the source vertices in some lexicographical

order. However, our experience is that such an approach is

inferior to the presented method since it destroys up-font large

parts of the existing (empirically useful) circuit structure and as

a result prevents many matchings that are otherwise possible.

IV. BDD SWEEPING

In this section, we describe the BDD sweeping algorithm, a

method that systematically identifies and merges functionally

equivalent AND/INVERTER graph vertices that are not found to

be equivalent by the previously described structural methods.

The sweeping method builds BDDs for the individual graph

vertices starting from inputs and multiple cut frontiers toward

the outputs. By maintaining cross references between the graph

vertices and its BDD nodes, functionally identical vertices can

be found constructively during the sweep. There are several key

ideas that make BDD sweeping robust and efficient.

• As soon as two functionally equivalent vertices are iden-

tified, their output structures are merged and rehashed

using the algorithms described in the previous section.

The instantaneous application of structural simplification

can solve reasoning problems without building BDDs

for the entire problem structure, resulting in a significant

increase in the overall reasoning power and performance.

• The BDD propagation is prioritized by the actual size of

the input BDDs using a heap as processing queue. As a

result, the sweeping algorithm focuses first on inexpen-

sive BDD operations and avoids the construction of large

BDDs unless they are needed for solving a problem.

• The maximum size of the processed BDDs is limited by

a threshold, which effectively controls the computing re-

sources and reasoning power. BDDs that exceed the size

of the threshold are “hidden” in the processing heap and

will reappear when the sweeping is restarted with a suf-

ficiently large limit. This mechanism is used to interleave

BDD sweeping with structural SAT search. By incremen-

tally increasing the resources of the individual algorithms

during each iteration, their reasoning power continues to

grow until the problem can be solved by either one of

them.

• Multiple BDD frontiers are concurrently propagated in the

heap controlled manner. This approach effectively handles

local redundancies without the need to always build large

BDDs from the graph inputs.

• When the BDD processing reaches any of the target

vertices that represent a proof obligation (i.e., it must

be shown to be constant, or not) one of the following

steps is applied: if the corresponding BDD represents a

constant, the vertex gets merged with the constant graph

vertex and the reasoning result is obvious (depending on

the problem either SAT or UNSAT). Otherwise, if the

support of the BDD contains only primary input variables,

satisfiability is proven and any paths from the BDD root

to the corresponding constant BDD node can serve as

counterexample. If the support contains variables from

intermediate cutsets, false negative resolution is applied.

A. Basic Sweeping Algorithm

Fig. 9 shows the self-explanatory pseudo-code for the basic

BDD sweeping algorithm bdd_sweep. It does not include the

processing of multiple BDD frontiers, which is described in the

next subsection. The heap structure is initialized in the overall

procedure (see Section VIII). For this, primary inputs are initial-

ized at the beginning of the reasoning flow using the procedure

sweep_init, whereas cutset vertices are declared and initialized

between the individual sweeping iterations.

The invocation of the sweeping algorithm processes all

heap BDDs that have a smaller size than the given threshold

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1383

Fig. 9. Initialization procedure sweep_init and basic BDD sweeping
algorithm bdd_sweep for deciding SAT(vertex).

bdd_lower_size_limit. All larger BDDs remain hidden in the

heap and get processed when the algorithm is called again with

a sufficiently large threshold. During each iteration of the inner

sweeping loop, the algorithm removes the smallest BDD from

the heap, processes the Boolean operations for the immediate

fanout structure of the corresponding circuit graph vertex, and

reenters the resulting BDDs onto the heap, if their size is below

the threshold bdd_upper_size_limit.

Using cross referencing between graph vertices and the cor-

responding BDD nodes, functionally equivalent vertices can be

identified. An equivalent vertex pair is found if the result

of a BDD operation already refers to another vertex that was

processed before. In this case, both vertices are merged im-

mediately and their subsequent parts of the graph are rehashed

by the procedure merge_vertices. The rehashing is applied in

depth-first order starting from the merged vertices toward the

primary outputs and stops if no further reconvergency occurs.

As a result, the forward rehashing may merge the reasoning

target vertex vertex with the constant vertex, effectively deciding

the problem. The corresponding two checks in the inner loop

test for these cases. Before the BDD is reentered onto the heap,

another check tests whether the target vertex was reached. In

this case, the target vertex must be nonconstant, otherwise it

would have been merged with a constant vertex and one of the

previous tests would have succeeded. Therefore, the problem is

satisfiable since the BDD support includes only primary input

variables.

The following remarks further explain particular details of the

sweeping algorithm.

• The sequence by which the cross referencing is performed

and checked using the procedure get_bdd_from_vertex,

store_bdd_at_vertex, get_vertex_from_bdd, and

store_vertex_at_bdd, ensures that all vertices are han-

dled exactly once, unless new graph vertices are added to

the fanout of an already processed vertex. In this case, the

procedure new_and_vertex restarts the sweeping process

for these vertices.

• If one of the two BDD operands is missing, the BDD op-

eration is skipped and processing continues with the next

BDD from the heap. Note that as soon as this operand is

available, the same BDD operation will be reinvoked.

• The merging of two vertices is done in a forward manner,

i.e., the fanouts of the vertex, which is topologically farther

from the primary inputs, must be reconnected to the vertex

that is topologically closer to the inputs. Otherwise, the

merge operation may cause structural loops in the graph,

which would invalidate its semantic.

