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Abstract This paper presents a robust branch-cut-and-price algorithm for the
Capacitated Minimum Spanning Tree Problem (CMST). The variables are asso-
ciated to q-arbs, a structure that arises from a relaxation of the capacitated
prize-collecting arborescence problem in order to make it solvable in pseudo-
polynomial time. Traditional inequalities over the arc formulation, like Capacity
Cuts, are also used. Moreover, a novel feature is introduced in such kind of algo-
rithms: powerful new cuts expressed over a very large set of variables are added,
without increasing the complexity of the pricing subproblem or the size of the
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LPs that are actually solved. Computational results on benchmark instances
from the OR-Library show very significant improvements over previous algo-
rithms. Several open instances could be solved to optimality.

Mathematics Subject Classification (1991) 20E28 · 20G40 · 20C20

1 Introduction

Let G = (V, E) be an undirected graph with vertices V = {0, 1, . . . , n} and
m = |E| edges. Vertex 0 is the root. Each remaining vertex i is associated with a
positive integer demand di. Root demand d0 is defined as zero. Each edge e ∈ E
has a nonnegative cost ce. Given a positive integer C greater than or equal to
the maximum demand, the Capacitated Minimum Spanning Tree (CMST) prob-
lem consists of finding a minimum cost spanning tree for G such that the total
demand of the vertices in each subtree hanging from the root does not exceed
C. Figure 1 shows an example of a CMST solution. This NP-hard problem has
important applications in network design, but it also receives attention from the
optimization community for being a nice example of an “easy to state, hard to
solve” problem. In fact, while minimum cost spanning trees can be obtained in
almost linear time by greedy algorithms [15], some quite small CMST instances
can not be solved by sophisticated branch-and-cut codes. Part of the literature
on the CMST only address the unitary demands (UD) case, where all di = 1. In
this article, we are considering general demands.

Several exact algorithms have been proposed for the CMST, including
[9,16,20–22,24,25,32,40]. On UD instances, the best results were obtained by
Gouveia and Martins using branch-and-cut algorithms over the hop-indexed
formulations [20–22]. Such formulations yield quite good lower bounds, but
lead to very large LPs having O(Cm) variables and constraints. They are only
practical for small values of C. The best results on non-UD instances were
obtained by branch-and-cut over the arc formulation [25] or by Lagrangean
relaxation enhanced by cuts [9]. Such algorithms rely on cuts found by poly-
hedral investigation [4,18,19,26]. However, the lower bounds so obtained are
often not very tight. Benchmark instances from the OR-Library with 50 ver-
tices and C = 200 can not be solved by any such method. Several heuristic
algorithms have also been proposed for the CMST. On non-UD instances the
best results are clearly those by Ahuja, Orlin and Sharma [1,2]. Good heuristics
for UD instances include [2,3,33,37–39]. The algorithm proposed in this article
is mainly an exact method. Moreover, it can also be combined with known
heuristic techniques to provide high-quality solutions for instances that can not
be solved to optimality.

Like many combinatorial problems, the CMST can be formulated as a set-
partitioning problem. The rows would correspond to the non-root vertices and
the columns to subtrees with degree 1 at the root and capacity not exceeding C.
This formulation is not practical, since pricing over the exponential number of
variables would require the solution of a strongly NP-hard problem (see Sect. 2).
The exact algorithm proposed in this article utilizes variables that are associated
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Fig. 1 Optimal Capacitated Minimum Spanning Tree (CMST) solution for the OR-Library in-
stance te120-1-10, with n = 120 and C = 10 and unit demands. The root is represented by a triangle

to q-arbs, a structure that strictly contains the above mentioned subtrees. This
relaxation allows the pricing problem to be solved in pseudo-polynomial time
by dynamic programming, but it is still strong enough to capture some of the
knapsack structure of the CMST. Besides, some families of cuts are added to
provide a stronger formulation. The resulting branch-cut-and-price (BCP) algo-
rithm was tested over the main instances from the literature and turned out to
be very consistent. All instances with up to 100 vertices were solved, and most
instances with up to 160 vertices were solved too. Moreover, the best upper
bounds found in the literature were improved for most instances that could not
be solved.

For some time, the combination of the branch-and-cut and branch-and-price
techniques was not considered to be practical [7], since the new dual variables
corresponding to separated cuts would have the undesirable effect of chang-
ing the structure of the pricing subproblem, making it intractable. However, in
the late 1990s, several researchers [6,13,27,28,41,42] independently noted that
cuts expressed in terms of variables from a suitable original formulation could
be dynamically separated, translated and added to the master problem. Those
cuts do not change the structure of the pricing subproblem. This last property
defines what we call robust branch-cut-and-price algorithms.

Poggi de Aragão and Uchoa [36] present a discussion on this subject, stating
that robust BCP algorithms could bring major algorithmic improvements on a
wide variety of problems. This article on the CMST can be viewed as part of
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a larger effort to support this statement [8,14,30,35]. However, it also brings
an original contribution to the literature of such algorithms, by showing the
possibility and the effectiveness of separating cuts expressed over a pseudo-
polynomially large set of variables in a robust way.

Section 2 describes the integer programming formulations we will deal with
and the families of cuts utilized. Section 3 describes our procedures, exact and
heuristic, for the pricing of q-arbs. Section 4 presents efficient separation pro-
cedures for traditional Capacity Cuts and for a new family of cuts over the
extended set of variables. Section 5 describes the primal heuristics embed-
ded in the exact algorithm. Section 6 presents an empirical analysis of the
overall branch-cut-and-price algorithm, making comparisons with other related
approaches. Some additional remarks are made in the last section.

2 Formulations and valid inequalities

2.1 Formulations with arc variables

Although the CMST is defined on an undirected graph, it is preferable to use a
directed formulation [25]. Specifically, the most effective formulations for the
CMST work over a directed graph GD = (V, A), where A has a pair of opposite
arcs (i, j) and (j, i) for each edge e = {i, j} ∈ E, excepting edges {0, i} adjacent to
the root, which are transformed into a single arc (0, i). The arc costs correspond
to the original edge costs. Now, in graph GD, one looks for a minimum cost
capacitated spanning arborescence directed from the root to each other vertex.
Such an arborescence corresponds to a minimum cost capacitated spanning tree
in the original graph G.

The arc (also known as two-index) CMST formulation uses binary variables
xa to indicate whether arc a belongs to the optimal solution. Denote the set of
non-root vertices by V+ = {1, . . . , n}. For any set S ⊆ V, we let d(S) = ∑

i∈S di,
k(S) = �d(S)/C�, A(S) = {(i, j) ∈ A : i, j ∈ S}, δ−(S) = {(i, j) ∈ A : i ∈ V \ S, j ∈
S}, and δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S}. Let x(A′) = ∑

a∈A′ xa for any
A′ ⊆ A. The formulation follows:

Minimize
∑

a∈A
caxa (1a)

S.t.

x(δ−({i})) = 1 (∀ i ∈ V+), (1b)

x(δ−(S)) ≥ k(S) (∀ S ⊆ V+), (1c)

xa ∈ {0, 1} (∀ a ∈ A). (1d)

The In-Degree constraints (1b) state that exactly one arc must enter each non-
root vertex. Capacity Cuts (1c) state that at least k(S) arcs must enter each set
S. Instead of (1c), Hall [25] actually used in her branch-and-cut algorithm the
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equivalent Generalized Subtour Elimination constraints

x(A(S)) ≤ |S| − k(S) (∀ S ⊆ V+). (2)

Another useful family of constraints are the Root Cutset inequalities. Define
Sα = {i ∈ V \ S : k(S ∪ {i}) = k(S)} and Sβ = (V \ S) \ Sα . Note that the root
always belongs to Sα . The Root Cutset inequalities are

k(S)+1
k(S)

x(δ−(S) ∩ δ+(Sα)) + x(δ−(S) ∩ δ+(Sβ)) ≥ k(S) + 1 (∀ S ⊆ V+). (3)

Those constraints are a strengthening of Capacity Cuts, based on the obser-
vation that if at least one of the subtrees covering S comes from a higher
demand vertex in Sβ , at least k(S) + 1 subtrees must enter S. Other fami-
lies of valid inequalities that can potentially improve the arc formulation are
known, including several variants of the so-called Multistar constraints [4,18,
19,25]. Even with all such inequalities, branch-and-cut algorithms over the arc
formulation fail on many instances with just 50 vertices.