Fig. 10 illustrates the mechanism of BDD sweeping for

proving equivalence of two functionally identical but struc-

turally different circuit cones. Fig. 10(a) and (b) show the

miter structure of the two cones 5 and 5’ to be compared with

an XNOR gate and the corresponding AND/INVERTER graph,

respectively. The following figures show the progress of the

sweeping until equivalence is proven. It is assumed that the

BDDs are processed in the order of their corresponding vertices

1,2,3,4,3’, and 2’. The first four iterations create the BDDs for

vertices 1,2,3, and 4. In the next iteration, the resulting BDD

node for vertex 3’ already points to the functionally equivalent

vertex 3. Therefore, vertices 3’ and 3 are merged as depicted

in Fig. 10(c). The next figure shows the graph after vertex 2’

has been processed and merged with vertex 2. The subsequent

forward rehashing identifies that 5 and 5’ are isomorphic and

merges them, which further causes 6 to be merged with the

constant vertex. Note that for simplicity we used only structural

hashing in this example. The resulting graph structure is shown

in Fig. 10(e). At this point functional equivalence is proven and

the algorithm terminates without having to build BDDs for the

entire miter structure.

B. Enhanced Sweeping Algorithm With Multiple BDD

Frontiers

The basic sweeping algorithm as described in the previous

section starts the BDD propagation from the input vertices only.

As a result, the size threshold of the BDD processing precludes a

full penetration of deeper AND/INVERTER graphs. An enhanced

sweeping approach is based on a multilayered propagation of

BDDs that start from the primary inputs as well as intermediate

cut frontiers. Using this scheme, the graph vertices are gener-

ally associated with multiple BDDs that represent their function

from different cuts of their fanin logic.

For the multilayer BDD propagation, the overall algorithm,

which is described in Section VIII, declares cutpoints between

1384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

(a)

(b)

(c)

(d)

(e)

Fig. 10. Example for BDD sweeping: (a) miter for two functionally identical
circuit cones, (b) original AND/INVERTER graph, (c) BDDs are computed for
vertices 1,2,3,4,3’, which causes 3’ and 3 to be merged, (d) BDD is computed
for 2’ which causes 2’ and 2 to be merged, and (e) forward hashing causes 5
and 5’ to be merged and 6 be merged with the constant vertex thus solving the
reasoning problem.

Fig. 11. Enhanced BDD sweeping algorithm with multilayered BDD frontiers
for deciding SAT(vertex).

individual sweeping steps. There are several heuristics to iden-

tify vertices that represent effective cutpoints, including the use

of:

• vertices that have a large fanout;

• vertices that have multiple paths to the reasoning vertex;

• in case of equivalence checking, vertices that are on the

border of the intersection of the two cones that form the

miter structure.

Based on the declared cutpoints, the cut level of

a circuit graph vertex is recursively defined as shown in the

equation at the bottom of the page.

The cut level is used to define cut frontiers and to align

the BDD propagation with these frontiers. Fig. 11 shows

the modified sweeping algorithm that supports the handling

of multiple BDD frontiers. As shown, the additions mainly

involve a level-specific handling of BDDs. The procedure

get_bdd_from_vertex returns the BDD stored for a specified

level at a vertex. If the given level exceeds the cut level of the

vertex, the BDD of the maximally available cut level is taken.

Similar to the basic algorithm, special checks are applied

when the BDD processing reaches the target vertex vertex. How-

ever, since the BDDs of the vertices do not necessarily originate

from the primary inputs, it cannot be decided immediately if the

is primary input

is cutpoint

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1385

Fig. 12. Algorithm to eliminate false negatives.

problem is solved. First, false negative resolution attempts to re-

substitute cutpoint variables of the BDD with the BDDs driving

the corresponding vertices (see Section IV-C). This may cause

the target vertex to get merged with a constant vertex in which

case the problem is satisfiable or unsatisfiable for a merger with

the constant “1” or constant “0”, respectively. Furthermore, if

all cutpoint variables have been resubstituted the resulting BDD

originates only from the primary inputs. The problem must then

be satisfiable.

C. False Negative Resolution

The algorithm to resolve false negatives in shown in Fig. 12.

To fully explore BDDs constructed for the different levels of the

target vertex without memory explosion, the elimination process

is also controlled by a heap. In each iteration, the smallest BDD

is taken and its topmost cut variable resubstituted by the corre-

sponding driving function. The resulting BDD is then checked

for a functionally equivalent vertex that has been processed be-

fore. If found, both vertices are merged and the subsequent parts

of the circuit graph are rehashed. Otherwise, if the size of the re-

sulting BDD is smaller than the given limit, it is reentered onto

the heap for further processing.

V. STRUCTURAL SAT SOLVER

A. Basic SAT Procedure

The structural SAT solver is based on the Davis–Putnam pro-

cedure working on the presented AND/INVERTER graph. It at-

tempts to find a set of consistent value assignments for the ver-

tices such that the target vertex evaluates to a logical “1”. Un-

satisfiability is proven if an exhaustive enumeration does not

uncover such an assignment.

Fig. 13 provides the top level view of the SAT algorithm con-

sisting of two routines, the procedure sat_init, and the proce-

dure justify, which handles the case splitting and backtracking.

The overall SAT search is based on a processing queue justi-

fication_queue that contains all vertices for which a consistent

Fig. 13. General Davis–Putnum SAT procedure for deciding SAT(vertex).

assignment must be found. The algorithm attempts to sequen-

tially justify these vertices using a branch-and-bound case enu-

meration. Note that due to their uniform AND functionality, only

vertices that are to be justified to “0” need to be scheduled on

that queue. A required logical “1” at a vertex output implies a

“1” at both of its inputs and is handled directly by the procedure

imply. Further, if the value of a vertex output is not yet specified

(“X”) it does not need to be justified since any value setting at

its inputs will lead to a consistent setting.

The procedure sat_init first assigns the target vertex to “1”

and propagates all implications using the procedure imply. Un-

less the target assignment results in an immediate conflict, it

creates the first stack entry for the procedure justify. This entry

contains all “to-be-justified” vertices that have been collected by

imply. The following call of the procedure justify then performs

a systematic case search by recursively processing all queue ver-

tices and enumerating for them all valid input assignments (two

for Boolean logic). In the case that the assignments of a search

subtree result in a conflict, a marking mechanism allows un-

doing all assignments up to that decision level.

The tight integration of the SAT solver into the overall

framework requires an execution control by providing resource

limits such as the number of backtracks. If during the current

application of justify this number exceeds a given threshold,

the SAT solver interrupts its search and returns control to the

calling procedure. This supports an interleaved application

1386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 14. Implication procedure to the AND/INVERTER graph.

of the SAT search with BDD sweeping as described in Sec-

tion VIII. Furthermore, by preserving the state of the decision

stack between subsequent invocations, the SAT algorithm can

continue its search from the point it stopped earlier without

repeatedly searching previously handled subtrees. This reen-

trant functionality is implemented in the procedure justify by

checking the backtrack limit each time the search returns from

a higher decision level. If the limit is exceeded, the control is

returned to the calling, overall process and the backtracking is

postponed until justify is called again. Note that the setup of

sat_init ensures a correct initialization of the first stack entry.

The details of the algorithm imply for implication processing

are shown in Fig. 14. Its implementation takes specific advan-

tage of the underlying AND/INVERTER graph structure by ap-

plying an efficient table-lookup scheme for propagating logic

implications. The routines imply and imply_aux iterate over

the AND/INVERTER graph and determine at each vertex all im-

plied values and the directions for further processing.

Fig. 15 gives an excerpt from the implication lookup table. As

described above, for Boolean logic only one case, a justification

request for a logical “0” at the output of an AND vertex requires

scheduling a new vertex on the justification_queue. All other as-

signments result in one of three cases: 1) a conflict occurred, in

which case the algorithm returns and backtracks; 2) further im-

plications are triggered, which are processed recursively; or 3)

the vertex is fully justified, in which case the procedure returns

for processing the next element from the justification_queue.

Fig. 15. Excerpt of the lookup table for fast implication propagation applied
in the procedure imply of Fig. 14.

The lookup table is programmable for different logics. For ex-

ample, using a different table the procedure imply can equally

be applied to implement a parallel, one-level recursive learning

scheme using nine-valued logic [19]. Due to its uniformity and

low overhead, the presented implication algorithm is highly ef-

ficient. As an indication, on a Pentium III class machine it can

execute several hundred thousand backtracks per second on typ-

ical circuit structures. For being beneficial for the overall per-

formance, any gain that is potentially achieved through addi-

tional structural analysis must offset the resulting slowdown of

the imply function. In [8] and [20], a similar reasoning is given

for efficient implementations of SAT and ATPG algorithms, re-

spectively.

B. Improvements to the SAT Procedure

1) Conflict Analysis: Advanced SAT solvers use con-

flict analysis to skip the evaluation of assignments which

are symmetric to previously encountered conflicts [7]. Two

mechanisms are used for this purpose: first, nonchronological

backtracking skips the evaluation of case alternatives if the

corresponding case splitting vertex was not involved in any

lower level conflict. Second, conflict-based learning creates

additional implication shortcuts, which reflect the assignments

that caused a conflict. These redundant structures result in

additional implications, which detect subsequent, symmetric

conflicts earlier.

Conflict analysis requires tracking the logical impact of case

split assignments on the conflict points. Other implementations

(e.g., [7]) apply an implication graph for which the nodes cor-

respond to variables and edges reflect single implication steps.

In the given setting, the conflict graph manipulation during each

step of the imply routine would severely impact its performance.

To reduce this penalty, we apply a scheme that directly collects

the responsible case assignments as a side function of the impli-

cation process. This mechanism uses a conflict bit-vector where

each bit represents a case vertex in the decision tree. In other

words, the bits of this vector represent the source vertices from

which implication sequences were started. The table lookup in

function imply is expanded to also determine the controlling

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1387

(a) (b)

Fig. 16. Learning for (p p = 0) ^ (p p = 0)) (p = 0): (a) original
structure and (b) structure with learned implication shortcut.

sources for the propagation of the conflict bit-vectors. The ac-

tual propagation is done by word-wide OR operations of these

vectors during the implication sequence. As a result, when a

conflict is reached, the active positions of the bit-vector reflect

the decisions vertices that are responsible for this assignment.

This scheme reduces the speed of the implication process by

typically less than 50%, a penalty that is easily offset by the av-

erage gain.