It seems that currently known valid inequalities are having trouble to capture
the knapsack-like aspect of the CMST, related to the demands and capacities.
We would like to obtain stronger formulations by introducing additional vari-
ables devised to capture that aspect. A natural set-partitioning formulation
for the CMST would have variables corresponding to subtrees having degree
1 at the root and not exceeding the total demand C. However, this formula-
tion is unpractical, since pricing over the exponential number of such variables
requires the solution of a strongly NP-hard problem. The directed version of the
well-known Prize Collecting Steiner Tree Problem has a linear reduction to the
problem of finding a minimum cost (uncapacitated) arborescence in a directed
graph where the arcs have both positive and negative costs [11]. One can easily
change that reduction to prove that the problem of finding a minimum cost tree
in an undirected graph is also strongly NP-hard.

Christofides, Mingozzi and Toth [10] faced a similar problem on the Capaci-
tated Vehicle Routing Problem (CVRP). Instead of working with actual routes,
which would lead to an intractable subproblem, they defined the q-route relax-
ation. A q-route is a walk that starts at the depot vertex, traverses a sequence
of client vertices with total demand at most Q, and returns to the depot. Some
clients may be visited more than once, so the set of valid CVRP routes is strictly
contained in the set of q-routes. Minimum cost q-routes can be found in O(n2Q)

time by dynamic programming. Recently, it was found that a formulation com-
bining the q-routes with known valid inequalities for the edge (two-index)
CVRP formulation is significantly stronger than previous formulations [14].

In order to achieve analogous results on the CMST, we introduce the concept
of q-arbs, an arborescence-like structure directed from the root, having degree
1 at the root and with total demand at most C, but allowing some vertices (and
even arcs) to appear more than once. More precisely,
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Fig. 2 A q-arb and its corresponding multigraph

Definition 1 A q-arb rooted at a vertex i �= 0 can be:

• The vertex i alone. In this case, the q-arb demand is di.
• The vertex i connected to k other q-arbs rooted at distinct vertices v1, . . . , vk

by arcs (i, vj) ∈ A for j = 1, . . . , k. The demand of this q-arb is di plus the
demand of its k sub-q-arbs and must not exceed C.

Finally, a q-arb rooted at 0, or just a q-arb, is a q-arb rooted at a vertex i �= 0
plus an arc (0, i) ∈ A.

On the left side of Fig. 2, an example of a q-arb over an UD instance with
C = 10 is shown. The right of the same figure shows the multigraph over GD
that would be obtained by “folding” this q-arb. In this case, arc (4, 3) appears
twice.

A CMST formulation with an exponential number of variables and con-
straints can now be defined. Number all possible q-arbs from 1 to p. Define qj

a
as the number of times arc a appears in jth q-arb.

Minimize
∑

a∈A
caxa (4a)

S.t.
p∑

j=1
qj

aλj − xa = 0 (∀ a ∈ A), (4b)

x(δ−({i})) = 1 (∀ i ∈ V+), (4c)

x(δ−(S)) ≥ k(S) (∀ S ⊆ V+), (4d)

λj ≥ 0 (j = 1, . . . , p), (4e)

xa ∈ {0, 1} (∀ a ∈ A). (4f)

This formulation includes all variables and constraints from the arc formulation,
but new constraints (4b) impose that x must be a weighted sum of arc-incidence
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vectors of q-arbs. This restriction leads to a significantly stronger formulation.
Pricing the λ variables requires the solution of minimum cost q-arb problems,
which can be solved in pseudo-polynomial time.

When solving the linear relaxation of (4) by column and row generation,
a more compact Master LP is obtained if every occurrence xa in (4c)–(4d) is
replaced by its equivalent given by (4b). The resulting LP will be referred to as
the Dantzig–Wolfe Master (DWM):

Minimize
p∑

j=1

(
∑

a∈A
caqj

a

)

λj (5a)

S.t.
p∑

j=1

(
∑

a∈δ−({i})
qj

a

)

λj = 1 (∀ i ∈ V+), (5b)

p∑

j=1

(
∑

a∈δ−(S)

qj
a

)

λj ≥ k(S) (∀ S ⊆ V+), (5c)

λj ≥ 0 (j = 1, . . . , p). (5d)

The reduced cost of a λ variable is the sum of the reduced costs of the arcs
in the corresponding q-arb. Let ω and π be the dual variables associated with
constraints (5b) and (5c), respectively. The reduced cost c̄a of an arc a is given
by:

c̄a = ca − ωj − ∑

S|δ−(S)�a
πS (∀a = (i, j) ∈ A). (6)

Capacity Cuts are not the only ones that can appear in the DWM. A generic cut
∑

a∈A αaxa ≥ b can be included as
∑p

j=1(
∑

a∈A αaqj
a)λj ≥ b. This cut contributes

to the computation of c̄a with the value −αaβ, where β is the new dual variable.
The addition of cuts to the DWM affects the reduced costs but not the structure
of the subproblem.

The possibility of adding such extra cuts naturally leads to the question of
which cuts to add. Computational experiments have shown that also adding
Root cutset inequalities only improve bounds modestly, while multistars are
not even violated. This is consistent with previous experience with a BCP algo-
rithm on the CVRP [14]. In that case, several complex families of cuts known to
be effective in a pure BC algorithm were separated: framed capacities, general-
ized capacities, strengthened combs, CVRP multistars, and extended hypotours.
Surprisingly, however, the resulting bounds were not significantly better than
those obtained by only separating Capacity Cuts. A possible explanation for that
(on the CVRP and on the CMST) is that most such cuts are already implicitly
given by the combinatorial structure used in the column generation (q-routes
and q-arbs, respectively). This explanation recently received some theoretical
support. Letchford and Salazar [29] proved that generalized large multistar
inequalities (for the CVRP) are indeed implied by the q-route definition.
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In order to improve significantly over the bounds given by (5), we searched
for other families of cuts, radically different from those currently used on the
arc formulation.

2.2 Introducing capacity-indexed variables

Gouveia [17] presented a very interesting capacity-indexed formulation for the
CMST. Let binary variables xd

a indicate that arc a = (i, j) belongs to the optimal
arborescence and that the total demand of all vertices in the sub-arborescence
rooted in j is exactly d.

Minimize
∑

a∈A
ca

C∑

d=1
xd

a (7a)

S.t.
∑

a∈δ−({i})

C∑

d=1
xd

a = 1 (∀ i ∈ V+), (7b)

∑

a∈δ−({i})

C∑

d=1
dxd

a − ∑

a∈δ+({i})

C∑

d=1
dxd

a = di (∀ i ∈ V+), (7c)

xd
a ∈ {0, 1} (∀ a ∈ A; d = 1, . . . , C).

(7d)

Equations (7b) are in-degree constraints and Eqs. (7c) are Capacity–Balance
contraints that both prevents cycles and sub-arborescences with total demand
greater than C. Note that variables xd

ij with d > C − d(i) can be removed. To
provide a more simple and precise notation of this formulation, we define a
directed multigraph GC = (V, AC), where AC contains arcs (i, j)d, for each
(i, j) ∈ A, d = 1, . . . , C −d(i). When working with variables xd

a it is assumed that
δ−(·) and δ+(·) are subsets of AC. For example, equations (7c) will be written
as:

∑

ad∈δ−({i})
dxd

a − ∑

ad∈δ+({i})
dxd

a = di (∀ i ∈ V+). (8)

This formulation has only 2n constraints, but O(Cm) variables. It can be shown
that the capacity-indexed formulation is equivalent to a much more compact
single-flow formulation in terms of bounds obtained by their linear relaxation
[17]. Therefore, using the capacity-indexed formulation directly in a branch-
and-bound algorithm is not interesting. However, this formulation may be use-
ful in a branch-and-cut approach. Of course, since xa can be defined as the sum
of the xd

a variables, for all existing d, any inequality valid for the arc formulation
could be used in that algorithm. But the potential advantage of the capacity-
indexed formulation is to allow the derivation and separation of new families
of cuts defined over this pseudo-polynomially large extended variable space.
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Recently, Gouveia and Saldanha-da-Gama [23] used another capacity-
indexed formulation for the Capacitated Concentrator Location Problem,
obtaining good results. The drawback of working with those kind of formulations
is that the size of the LPs to be solved increases proportionally with the value
of C. This is only practical for small values of capacity. In the CMST case, that
approach could not be applied on most non-UD instances.

The capacity-indexed formulation can be naturally combined with the q-
arbs, providing a new stronger formulation. Define qdj

a as the number of arcs a
carrying exactly d units of capacity in the j-th q-arb.

Minimize
∑

ad∈A
caxd

a (9a)

S.t.
p∑

j=1
qdj

a λj − xd
a = 0 (∀ ad ∈ AC), (9b)

∑

ad∈δ−({i})
xd

a = 1 (∀ i ∈ V+), (9c)

∑

ad∈δ−(S)

xd
a ≥ k(S) (∀ S ⊆ V+), (9d)

λj ≥ 0 (j = 1, . . . , p), (9e)

xd
a ∈ {0, 1} (∀ ad ∈ AC). (9f)

It can be noted that Capacity–Balance equalities (8) are already implied by the
definition of q-arbs together with (9b). Eliminating the x variables, we can write
the Dantzig–Wolfe Master as:

Minimize
p∑

j=1

(
∑

ad∈AC

qdj
a ca

)

λj (10a)

S.t.
p∑

j=1

(
∑

ad∈δ−({i})
qdj

a

)

λj = 1 (∀ i ∈ V+), (10b)

p∑

j=1

(
∑

ad∈δ−(S)

qdj
a

)

λj ≥ k(S) (∀ S ⊆ V+), (10c)

λj ≥ 0 (j = 1, . . . , p). (10d)

This LP and (5) are exactly the same. But now it is clear that a generic cut
∑

ad∈AC
αd

a xd
a ≥ b can be included as

∑p
j=1(

∑
ad∈AC

αd
a qdj

a )λj ≥ b. This cut con-

tributes to the computation of reduced cost c̄d
a with the value −αd

a β, where β is
the new dual variable.

This reformulation presents some remarkable features in a branch-cut-and-
price context. It allows the introduction of new cuts over the capacity-indexed
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variables, even for large values of C, without having to explicitly introduce any
new variables. This means that the size of the LPs that are actually solved is
basically unchanged. Moreover, those new cuts are robust with respect to the
pricing of q-arbs. This means that computing a minimum q-arb using reduced
costs c̄d

a can still be done in pseudo-polynomial time, basically by the same
dynamic programming algorithm.

2.3 Extended capacity cuts

We introduce a new family of cuts over the capacity-indexed variables. Let
S ⊆ V+ be a set of vertices. Summing the Equalities (8) corresponding to each
i ∈ S, we get the Capacity–Balance Equation over S:

∑

ad∈δ−(S)

dxd
a − ∑

ad∈δ+(S)

dxd
a = d(S) . (11)

It can be noted that those equations are always satisfied by the solutions of (10)
(translated to the xd

a space by (9b)). Nevertheless, they can be viewed as the
source of a rich family of cuts.

Definition 2 An Extended Capacity Cut (ECC) over S is any inequality valid
for P(S), the polyhedron given by the convex hull of the 0–1 solutions of (11).

The traditional Capacity Cuts (1c) could be derived only from the above defini-
tion: for a given S relax (11) to ≥, divide both sides by C and round coefficients
up. Remember that δ+(S) contains no arc with capacity C, so all such coeffi-
cients are rounded to zero. All coefficients corresponding to δ−(S) are rounded
to one. Therefore Capacity Cuts are ECCs. A slightly more complex reasoning
shows that:

Proposition 1 The Root Cutset inequalities (3) are ECCs.

Proof For any S ⊆ V+, the following inequality is clearly valid for P(S):

∑

ad∈δ−(S)

dxd
a ≥ d(S). (12)

Define d∗ = d(S) − C(k(S) − 1) − 1. If at least one variable xd
a with d ≤ d∗

is set to one, we still need k(S) additional variables set to one to satisfy (12).
Otherwise, if all variables set to one have d > d∗, we need at least k(S) such
variables to satisfy (12). Hence

k(S) + 1
k(S)

∑

ad∈δ−(S) : d>d∗
xd

a +
∑

ad∈δ−(S) : d≤d∗
xd

a ≥ k(S) + 1 (13)

is also valid for P(S) and dominates (3). ��
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The above results could be interpreted as saying that it is better to only separate
ECCs, forgetting Capacity Cuts or Root Cutset inequalities. This interpretation
is misleading, since it may be easier in practice to separate those important spe-
cial cases of ECCs. In fact, our proposed BCP does utilize a specific separation
of CCs. However, those results can be interpreted in a different way: if a vio-
lated Capacity Cut or Root Cutset inequality is found, one can usually perform
a lifting of some coefficients (in the extended space) and actually introduce (13)
in the LP.

In this article we only work with Homogeneous Extended Capacity Cuts
(HECCs), a subset of the ECCs where all entering variables with the same
capacity have the same coefficients, the same happening with the leaving vari-
ables. For a given set S, define aggregated variables yd and zd as follows:

yd = ∑

ad′ ∈δ−(S) : d′=d

xd
a (d = 1, . . . , C), (14)

zd = ∑

ad′ ∈δ+(S) : d′=d

xd
a (d = 1, . . . , C − 1). (15)

The Capacity–Balance equation over those variables is:

C∑

d=1
dyd −

C−1∑

d=1
dzd = d(S) . (16)

For each possible pair of values of C and D = d(S), we may define the polyhe-
dron P(C, D) induced by the integral solutions of (16). The inequalities that are
valid for those polyhedra are HECCs. We used two approaches to obtain such
inequalities:

• For small values of C, up to 10, we can actually compute the facets of P(C, D),
for different values of D, and store them in tables for posterior separation.
The separation procedure must only choose suitable sets S and check if one
of those facets is violated.

• For larger values of C, after selecting suitable sets S, the separation proce-
dure tries to obtain violated HECCs by the following sequence of opera-
tions: relax the Eq. (16) corresponding to S to ≥, multiply all coefficients by
a rational constant r = a/b, apply integer rounding and check if the resulting
inequality is violated. Several such constants are tried for each set S.

We now present an example to illustrate why it can be much easier to find
a violated cut over the capacity-indexed extended variables than over the tra-
ditional arc variables. Figure 3 displays part of a fractional xd

a solution of a
CMST UD instance with C = 4, over a set S = {1, 2, 3}. This fractional solution
is obtained from the q-arb formulation, already including all Capacity Cuts.
The set S is being covered by three different q-arbs, each one with associated
λ variable equal to 1/2. The first q-arb enters at vertex 1 with capacity 4 (arc
a) and leaves the set at vertex 2 (arc d) with capacity 2. The second q-arb
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Fig. 3 Part of a fractional solution containing a violated Homogeneous Extended Capacity Cut
(HECC)

enters at vertex 1 (arc b) with capacity 2 and does not leave the set. The third
q-arb enters at vertex 3 (arc c) with capacity 2 and does not leave the set. The
Capacity–Balance equality over the non-zero variables entering and leaving
S is:

4x4
a + 2x2

b + 2x2
c − 2x2

d = 3.