The resulting conflict bit-vectors are used to control the back-

tracking mechanism. If all choices of a decision level result in

a conflict, the backtrack level is determined by the lowest level

that was involved in a conflict. This is implemented efficiently

by bit-vector operations. The combined conflict bit-vector re-

flects all responsible assignments for that part of the decision

tree and is passed upward to the next backtracking level.

Further, the conflict bit-vector is examined for compact

clauses to learn. Its function is directly mapped onto a

AND/INVERTER graph structure representing that conflict. To

avoid excessively large learned structures, we apply a variable

limitation similar to [7]. However, instead of just restricting

the maximum number of conflict variables, we also take their

assignment into account, effectively estimating the size of the

eliminated decision subtrees.

2) Static Learning: An effective mechanism to exploit the

structure of the AND/INVERTER graph is illustrated in Fig. 16. By

reusing the vertex hash table applied during graph construction,

a pair of vertices that implement the functions and can

be detected using two hash lookups. This configuration occurs

often in practical designs, for example in multiplexer-based data

exchange circuits that switch data streams between two sources

and two destinations. By adding two additional vertices to the

graph, an implication shortcut can utilize the existing imply

function. If a logical 0 is scheduled for both output vertices, the

implication procedure can immediately justify the entire struc-

ture and bypass the two case splits. This learning structure is

created statically and integrated into the vertex allocation al-

gorithm new_and_vertex, which is shown in Fig. 2. Note that

the learned vertices are built using the regular create_and rou-

tine which may cause additional circuit restructuring or learning

events.

VI. RANDOM SIMULATION

Many problem instances of Boolean reasoning are satisfiable

and have dense solution spaces. The most effective approach for

finding a satisfying assignment for such problem is often based

on pure random simulation. The design of a random simulation

algorithm is straightforward. In this section, we briefly describe

the details of its implementation in the given setting.

Fig. 17. Random simulation algorithm simulate.

The presented AND/INVERTER is highly suitable for an

efficient word-parallel implementation of random simulation.

The pseudo-code for the corresponding algorithmic flow is

shown in Fig. 17. After assigning random values to the primary

input vertices, a levelized processing using word-wide AND and

NOT instructions propagates the resulting assignments toward

the target vertices. A check for satisfiability of a target vertex

is simply done by a parallel comparison of its value with the

zero word. Note that by applying proper reference counting,

only a single value frontier needs to be stored during their

propagation, which results in a sublinear memory complexity

[14].

VII. INPUT CONSTRAINTS

Many Boolean reasoning problems require an efficient han-

dling of input constraints, typically referred to as “don’t cares.”

For example, in combinational equivalence checking, input con-

straints express the Boolean subspace for which the two de-

signs under comparison have to be functionally identical. The

remaining input combinations represent “don’t cares” for which

the functions may differ. Other problems that require efficient

processing of input constraints occur during synthesis and ver-

ification of incompletely specified functions.

Input constraints split the set of values at the primary in-

puts into two parts, the “valid” or “care” set and the “invalid”

or “don’t care” set. The problem of Boolean reasoning under

input constraints is to find a consistent assignment within the

care set. A convenient method for expressing and storing input

constraints in the given setting is based on characteristic func-

tions that can be stored and manipulated as part of the overall

AND/INVERTER graph. The graph representation for the charac-

teristic function can be built using the standard constructor op-

erations, which are described in Section III. Its result is then as-

serted to be logical “1,” meaning that all input values that eval-

uate this function to “1” are considered to be the care set.

The simplest method for handling input constraints is based

on a scheme that first conjoins the constraint vertices with the

target vertex and then applies the reasoning algorithms on the re-

sulting AND vertex. However, for structural simplification, BDD

sweeping, and random simulation, this approach would result in

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 18. Algorithm assert_to_1 for asserting a vertex to “1” that represents an
input constraint.

a significant performance degradation, especially if the fraction

of valid assignments is very small. A more efficient method is to

keep the characteristic functions of the input constraints sepa-

rate and to handle them specifically in each reasoning algorithm.

In the following sections, we elaborate on the mechanisms to

handle input constraints by the individual reasoning algorithms.

A. Structural Representation

As mentioned before, input constraints are simply expressed

as characteristic functions and represented as vertices in the

AND/INVERTER graph. The resulting constraint vertices are

marked for special handling for the SAT solver, BDD sweeping,

and random simulation. Fig. 18 gives the pseudo-code for the

algorithm that asserts a graph vertex to constant “1.” As shown,

the algorithm consists of two parts. First, a local analysis of

the asserted vertex searches for XOR and XNOR structures. If

found, the input vertices of these functions are asserted to

be equal by structurally merging them with the same merge

function applied for BDD sweeping (see Section IV). Second,

if no XOR or XNOR is found, a structural conjunctive decompo-

sition of the assertion function is attempted. This is done by

recursively traversing the AND tree driving the asserted vertex.

The resulting individual conjuncts are then separately merged

with the constant “1” vertex. This merge has the advantage that

structurally isomorphic functions, which are part of the actual

reasoning problem, can be identified as constant without any

further processing. The forward rehashing, which is applied

when this vertex is merged with the constant vertex, automati-

cally simplifies the subsequent graph structure.

B. BDD Sweeping

Input constraints can be used during BDD sweeping to iden-

tify additional sets of vertices that are functionally equivalent for

the care set only. This is accomplished by restricting the vertex

BDD to the care set before it is checked for a pre-existing vertex

references and put onto the heap. The BDD restriction is done

by ANDing it with the set of BDDs generated for the constraint

vertices, which are asserted to “1.” Since the constraint handling

is conservative and cannot produce false negatives, this restric-

tion can be done dynamically. As soon as the BDDs for the in-

dividual constraint vertices become available through the heap

controlled processing, they can be used to restrict all existing

and future vertex BDDs.

C. Structural SAT Solver

The existence of input constraints implies for the structural

SAT search that the values of all asserted constraint vertices

must be preset to constant “1.” Furthermore, these values need

to be fully justified, which is accomplished by adding the corre-

sponding vertices to the justification_queue. Both requirements

are implemented in a preprocessing step before the actual SAT

search starts. Note that for structural SAT this approach is iden-

tical to the method in which the asserted vertices are simply

combined with the target vertex by conjunction. For that method

the first application of the imply function would immediately

schedule all asserted vertices to be justified to “1.” The resulting

search flow would then be identical to the flow produced by the

presented approach using a separate preprocessing step.

D. Random Simulation

To achieve high coverage in random simulation, it is essential

to avoid simulating input values that are don’t cares. In partic-

ular, for sparse care sets, a pure random value selection from the

entire Boolean space may result in no coverage at all. For gener-

ating valid input combinations in the presented random simula-

tion approach, the SAT solver is applied to search for satisfying

assignments for all vertices that are asserted to “1.” However,

instead of stopping the search once a solution is found, the SAT

procedure continues to traverse the search tree. For each encoun-

tered solution, the input values for the satisfying assignments are

recorded and later simulated in the word-parallel manner pre-

sented in Section VI.

VIII. OVERALL ALGORITHM

The overall algorithm that combines structural transforma-

tions, BDD sweeping, SAT search, and random simulation is

outlined in Fig. 19. For each reasoning query the algorithm first

checks if the structural hashing algorithm solved the problem.

Interestingly, for a large number of queries in practical applica-

tions the structural test is successful and immediately solves the

problem. For example, in a typical ASIC methodology, equiv-

alence checking is used to compare the logic before and after

insertion of the test logic. Since no logic transformations have

actually changed the circuit, a simple structural check suffices

to prove equivalence.

Next random simulation is applied to quickly check for a

satisfying assignment. If simulation cannot solve the problem,

SAT search and BDD sweeping are first initialized and then in-

voked in an intertwined manner [4]. In the inner loop, a call to

the justification procedure justify is alternated with an invoca-

tion of multiple sweeping iterations. After each BDD sweeping

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1389

Fig. 19. Overall reasoning algorithm integrating BDD sweeping, SAT search
and random simulation.

step, the cutpoint selection heuristic implemented in procedure

find_and_init_cutpoints is applied to search for promising cut-

points. Newly found cutpoints are initialized with fresh BDD

variables, which are then added to the processing heap. As long

as new cutpoints are detected, BDD sweeping is restarted until

the problem is solved or the cutpoint selection is exhausted. In

the latter case, the reasoning algorithm returns to the SAT solver

to search for a satisfying assignment. Note that BDD sweeping

may merge vertices that are on the justification queue of the SAT

solver. This artifact is handled by preserving the merge infor-

mation and explicitly processing the SAT implications for all

merged vertices.

During each iteration of BDD sweeping and SAT search, the

size limit for sweeping and the backtrack limit for the SAT

solver are increased. In this setting, these algorithms do not

just independently attempt to solve the problem. Each BDD

sweeping iteration incrementally compresses the AND/INVERTER

graph structure from the inputs toward the target vertex, which

effectively reduces the search space for the SAT solver. This in-

terleaved scheme dynamically determines the minimum effort

needed by the sweeping algorithm to make the SAT search suc-

cessful. If the iterative invocation of BDD sweeping and SAT

search was not able to solve the problem, the algorithm ap-

plies the SAT solver with a maximum backtracking limit as a

final attempt to find a solution in a brute-force manner. Note

that in this case the sweeping process is stopped by the limit

bdd_upper_size_limit. This limit prevents the processing of ex-

cessively large BDDs.

IX. EXPERIMENTS

In order to evaluate the effectiveness of the presented ap-

proach we performed extensive experiments using 488 circuits

randomly selected from a number of microprocessors designs.

Fig. 20. Distribution of circuit sizes for the experiments.

Fig. 21. Comparison of graph reduction of simple versus functional hashing.

The circuits range in size from a few 100 to 100 K gates with

a size distribution given in Fig. 20. The number of outputs and

inputs per circuit range from a few 100 to more than 10 000.

The experiments were performed on a RS/6000 model 270 with

a 64-bit two-way Power3 processor running at 375 MHz and 8

GBytes of main memory.

A. Functional Hashing

In the first experiment, we evaluated the effectiveness of the

AND/INVERTER graph structure and functional hashing. For this

we constructed the circuit graphs for the design specifications

and compared the sizes generated by simple hashing described

in Section III-A with the results of the functional method pre-

sented in Section III-B. The histogram for the size reduction of

the circuit graphs is plotted in Fig. 21. As shown, on average the

given sample of circuit representations can be reduced by 50%,

the runtime overhead for all runs was negligible. Since it is not

1390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

TABLE I
PERFORMANCE OF BDD SWEEPING AND SAT SEARCH FOR VARIOUS BDD SIZE

LIMITS (HIGHLIGHTED ENTRIES CORRESPOND TO GRAPHS SHOWN IN FIG. 22)

clear which choice of recursive branch will lead to more func-

tional mapping, we do observe a few cases where enlargement

in the circuit takes place compared to structural hashing. How-

ever, this increase is easily offset by savings in other parts of the

circuit. The results suggest that the presented hashing method

is not only useful for Boolean reasoning but can also be applied

for general netlist compression.