As this equation has no 0–1 solution, there must be some violated ECC over S.
In this case, applying the rounding with multiplier r = 1/2, a violated HECC is
found:

2y4 + 2y3 + y2 + y1 − z3 − z2 ≥ 2.

On the other hand, it is impossible to cut this fractional solution in the xa
space by only looking at the variables entering and leaving S, and even by also
looking at those inside S. This is true because the incidence vector formed by
xa = xb = xc = xd = xe = xf = xg = 1/2 and all the remaining variables in
(δ−(S) ∪ δ+(S) ∪ A(S)) equal to 0 is a convex combination of two valid CMST
solutions: the first with one arborescence covering S using arcs {a, e, f }; the sec-
ond solution covering S with two arborescences, using arcs {c, g, d} and {b}. Of
course, there must be some violated cut over the xa space. But such a cut is
likely to be much more complex to identify and separate.

3 Column generation

We now consider the problem of generating columns on the Dantzig–Wolfe
Master (10). Each λ variable in that LP is associated to a q-arb rooted at 0, as
in Definition 1. Define qdT

a as the number of arcs a carrying exactly d units of
capacity in the q-arb T. The reduced cost of a q-arb T is c̄(T) = ∑

ad∈AC
qdT

a c̄d
a ,

where c̄d
a is defined as in Subsect. 2.2. The pricing problem is finding a q-arb of

minimum reduced cost.
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Exact pricing

Given the reduced costs of all arcs in AC, our exact pricing algorithm uses
dynamic programming to find columns with minimum reduced costs. For that,
we define the following subproblem. For i, j ∈ V+ and 1 ≤ d ≤ C, find the min-
imum reduced cost q-arb rooted at i, with demand d, such that k ≤ j for every
child k of the root vertex. Let us denote the optimum q-arb for this subproblem
by T∗(i, j, d). Observe that the minimum reduced cost solution for our pricing
problem must be one of the q-arbs obtained by connecting the root vertex 0 to
the sub-q-arb T∗(i, n, d) with the arc (0, i)d, for all i ∈ V+ and d = 1, . . . , C.

Next, we show the recursion used by our dynamic programming algorithm.
Assume that c̄(T∗(i, j, d)) = ∞ whenever 0 < d < di and that c̄(T∗(i, j, di)) = 0
for all i, j ∈ V+.

c̄(T∗(i, j, d)) = min{c̄(T∗(i, j − 1, d)), (17)

c̄d−di
ij + c̄(T∗(j, n, d − di)), (18)

min
q=dj,...,d−di−1

{c̄(T∗(i, j − 1, d − q)) + c̄q
ij + c̄(T∗(j, n, q))} (19)

In the previous recursion, (17) represents the case where the root of T∗(i, j, d)

has no outgoing arc to vertex j. In this case, all the capacity d of T∗(i, j, d) is
used by T∗(i, j − 1, d). On the other hand, (18) represents the case where the
root of T∗(i, j, d) has no outgoing arc to a vertex numbered from 1 to j − 1. In
this case, all the capacity d − di transferred through the outgoing arcs from the
root of T∗(i, j, d) is used by the sub-q-arb rooted at j. Finally, (19) represents
the case where the capacity d of T∗(i, j, d) is split between T∗(i, j − 1, d) and the
sub-q-arb rooted at j.

Observe that it takes O(C) time to solve each dynamic programming stage.
Since we have O(Cm) subproblems, the overall time complexity of this algo-
rithm is O(C2m). For each i ∈ V+, we select a q-arb rooted at i and connect
it to the root vertex. Hence, the reduced cost of the resulting column that
corresponds to vertex i is given by

min
d=1,...,C

{c̄d
0i + c̄(T∗(i, n, d))}.

From these columns, we use the ones with negative reduced costs.

Heuristic pricing

In order to avoid calling the above expensive pricing too many times, we devised
a heuristic pricing algorithm, based on a similar, but more restricted, dynamic
programming recursion. Since it uses the same subproblem definition, let us
denote the corresponding sub-optimal q-arbs by Th(i, j, d) for all i, j ∈ V+ and
d = 1, . . . , C, that is, Th(i, j, d) denotes the sub-optimal q-arb rooted at i, with
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demand d, such that k ≤ j for every child k of the root vertex. Our heuristic
pricing algorithm uses the following recursion:

c̄(Th(i, j, d)) = min{c̄(Th(i, j − 1, d)),

c̄d−di
ij + c̄(Th(j, n, d − di)),

c̄(Th(i, j − 1, d − q1)) + c̄q1
ij + c̄(Th(j, n, q1)),

c̄(Th(i, j − 1, d − q2)) + cq2
ij + c̄(Th(j, n, q2))}, (20)

where

q1 = arg min
q=dj,...,d−di−1

{c̄(Th(i, j − 1, d − q))}

and

q2 = arg min
q=dj,...,d−di−1

{c̄q
ij + c̄(Th(j, n, q))}.

The only difference between the previous recursion and the exact one is that we
consider only two choices for the case where the capacity d of Th(i, j, d) is split
between Th(i, j − 1, d) and the sub-q-arb rooted at j: the choice that minimizes
c̄(Th(i, j − 1, d − q)) and the choice that minimizes c̄q

ij + c̄(Th(j, n, q)). In this
case, q1 = q1(i, j, d) and q2 = q2(i, j, d) are the capacities used by the sub-q-arb
rooted at j for the first and the second choices, respectively. Now, observe that
we can write recursions for both q1(i, j, d) and q2(i, j, d) as follows:

q1(i, j, d) = arg min
q=q1(i,j,d−1)+1,dj

{c̄(Th(i, j − 1, d − q))}

and

q2(i, j, d) = arg min
q=q2(i,j,d−1),d−di−1

{c̄q
ij + c̄(Th(j, n, q))}.

Hence, if we maintain two tables with the values of q1(i, j, d) and q2(i, j, d)

already calculated, we can calculate each new value for these tables in O(1)

time. The overall table calculation uses O(Cm) time. Using this approach, one
can solve (20) in O(Cm).

Our heuristic uses a sparsification method in addition to the technique de-
scribed before. In this case, the base instance graph is replaced by a sparse graph
(V, A−) obtained as follows. For each (i, j), (j, i) ∈ A with i, j ∈ V+, we define
an edge e = {i, j} ∈ E with cost ce = min{c(i,j), c(j,i)}. Then we calculate the 20
edge-disjoint spanning trees with minimum total cost over the graph (V+, E).
The set of arcs A− contains all (i, j), (j, i) such that e = {i, j} belongs to one of the
constructed spanning trees. It also contains (0, i) for all i ∈ V+. In this case, the
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tables q1(i, j, d), q2(i, j, d) and Th(i, j, d) only need be initialized for (i, j) ∈ A−.
Since |A−| = O(n), our heuristic runs in O(Cn) time.

4 Cut separation

4.1 Capacity Cuts

We now consider the problem of separating Capacity Cuts in the arc CMST for-
mulation. Specifically, given a solution x̄ satisfying (1b) and 0 ≤ xa ≤ 1 ∀ a ∈ A,
the problem is to identify one or more sets S for which (1c) is violated (or to
prove that no such S exists). For this separation problem we have implemented
three heuristics which are described below. Throughout, checking a cut means
that we generate the cut if it is violated.

Our first heuristic is based on connected components. We compute the con-
nected components S1, . . . , Sp in ḠE = (V+, Ē), where Ē = {e = {i, j} ∈ E(V+) :
x̄ij + x̄ji > 0}. Then, for every i = 1, . . . , p we check the Capacity Cut for Si and
for V+\Si. Finally we check the Capacity Cut for the union of those components
Si for which

∑
j∈Si

x̄0j = 0.
If this heuristic fails to find any violated Capacity Cuts, we proceed by using

our last two heuristics. All of these take as input a shrunk support graph, which
is obtained by iteratively shrinking a vertex set S ⊂ V+ into a single superver-
tex s having demand d(S); arcs (s, j) and (j, s) in the shrunk graph are given the
weights

∑
i∈S x̄ij and

∑
i∈S x̄ji, respectively.