B. Formal Equivalence Checking

1) Interleaved Invocation of BDD Sweeping and SAT: First,

to demonstrate the effect of the interleaved application of BDD

sweeping and structural SAT search, we chose a miter struc-

ture from a particular equivalence checking problem. From the

above-mentioned circuits, we selected an output pair which has

97 inputs, 1322 gates for the specification, and 2782 gates for

the implementation.

In a series of experiments the BDD sweeping algorithm was

applied to the original miter circuit with varying limits for the

BDD size. After sweeping, the SAT solver was invoked on

the compressed miter structure and run until equivalence was

proven. Table I gives the results for different limits on the BDD

size. As shown, there is a clear tradeoff between the effort

spent in BDD sweeping and SAT search. For this example, the

optimal performance was achieved with a BDD size limit of

2 . The use of BDD sweeping and SAT search in the described

incremental and intertwined manner heuristically adjusts the

effort spent by each algorithm to the difficulty of the problem.

Fig. 22 shows the two outputs forming the miter structure

for three selected runs for which the corresponding entries are

highlighted in Table I. In the drawings, all inputs are positioned

at the bottom. The placement of the AND vertices is done based

on their connectivity to the two outputs which are located at

the top. AND vertices that feed only one of the two outputs are

aligned on the left and right side of the picture. Vertices that are

shared between both cones are placed in the middle. Further,

filled circles and open circles are used to distinguish between

vertices with and without BDDs, respectively.

Part (a) of the picture illustrates the initial miter structure

without performing any BDD sweeping. As shown, a number

of vertices are shared as a result of structural and functional

hashing. In order to prove equivalence at this stage, the SAT

solver would need about 2.4 million backtracks. Fig. 22(b)

shows the miter structure after performing a modest BDD

(a)

(b)

(c)

Fig. 22. Example the two outputs forming the miter structure at different
stages of BDD sweeping: (a) no sweeping performed; (b) sweeping result with
BDD size limit of 2 ; (c) sweeping result with BDD size limit of 2 .

sweep with a size limit of 16 BDD nodes. It is clear that

many more vertices are shared at this point. The SAT solver

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1391

(a)

(b)

Fig. 23. Computing resources for equivalence checking of the given set of 488
circuits: (a) runtime distribution and (b) memory distribution.

can now prove equivalence using only 87 backtracks. The

last part of the picture displays the miter structure when it is

completely merged by BDD sweeping. Here, the equivalence

proof required building BDDs for all miter vertices.

2) Overall Performance in an Industrial Setting: In a further

experiment, we evaluated the overall effectiveness of the combi-

nation of BDD sweeping, structural transformations, structural

SAT, and random simulation. First, to provide an intuition of the

required computing resources in a typical industrial application

project, we ran a full equivalence check for the given set of de-

signs using the presented approach. All designs are correct, i.e.,

the specification and implementation are functionally equiva-

lent. Fig. 23 provides two histograms showing the distribution

of the runtimes and memory use. As shown, the majority of cir-

cuits can be compared within a few ten seconds using less than

100 MBytes of memory.

3) Comparison of Combined Approach With Simple BDD

Sweeping: Next, we compare the presented comprehensive

(a)

(b)

Fig. 24. Comparison of the original BDD sweeping algorithm with the new
algorithm for equivalence checking: (a) runtime and (b) memory.

approach with the original plain BDD sweeping algorithm as

described in [3]. For the former, BDD sizes were varied from

a bdd_lower_size_limit of 2 to a bdd_upper_size_limit of 2 ,

with a delta_bdd_limit of 2 . The sat_backtrack_limit ranged

from a low of 1000 to a high of 1 000 000 with a delta_sat_limit

varying between 1000 and 5000. The results are given in Fig. 24.

As shown, the majority of circuits could be compared using sig-

nificantly less time, sometimes two orders of magnitude less.

The memory consumption remained about the same. The per-

formance for a particularly complex circuit is marked in both di-

agrams. This design contains 55 096 gates, 302 primary inputs,

2876 outputs, and 2200 latches. The verification run included

5076 comparisons and 231 232 consistency checks (checks for

all nets, prohibiting floating, or collision condition) and could

be accomplished in 246 s versus 8.3 h using 82 MBytes versus

357 MBytes for the new and old methods, respectively.

C. Formal Property Checking

For evaluating the effectiveness of the presented approach for

property checking, we integrated the algorithms in a bounded

1392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Fig. 25. Comparison of the application of plain SAT versus the presented
combined approach to prove unreachability in a bounded model checking
setting.

model checking setting. Bounded model checking [21] is based

on a sequence of combinational property checks using a finite

unfolding of the design under verification. By systematically

increasing the unfolding depth from 1 to a bounded integer ,

this approach checks whether the property can be disproved by

a counter example of length or less. We implemented the

bounded model checking approach in a transformation-based

tool setting. For proving a particular property, the design de-

scription is converted into a bit-level netlist.

In our experimental setting the netlist is first simplified by

iteratively applying a sequence of reduction engines including:

1) a combinational simplification engine based on the presented

algorithm and 2) a retiming engine for sequential optimization

[22]. The first engine eliminates functionally equivalent circuit

structures and removes redundant registers. The second engine

reduces the number of registers by applying an ILP-based

min-area retiming algorithm. After simplification the netlist is

verified with the above mentioned bounded model checking

method by checking a sequence of SAT problems.

In the first experiment, we compared the effectiveness of the

presented approach, which combines structural and functional

hashing, BDD sweeping, and SAT against a plain application of

the SAT procedure only. Both methods work on the circuit graph

that was compressed by simple hashing only (as described in

Section III-A). For this experiment we used 40 properties from

the given set of designs that are boundedly correct (i.e., the target

states are not reachable within the given unfolding limit). In this

experiment, the unfolding length varied between 6 and 25 time

frames.

The results of the comparison are depicted in Fig. 25. Each

marker in the diagram represents a particular property and the

position indicates the performances of the two approaches. As

shown, the combined approach is vastly superior, sometimes

by several orders of magnitude. This result is particularly in-

teresting because, in contrast to an application in equivalence

checking, the unfolded circuit structure does not necessarily

TABLE II
PERFORMANCE OF BOUNDED MODEL CHECKING FOR VARIOUS SWEEPING

LIMITS FOR THE MARKED PROPERTY OF FIG. 25

Fig. 26. Comparison of the application of random simulation versus the
presented combined approach to prove reachability of easy-to-hit properties
in a bounded model checking setting.

contain a large number of functionally identical nets that cannot

be discovered by simple structural hashing. The efficient han-

dling of these cases demonstrates the significant robustness and

versatility of the presented approach. As an illustration, the plain

application of SAT search required 1550 s for proving the prop-

erty highlighted in Fig. 25; in contrast the combined approach

used only 7 s. Table II shows the performances for various BDD

sweeping limits and gives the corresponding compression of the

graph structure.

In a second experiment, we evaluated the effectiveness of

simulation in the presented setting. For this, we compared the

plain application of random simulation [14] with an imple-

mentation that includes hashing, BDD sweeping, and SAT. We

used 396 easy-to-hit properties from the given set of designs.

In this experiment, the unfolding depth varied between 6 and

25 time frames, depending on the depth of the counterexample.

We found that simulation significantly outperforms structured

search techniques, such as SAT, in hitting reachable target

states. Fig. 26 illustrates the run times for random simulation

versus the combined approach. It reaffirms our view of using

simulation to discharge easy to hit targets and utilizing more

expensive but exhaustive techniques such as BDD sweeping

and SAT to hit difficult targets, or to prove targets unreachable.

In a last experiment, we selected 10 deep hard-to-hit prop-

erties from the given set of designs. None of these properties

KUEHLMANN et al.: ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1393

Fig. 27. Comparison of the application of plain SAT versus the presented
combined approach to prove reachability of hard-to-hit properties in a bounded
model checking setting.

could be handled by the simulation approach used in the pre-

vious experiment. Here the unfolding depth varied between 17

to as much as 400 for some particularly hard satisfiable proper-

ties. Fig. 27 illustrates the run times for the combined approach

compared against an application of the SAT-solver alone. Again,

the combined approach vastly outperforms the use of SAT alone.

X. CONCLUSION

In this paper, we presented a combination of techniques

for Boolean reasoning using structural transformations, BDD

sweeping, an SAT solver, and random simulation in a tight

integration. All four methods work on a shared AND/INVERTER

graph representation of the problem and are invoked in an

intertwined manner. This unique integration results in a ro-

bust summation of their natively orthogonal strength. Using

an extensive set of industrial problems we demonstrate the

effectiveness of the presented technique for a wide range of

applications.

The outlined approach is well suited for formal equivalence

checking. It is currently integrated in the equivalence checking

tool Verity [23], which has been used on numerous practical

microprocessor and ASIC designs within IBM. Nevertheless,

the presented reasoning method is equally applicable to other

CAD applications, such as logic synthesis, timing analysis, or

formal property checking.

REFERENCES

[1] M. K. Ganai and A. Kuehlmann, “On-the-fly compression of logical
circuits,” in Int. Workshop Logic Synthesis, May 2000.

[2] D. Brand, “Verification of large synthesized designs,” Dig. Tech. Papers
IEEE/ACM Int. Conf. Computer-Aided Design, pp. 534–537, Nov. 1993.

[3] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” Proc. 34th ACM/IEEE Design Automation Conf., pp. 263–268,
June 1997.

[4] V. Paruthi and A. Kuehlmann, “Equivalence checking combining a struc-
tural SAT-solver, BDD’s, and simulation,” Proc. IEEE Int. Conf. Com-
puter Design, pp. 459–464, Sept. 2000.

[5] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. Assoc. Computing Machinery, vol. 7, pp. 102–215, 1960.

[6] M. Davis, G. Logeman, and D. Loveland, “A machine program for the-
orem proving,” Commun. ACM, vol. 5, pp. 394–397, July 1962.

[7] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm for
propositional satisfiability,” IEEE Trans. Comput., vol. 48, pp. 506–521,
May 1999.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” Proc. 38th ACM/IEEE De-
sign Automation Conf., pp. 530–535, June 2001.

[9] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol. 27,
pp. 509–516, June 1978.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, pp. 677–691, Aug. 1986.