The shrinking is called safe if and only if it holds that for any S ⊆ V+,
the violation of the Capacity Cut for S is no larger than that for the union of
those supervertices which are intersected by S. A sufficient condition for safe
shrinking is stated formally in Proposition 2.

Proposition 2 For separation of capacity cuts, it is safe to shrink a vertex set
S ⊂ V+ if x̄(δ−(S)) ≤ 1 and x̄(δ−(R)) ≥ 1 ∀R ⊂ S.

Proof Let T ⊂ V+ be such that T ∩ S, T \ S and S \ T are all nonempty. We
show that, under the conditions stated, the Capacity Cut for S∪T is violated by
at least as much as that for T. This holds if and only if k(S∪T)−x(δ−(S∪T)) ≥
k(T)−x(δ−(T)). It is trivially true that k(S∪T) ≥ k(T), so it suffices to show that
x(δ−(S ∪ T)) ≤ x(δ−(T)). It follows from the submodularity of the cut function
x̄(δ−(S)) [34, p. 660] that x̄(δ−(T)) − x̄(δ−(S ∪ T)) ≥ x̄(δ−(S ∩ T)) − x̄(δ−(S)).
Since x̄(δ−(S∩T)) ≥ 1 and x̄(δ−(S)) ≤ 1, it follows that x̄(δ−(S∪T)) ≤ x̄(δ−(T)).

��
In our code we iteratively shrink vertex sets of cardinality 2 and 3 until no

such set satisfies the shrinking condition. Each non-root vertex in the shrunk
graph is referred to as a supervertex, even if it represents only one original
vertex.

Our second heuristic is based on the separation of fractional Capacity Cuts,
which are obtained from (1c) by replacing the right-hand side with d(S)/C.
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The motivation for considering Fractional Capacity Cuts lies in the fact that
these can be separated exactly in polynomial time using max-flow computa-
tions. Specifically, the Fractional Capacity Cut can be written in the following
form:

x(δ−(S)) + d(V+ \ S)/C ≥ d(V+)/C ∀ S ⊆ V+. (21)

The right-hand side in (21) is constant, so a maximally violated Fractional
Capacity Cut is obtained by identifing a set S that minimizes the left-hand side
of (21).

The separation is done on a graph G′ which is constructed as follows (to avoid
introducing further notation we assume that no shrinking has been performed).
The vertex set of G′ is V ∩{n+1}. For each arc (i, j) ∈ A with x̄ij > 0, G′ contains
the arc (i, j) with capacity x̄ij. Further, G′ contains arc (i, n + 1) with capacity
qi/C for i = 1, . . . , n. After computing the maximum flow from the source 0 to
the sink n + 1 in G′, the set S is the set of vertices (excluding n + 1) on the same
side of the minimum cut as vertex n + 1.

In our implementation we used a refined version of this in order to obtain
several sets S, by fixing certain vertices on the source or sink side of the mini-
mum cut. Specifically, setting the capacity of arc (0, i) (arc (i, n + 1)) to infinity
fixes vertex i on the source side (sink side) of the minimum cut. Using this
construction, we run the separation once for each supervertex being fixed on
the sink side, and using a simple heuristic for fixing other supervertices on the
source side in order to avoid generating previously generated sets. Finally, we
check each of the corresponding Capacity Cuts.

Our third heuristic is a greedy construction heuristic, which is repeated once
for each supervertex used as seed. Starting by setting S equal to the seed su-
pervertex, we iteratively add to S the supervertex which implies the smallest
slack (largest violation) of the Capacity Cut for the resulting S, subject to the
restriction that this S has not been generated before. During the procedure we
check the Capacity Cut for each generated set.

Finally, we note that our separation heuristics for capacity cuts are to a
great extent inspired by [31]. Indeed, our three separation heuristics are closely
related to the first three separation heuristics for rounded capacity cuts in [31],
and our proposition 2 is closely related to proposition 1 in [31].

4.2 Extended Capacity Cuts

We divided the separation of Extended Capacity Cuts into two parts: (i) the
generation of candidate sets S, and (ii) the search for violated cuts by consid-
ering the equation (11) corresponding to a given S. For the first part we chose
a rather simply strategy, which is independent of the procedures in Sect. 4.1,
namely enumeration of sets S ⊆ V+ up to a given cardinality. In order to avoid
an early combinatorial explosion, we restrict the search to sets S which are
connected with respect to the support graph ḠE. As this graph is usually sparse,
the computational savings are huge, allowing fast complete enumeration up to
a respectable size of 10, even on larger instances. It is possible to show that such
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connectivity restriction is safe, i.e., we are actually not losing any violated ECC.
The proof of Lemma 1 is left to the appendix.

Lemma 1 Let N1 and N2 be a non-trivial partition of the set N = {1, . . . , m}; b1,
b2 and b be real numbers such that b1 +b2 = b; and α be a m-dimensional vector
of real numbers. Define polyhedra P, P1 and P2 as the convex hull of 0–1 solu-
tions of

∑
j∈N αjxj = b,

∑
j∈N1

αjxj = b1 and
∑

j∈N2
αjxj = b2, respectively. Let

x̄, x̄1 and x̄2 be m-dimensional vectors such that x̄1 and x̄2 are the projections of
x̄ on the subspaces generated by the canonical vectors {ej|j ∈ N1} and {ej|j ∈ N2},
respectively. If x̄1 ∈ P1 and x̄2 ∈ P2 then x̄ ∈ P.

Proposition 3 For separation of ECCs, it is safe to consider only the sets whose
induced subgraph of ḠE is connected.

Proof Let Ŝ be a subset of V+ such that Ŝ = S1 ∪ S2, where S1 and S2 are
disjoint subsets and there is no edge (i, j) ∈ Ē with i ∈ S1 and j ∈ S2. Let also
P(S) be the polyhedron given by the convex hull of 0–1 solutions of (11), for
S = Ŝ, S1, S2. Here, we consider that the dimension of P(S) also includes the
variables that do not appear in (11).

We must show that the existence of a violated ECC over the subset Ŝ implies
a violated cut either over S1 or over S2. This is equivalent to showing that if
x̄ belongs to both P(S1) and P(S2), then it also belongs to P(Ŝ), which follows
immediately from Lemma 1. ��

4.2.1 Facet HECCs

Each valid inequality, which is valid for the polyhedron P(C, D) as defined in
relation to (16), is a valid Homogeneous Extended Capacity Cut over a set S
such that d(S) = D. We used the functions from the Parma Polyhedra Library
(PPL) to compute the facets of some of those polyhedra. Interestingly, they do
not have many facets for small values of C. For example,

P(5, 6) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 +2y2 +3y3 +4y4 +5y5 −z1 −2z2 −3z3 −4z4 = 6,
y1 +y2 +y3 +y4 +y5 ≥ 2
y1 +2y2 +2y3 +2y4 +3y5 −z3 −2z4 ≥ 4

2y1 +2y2 +3y3 +4y4 +4y5 −z2 −2z3 −2z4 ≥ 6
(y, z) ≥ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

It can be seen that one of the three non-trivial facets of P(5, 6) is a Capacity
Cut.

4.2.2 Rounded HECCs

The above procedure for separating facet HECCs is not suitable for larger
values of C. For those cases, we implemented a procedure for separation
over a particular subclass of HECCs, namely those that can be obtained from
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(16) by applying integer rounding. In particular, we define a Rounded HECC
(RHECC) as an inequality of the following form:

C∑

d=1
�rd�yd −

C−1∑

d=1
�rd�zd ≥ �rd(S)� , (22)

where 0 < r ≤ 1.
In relation to reducing the computational effort of separating RHECCs, the

Farey sequence plays a particular role. In particular, the Farey sequence FC is
the set of irreducible rational numbers a/b with 0 ≤ a ≤ b ≤ C and arranged in
increasing order (see [43]). We use the notation FC = (a0/b0, a1/b1, . . . , ap/bp),
where a0 = 0 and b0 = ap = bp = 1.

A basic observation is that if rd is integer in any left-hand side term of the
RHECC, then r must be one of the numbers in FC. This leads to the dominance
relation expressed by Lemma 2.

Lemma 2 For any multiplier r′ satisfying ai−1/bi−1 < r′ < ai/bi for a given
i ∈ [1; p], the RHECC obtained by using the multiplier r′ is dominated by the
RHECC obtained by using the multiplier r = ai/bi.

Proof Using multiplier r′ implies that all coefficients on the left-hand side
are fractional before rounding, which means that each term is unchanged or
strengthened if r′ is replaced by r. Indeed, we have that �rd� = �r′d� and
�rd� ≥ �r′d� in any term on the left-hand side, and the right-hand side is not
smaller for r than for r′. ��

As such, among all possible values of the multiplier r, the search for a maxi-
mally violated RHECC can be reduced significantly by observing Proposition 4.

Proposition 4 A most violated RHECC can be obtained by using a multiplier
r ∈ FC.

Proof It follows from Lemma 2 that the multipliers in FC collectively dominate
the entire interval ]0;1]. ��

Since there are O(C2) multipliers in FC (asymptotically, |FC| is approxi-
mately 0.3C2 [43]), a straightforward implementation of a separation routine
which checks all RHECCs for a given S ⊂ V+ would run in O(C3) time. How-
ever, in our implementation we are able to check all RHECCs in O(C2) time,
as described in the following.

Considering any two consecutive multipliers ri and ri+1, we have that �ri+1d�−
�rid� ∈ {0, 1} for any d = 1, . . . , C. That is, in the two RHECCs, the two coeffi-
cients for any y-variable are equal or differ by one. A perfectly similar obser-
vation is made wrt. the coefficients of the z-variables.

Independently of S, we can therefore build a matrix of cofficient increments,
i.e., a matrix Dij with |FC| rows and 2C−1 columns, such that for i = 1, . . . , p, Dij
is the jth coefficient for multiplier ai/bi minus the jth coefficient for multiplier
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ai−1/bi−1. The entries D0j are all zero, corresponding to the multiplier 0/1. We
note that the D-matrix contains only O(C2) nonzero entries.

Then, for a given fractional solution and a given S, we can in O(C2) time,
by using a sparse matrix representation of D, compute the value of �i =
LHSi − LHSi−1 for all i = 1, . . . , p, where LHSi is the value of the left-hand
side of (22) using the multiplier ai/bi. Finally, a single pass in O(|FC|) time
through all multipliers, using the accumulated �-values for the left-hand sides,
is sufficient for finding the most violated RHECC.

Finally, we note that instead of using the integer rounding function leading
to (22), it is possible to also use other subadditive functions to get stronger
HECCs. We did some preliminary experiments along these lines but found that
the extra computational effort involved was not justified in terms of improved
results. Another issue left to future research is the use of non-homogeneous
ECCs. Indeed, Eq. (11) may be viewed as a 0–1 knapsack equation from which
lifted cover inequalities may be derived. In this context there is also the possi-
bility of considering Generalized Upper Bounds based on (7b).

4.2.3 Generating Candidate Sets

Regarding the choice of sets S, we have implemented a depth-first search rou-
tine which enables us to enumerate all connected subgraphs of the support
graph.

Our ECC separation on UD instances with C ≤ 10 consists of checking
each non-trivial facet of P(C, |S|), for all sets S with cardinality up to 10 and
connected in ḠE.

For ECC separation on UD instances with C > 10, and on non-UD instances,
we invoke this routine repeatedly, each time with a given maximum depth, and
such that we only check the RHECCs for those sets whose cardinality is equal
to the maximum depth. Specifically, starting from a maximum depth of two, we
first enumerate all connected subgraphs of cardinality two. Then we increase
the maximum depth by one and repeat the search. This is done until one of
three stopping conditions is satisfied: (i) All sets of cardinality 10 have been
enumerated, (ii) The RHECCs have been checked for n2 sets, or (iii) we have
found 50 violated RHECCs.

5 Primal heuristics

We propose a primal heuristic to be embedded in the BCP. We implement
the Esau-Williams constructive heuristic [12] and three local searches [2,3,38].
After solving every BCP node, we use the resulting LP relaxation to get pseudo-
costs, favoring arcs with larger values of xa. Those pseudo-costs are used in the
constructive heuristic. Then, the local searches are applied using the correct
costs, completing a try.

The pseudo-cost of an arc a is defined as c′
a = ca(1 −αaxa), where αa must be

between zero and one. On each BCP node, there are four tries, with different
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ranges of α values, randomly selected from the intervals [1, 1], [0.8, 1], [0.6, 1],
and [0.5, 0.8], respectively. We also use the idea of “averaging” the values of
xa over successive node relaxations, in order to find out which arcs consis-
tently belong to fractional solutions. We maintain x̄a as a weighted average of
past values of xa. At the end of the root node, x̄a is initialized with the cur-
rent fractional solution. After each subsequent node solution, x̄a is updated to
βx̄a + (1 − β)xa. The idea of taking convex combinations of primal solutions
has been previously used to improve the convergence of subgradient meth-
ods [5]. In the reported tests, β = 0.875. Then we use the values of x̄a to get
pseudo-costs in two more tries, with values of αa from the intervals [1, 1], and
[0.5, 0.8], respectively. The overall idea is getting valuable information from the
relaxations to guide the heuristics, but also add some degree of randomization
to diversify the search.

Three local searches are applied to each solution obtained by the construc-
tive heuristic. In all of them, the current solution is represented as a set of
subtrees, each subtree being connected to the root vertex by a single arc. Given
the set of vertices Vi of a subtree Ti, Ti is always the minimum cost tree that
spans the vertices in Vi. Each local search consists in finding moves of sets of
vertices from one subtree to another. Whenever the set of vertices of a subtree
changes, the corresponding minimum spanning tree is recomputed. In this case,
if the degree of the root vertex in the obtained subtree is greater than one, then
this subtree is split so that each remaining subtree has only one arc from the
root. The moves are selected so that the resulting tree satisfies the Capacity
Cuts.

The first applied local search [3] searches for vertex exchanges between two
subtrees, that is, for every two vertices vi and vj respectively in the subtrees Ti
and Tj, it tries to move vi to Tj and vj to Ti. The second local search [38] uses
a similar approach. For every two vertices vi and vj respectively in the subtrees
Ti and Tj, it tries to move the subtree rooted at vi to Tj and the subtree rooted
at vj to Ti. Both the first and the second local search are very fast but less
effective than the third one. The third local search is a multi-exchange search
[2] that generalizes the first two. In this search, each allowed transformation
is represented by a sequence of sets of vertices (S1, . . . , Sk), where Si contains
either a single vertex or the subtree rooted at a vertex, for i = 1, . . . , k. Each
set of vertices Si in the sequence must belong to a different subtree Ti. In
this case, the corresponding transformation consists in moving Si to Ti+1, for
i = 1, . . . , k − 1, and Sk to T1. In order to allow non-cyclic transformations, a
sequence may contain an empty set of vertices. The procedure used to search
for an improving sequence of sets of vertices uses a dynamic programming
technique described in [2]. The complexity of searching for sequences with
at most K sets is O(n3K2K), but it is usually much faster in practice. In our
experiments, we used K ranging from 3 to 5, the smaller values on instances
where column and cut generation are faster. Therefore, the time spent on heu-
ristics is a small fraction (usually less than 10%) of the total time to solve the
node.
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6 Computational results

The computational experiments were performed on the instances available at
the OR-Library, the same ones as those used in the recent literature:

• The 45 non-UD cm instances correspond to complete graphs with 50, 100 or
200 vertices and capacities 200, 400 or 800. Costs and demands are integers
generated from a uniform distribution [1, 100]. Instance names reflects their
sizes and capacities, for example, cm50r1-200 is the first instance of a series
of 5 instances with 50 vertices and capacity 200.