[11] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi, “Extended
BDD’s: Trading off canonicity for structure in verification algorithms,”
Dig. Tech. Papers IEEE Int. Conf. Computer-Aided Design, pp.
464–467, Nov. 1991.

[12] G. L. Smith, R. J. Bahnsen, and H. Halliwell, “Boolean comparison
of hardware and flowcharts,” IBM J. Res. Development, vol. 26, pp.
106–116, Jan. 1982.

[13] H. Hulgaard, P. F. Williams, and H. R. Andersen, “Equivalence checking
of combinational circuits using Boolean expression diagrams,” IEEE
Trans. Computer-Aided Design, vol. 18, July 1999.

[14] F. Krohm, A. Kuehlmann, and A. Mets, “The use of random simula-
tion in formal verification,” Proc. IEEE Int. Conf. Computer Design,
pp. 371–376, Oct. 1996.

[15] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J. A. Abraham, and D.
S. Fussel, “An efficient filter-based approach for combinational verifi-
cation,” Trans. Computer-Aided Design, vol. 18, pp. 1542–1557, Nov.
1999.

[16] S. M. Reddy, W. Kunz, and D. K. Pradhan, “Novel verification frame-
work combining structural and OBDD methods in a synthesis environ-
ment,” Proc. 32th ACM/IEEE Design Automation Conf., pp. 414–419,
June 1995.

[17] A. Gupta and P. Ashar, “Integrating a Boolean satisfiability checker and
BDD’s for combinational equivalence checking,” in Proc. Int. Conf.
VLSI Design, 1998, pp. 222–225.

[18] J. R. Burch and V. Singhal, “Tight integration of combinational verifica-
tion methods,” Dig. Tech. Papers IEEE/ACM Int. Conf. Computer-Aided
Design, pp. 570–576, Nov. 1998.

[19] W. Kunz, “HANNIBAL: An efficient tool for logic verification based on
recursive learning,” Dig. Tech. Papers IEEE/ACM Int. Conf. Computer-
Aided Design, pp. 538–543, Nov. 1993.

[20] S. Kundu, L. M. Huisman, I. Nair, V. Ivengar, and L. Reddy, “A small test
generator for large designs,” in Proc. Int. Test Conf., 1992, pp. 30–40.

[21] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDD’s,” in Proc. 5th Int. Conf. Tools Algorithms for
Construction and Analysis of Systems, Amsterdam, The Netherlands,
Mar. 1999, pp. 193–207.

[22] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in Computer Aided Verification Paris,
France, 2001, pp. 104–117.

[23] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin, “Verity – A formal
verification program for custom CMOS circuits,” IBM J. Res. Develop-
ment, vol. 39, no. 1/2, pp. 149–165, Jan./Mar. 1995.

Andreas Kuehlmann (SM’01) received the
Dipl-Ing. degree and the Dr.-Ing. habil degree
in electrical engineering from the University of
Technology, Ilmenau, Germany, in 1986 and 1990,
respectively.

After graduation, from 1990 to 1991, he worked at
the Fraunhofer Institute of Microelectronic Circuits
and Systems, Duisburg, on a project to automatically
synthesize embedded microcontrollers. In 1991,
he joined the IBM T. J. Watson Research Center
where he worked until June 2000 on various projects

in high-level and logic synthesis and hardware verification. Among others,
he was the principal author and project leader of Verity, IBM’s standard
equivalence checking tool. From January 1998 until May 1999, he visited the
Department of Electrical Engineering and Computer Science, University of
California, Berkeley. In July 2000, he joined the Cadence Berkeley Labs where
he continues to work on synthesis and verification problems.

1394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 12, DECEMBER 2002

Viresh Paruthi received the B.Tech(H) degree in
computer science and engineering from the Indian
Institute of Technology, Kharagpur, in 1995, and
the M.S. degree in computer engineering from the
University of Cincinnati, in 1997.

In 1997, he joined IBM’s Server Group where he
supported and applied the Verity equivalence checker
to the Gigahertz Processor project. Later, he transi-
tioned into a development role contributing to the en-
hancement of Verity’s core algorithms. His research
interests include functional formal and semiformal

verification, abstractions, and equivalence checking.

Florian Krohm received the Dipl-Ing. degree
in electrical engineering from the University of
Dortmund, Germany, in 1985. In 1992, he received
the Dr.-Ing. degree from the University of Duisburg,
Germany.

In 1985, he joined the Fraunhofer Institute of
Microelectronic Circuits and Systems, Duisburg,
where he worked on a project to automatically
synthesize software development environments for
embedded microcontrollers. His research focused on
methods of retargetable code generation. In 1994,

he joined the IBM T. J. Watson Research Center where he worked on topics
of formal verification. In 1997, he took a management position in IBM’s
Microelectronic Division. He decided to return to technical work in 1999. His
current research interests include static analysis of real world programs.

Malay K. Ganai (M’00) received the M.S. and Ph.D.
degrees in computer engineering from the University
of Texas at Austin, in 1998 and 2001, respectively. He
received the B.Tech. degree in electrical engineering
from IIT Kanpur, India, in 1992.

He worked with Larsen and Toubro, India,
between 1992 and 1995 and with Cadence Design
Systems, India, between 1995 and 1997. He is
currently working with NEC Research Lab, USA,
on next-generation formal verification tools. His
research interests include CAD tools for VLSI,

combining formal and informal verification, logic synthesis, and formal
verification.