• There are three kinds of UD instances, all obtained from a random place-
ment of non-root vertices in a 100×100 grid. The root has a central position,
coordinates (50, 50), in the tc instances. The te instances have the root in
an eccentric position, coordinates (0, 0). Finally, the root is distant from
the other vertices on td instances, coordinates (−201, −201). The instance
costs correspond to truncated Euclidean distances. Each series, with up to
5 instances of the same kind, corresponds to graphs with 41, 81, 121 or 161
vertices and capacities 5, 10 or 20. The root vertex is not counted in the
naming of the instances, for example, tc120-1-5 is the first instance of a
series of kind tc having 121 vertices and capacity 5. Even disregarding the
tc40s and te40s, which are easy by today standards, there are still 81 such
UD instances.

All reported runs were done on Pentium 3 GHz machines, using CPLEX 9.0
to solve linear programs.

6.1 Comparison of lower bounds

The first two tables present a detailed comparison of lower bounding schemes
over a sample of 30 instances. These instances were chosen to illustrate what
happens on similar UD and non-UD instances for different values of C. Bound
L1 is obtained by the separation of CCs on the arc formulation. This bound is
the root node bound in a BC over (1). Bound L2 is obtained by only pricing
q-arbs, as in a branch-and-price. Bound L3 corresponds to the combination of
q-arbs and CCs described in (5). Bound L4 corresponds to the root node of our
proposed BCP algorithm, obtained by also separating HECCs, as described in
previous sections. Those bounds are compared with the best available in the
literature. Average computation times are also reported. Some inferences can
be drawn from Tables 1 and 2:

• Bound L3 is already comparable or superior to previous known bounds on
all those instances, but bound L4 is significantly better. Moreover, L4 is the
only bound that produces stable integrality gaps over a wide range of C
values, both on UD and non-UD instances.

• The proposed BCP algorithm would require large times on the UD instances
with C = 20 and unacceptable times on the non-UD instances with C = 800.
This behavior is due to the column generation part, whose convergence
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Table 1 Comparison of lower bounds on the te80 instances

Instance PrevLB L1 L2 L3 L4 Opt

te80-1-5 2543.08 2405.20 2524.42 2541.54 2544.00 2544
te80-2 2537.12 2399.81 2516.37 2536.44 2545.03 2551
te80-3 2600.21 2438.80 2575.24 2602.42 2605.12 2612
te80-4 2546.20 2402.47 2529.03 2547.42 2551.08 2558
te80-5 2466.83 2339.96 2450.25 2463.87 2468.72 2469

Avg gap (%) 0.32 5.86 1.09 0.33 0.16
Avg time (s) 786 70.1 1.77 6.46 20.9

te80-1-10 1646.09 1586.52 1618.22 1644.65 1655.35 1657
te80-2 1609.95 1549.44 1589.57 1608.71 1624.71 1639
te80-3 1666.58 1614.13 1643.41 1667.45 1675.73 1687
te80-4 1627.22 1579.36 1601.98 1627.89 1629.00 1629
te80-5 1595.90 1553.43 1577.63 1595.65 1600.80 1603

Avg gap (%) 0.84 4.04 2.24 0.86 0.36
Avg time (s) 3760 19.1 7.30 25.3 223.8

te80-1-20 1256 1256.00 1214.99 1261.30 1264.11 1275
te80-2 1207 1201.80 1172.97 1202.98 1217.05 1224
te80-3 1257 1259.00 1218.18 1261.20 1263.72 1267
te80-4 1249 1246.50 1196.79 1252.61 1256.15 1265
te80-5 1230 1233.00 1178.67 1233.89 1236.92 1240

Avg gap (%) 1.15 1.19 4.61 0.94 0.53
Avg time (s) 8469 2.10 31.5 199.4 638.8

For C = 5 and C = 10, previous best bounds from [22], their times on AMD 1GHz machine. For
C = 20, previous best bounds from [21], Pentium 180 MHz

depends on the average number of vertices in each subtree, becoming prob-
lematic when the subtrees are large. This is expected and consistent with
the experience found in the general column generation literature. Column
generation is a technique that allows the solution of LPs with a huge number
of variables. However, it is quite reasonable that the number of iterations to
solve such LPs still depends on “how huge” they are. There are many more
possible q-arbs when C = 20 than when C = 5. When C = 800, the problem
is particularly serious due to the worst-case complexity of the pricing, being
quadratic over C.

Happily, the instances where the BCP performs poorly are exactly the ones
where a BC over the arc formulation performs well. In such cases, bound L1
can be computed quickly and is not much worse than L3. It is interesting to note
that bound L4 improves significantly over L3 even on such instances. However,
the elevated computational times make the use of L4 unattractive. In order to
have a consistent overall method, we also implemented that pure BC. In [14],
for each particular instance, the so-called Dyn-BCP algorithm tried to obtain
both BC and BCP root bounds and times, in order to decide how it should
continue. In this paper there was no need for such an algorithm since the best
algorithm for each benchmark series was quite obvious.
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Table 2 Comparison of lower bounds on the cm50 instances

Instance PrevLB L1 L2 L3 L4 Opt

cm50r1-200 1039.4 1034.04 1073.29 1093.76 1097.90 1098
cm50r2 913.1 915.58 937.70 962.40 971.60 974
cm50r3 1131.1 1139.62 1154.12 1180.03 1185.78 1186
cm50r4 768.9 774.21 758.82 792.33 797.73 800
cm50r5 867.7 867.48 894.94 918.00 922.79 928

Avg gap (%) 5.32 5.10 3.48 0.82 0.22
Avg time (s) 560 3.01 7.38 31.9 115.8

cm50r1-400 645.4 651.79 652.41 669.65 676.70 679
cm50r2 608.8 620.00 592.70 627.45 631.00 631
cm50r3 704.3 714.17 678.10 721.92 726.15 732
cm50r4 543.5 545.38 489.96 551.73 561.63 564
cm50r5 586.5 588.80 565.05 599.00 609.66 611

Avg gap (%) 3.64 3.02 7.60 1.49 0.36
Avg time (s) 605 0.74 74.9 320.9 2251

cm50r1-800 482.6 492.50 456.61 493.06 494.69 495
cm50r2 502.4 508.00 444.37 508.18 510.09 513
cm50r3 522.3 529.00 470.23 529.67 530.91 532
cm50r4 468.9 471.00 373.98 471.00 471.00 471
cm50r5 477.4 484.00 429.48 485.39 491.21 492

Avg gap (%) 1.77 0.73 13.21 0.62 0.20
Avg time (s) 711 0.32 817 6679 38715

Previous best bounds from [9], their times on Pentium III 933 MHz machine. Hall [25] did not run
those instances, her method would probably give results close to column L1

6.2 Complete runs

Tables 3 and 4 present BCP results over the 81 instances where this algorithm
performs better than the BC. Results of this latter algorithm on the remaining
45 instances are shown in Table 5. The assignment of series to algorithms turned
out to be clear, the instances from Tables 3 and 4 (even from the tc80-5, te80-10
or cm50-200 series) can not be solved by the BC in reasonable time. Columns
RootT, Nodes and TotalT are the root time, number of nodes explored, and
total algorithm time. All such times are in seconds. The runs were aborted
without optimality on 26 larger/harder instances. In those cases, the number of
nodes and times at that moment are reported. Column PrevUB gives the best
upper bounds found in the literature, their compilation is available in [33] on
UD instances and in [1,2] on non-UD. Values in bold are proven optima. Col-
umn Ours gives the upper bounds produced by our runs, bold numbers indicate
that the instance was solved to proven optimality. Underlined values indicate
improved upper bounds. Some additional information and remarks:

• Adding HECCs in the BCP increases root times by a factor between 2 and
10. This factor is usually smaller in non-root nodes. Since those cuts lead to
good gap reductions, as shown in columns L3 and L4, the overall gains can
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be large. For example, te80-2-10 and te80-3-10 would not have been solved
without the new cuts.

• Having a good relaxation proved to be very valuable in guiding primal
heuristics. Our local searches were proposed by other authors, but they
consistently obtain better results in less tries when embedded in the BCP.
For example, on cm200r1-200 the embedded heuristic obtains a solution of
1032 already on the first try, after solving the root node. We found that a
stand-alone GRASP using the same searches takes more time (and makes
hundreds of tries) to get a solution of similar quality. Several improving
solutions are found at the next nodes. The reported solution with value 994
corresponds to an improvement of more than 2% over the previous best
solution of 1017.

7 Conclusion

This paper presents an effective branch-cut-and-price algorithm for the CMST.
Some general conclusions from this experience can be derived, reinforcing ideas
obtained from previous experiences with the same kind of algorithms on other
problems:

• On many problems with an underlying knapsack-like aspect, the combina-
tion of simple cuts with column generation over combinatorial structures
devised to capture that aspect is a more practical way of improving bounds
than searching for increasingly complicated families of cuts. This can be true
even when the bounds provided by that column generation alone are not
good, i.e. pure branch-and-price is not an option.

• In order to have a robust algorithm (in the usual meaning of the word), it is
usually necessary to combine cut and column generation in a robust way (in
the technical meaning employed in this article). The complexity of the pric-
ing subproblem should be controlled. If the natural combinatorial structure
for the column generation leads to a strongly NP-hard problem, one must
find a relaxation of that structure that is guaranteed to be tractable, at least
when the numbers involved have a reasonable size. On the other hand, the
pricing subproblem should not be too easy. Subproblems that can be solved
in polynomial time do not currently properly capture knapsack-like aspects
that are hard to be captured by cuts.

• Even if most instances of a problem benefits from the BCP approach, some
instances are still much better solved by a traditional BC algorithm.

When subproblems of pseudo-polynomial complexity are being solved by
dynamic programming algorithms, there is a new idea to be explored. One
may introduce up to one variable to each possible choice inside the dynamic
programming. Each such variable, and there are a pseudo-polynomially large
number of them, corresponds to a very specific choice. It is possible that cuts
expressed over such detailed set of variables are easier to be identified and
separated.
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Table 3 Branch-cut-and-price results over 56 UD instances

Instance L3 L4 RootT Nodes TotalT PrevUB Ours

tc80-1-5 1098.2 1099.0 10.7 1 10.7 1099 1099
tc80-2 1097.4 1099.3 15.5 5 32.4 1100 1100
tc80-3 1070.5 1071.8 14.5 3 17.0 1073 1073
tc80-4 1074.9 1077.0 13.4 11 57.3 1080 1080
tc80-5 1278.8 1282.5 14.5 46 219.9 1287 1287

te80-1-5 2541.5 2544.0 17.3 1 17.3 2544 2544
te80-2 2536.4 2545.0 21.1 37 194.2 2551 2551
te80-3 2602.4 2605.1 18.9 39 199.4 2612 2612
te80-4 2547.4 2551.1 22.9 97 508.7 2558 2558
te80-5 2463.9 2468.7 24.6 1 24.6 2469 2469

te80-1-10 1644.7 1655.4 316.3 7 474.4 1657 1657
te80-2 1608.7 1624.7 378.2 1105 29134 1639 1639
te80-3 1667.5 1675.7 212.1 767 22349 1687 1687
te80-4 1627.9 1629.0 52.6 1 52.6 1629 1629
te80-5 1595.6 1600.8 161.9 4 254.8 1603 1603

td80-1-5 6057.1 6064.6 22.2 86 321.9 6068 6068
td80-2 6011.4 6018.5 20.7 2 23.3 6019 6019
td80-3 5983.3 5991.3 16.4 20 92.0 5994 5994
td80-4 6006.8 6011.7 17.2 13 51.2 6012 6012
td80-5 5966.7 5975.7 36.6 3 43.1 5977 5977

td80-1-10 3205.9 3217.6 544.6 303 21326 3236 3223
td80-2 3190.2 3201.3 288.2 25 1424 3206 3205
td80-3 3190.3 3199.6 429.6 5067 204175 3212 3212
td80-4 3190.6 3199.3 538.3 15 1343 3204 3203
td80-5 3167.0 3177.3 493.5 13 1151 3184 3180

tc120-1-5 1280.5 1287.6 24.0 19 87.5 1291 1291
tc120-2 1180.2 1185.8 43.6 223 1185 1189 1189
tc120-3 1115.9 1121.9 22.0 25 170.0 1124 1124
tc120-4 1121.0 1124.5 40.0 5 54.6 1126 1126
tc120-5 1153.3 1157.1 31.4 4 58.6 1158 1158

tc120-1-10 889.8 898.8 493.8 273 15448 904 904
tc120-2 744.2 750.7 648.9 3873 174827 757 756
tc120-3 707.6 714.9 724.3 12536 499685 725 722
tc120-4 716.0 722.0 1300 1 1300 722 722
tc120-5 743.5 753.9 521.3 4554 191195 762 761

te120-1-5 2193.1 2197.0 34.6 1 34.6 2197 2197
te120-2 2123.6 2129.4 41.4 725 6006 2137 2134
te120-3 2073.3 2076.7 40.0 35 317.0 2079 2079
te120-4 2149.3 2154.3 64.7 159 1178 2161 2158
te120-5 2011.6 2015.2 56.0 9 146.8 2021 2017

te120-1-10 1315.7 1324.6 665.4 120 7091 1329 1329
te120-2 1210.2 1219.5 1131 4013 240541 1229 1225
te120-3 1179.9 1188.3 760.4 2328 175670 1197 1195
te120-4 1198.5 1223.3 934.7 2328 163866 1234 1230
te120-5 1153.1 1161.6 1815 25 6998 1166 1164

te120-1-20 908.1 912.1 1424 1692 830173 920 920
te120-2 769.5 773.7 1414 507 227423 789 785
te120-3 739.7 741.6 1197 528 246816 755 749
te120-4 757.7 762.4 2162 555 247754 774 773
te120-5 737.1 740.8 1516 344 225517 755 746
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Table 3 continued

Instance L3 L4 RootT Nodes TotalT PrevUB Ours

tc160-1-5 2061.7 2074.4 93.2 13 280.6 2081 2077

tc160-1-10 1287.6 1309.6 1228 2102 303095 1319 1319

tc160-1-20 948.5 953.8 4104 23 26531 960 960

te160-1-5 2779.7 2785.7 112.8 44 938.0 2790 2789

te160-1-10 1623.6 1637.4 2499 1348 206063 1646 1645

te160-1-20 1086.6 1089.8 4692 165 226346 1098 1098

Table 4 Branch-cut-and-price results over 25 cm instances

Instance L3 L4 RootT Nodes TotalT PrevUB Ours

cm50r1-200 1093.8 1097.7 137.1 1 137.1 1098 1098
cm50r2 962.9 971.7 130.8 5 239.5 974 974
cm50r3 1180.0 1185.6 131.6 2 151.7 1186 1186
cm50r4 792.3 798.0 80.2 3 120.6 800 800
cm50r5 918.0 922.7 131.1 30 733.6 928 928

cm100r1-200 501.6 506.8 273.5 85 7082 516 509
cm100r2 577.9 579.7 152.0 471 28025 596 584
cm100r3 531.9 533.5 287.9 885 82637 541 540
cm100r4 428.6 430.7 166.3 99 7837 437 435
cm100r5 412.8 414.7 180.6 251 16592 425 418

cm100r1-400 249.3 250.8 5510 11 18489 252 252
cm100r2 275.4 276.5 2971 12 14653 278 277
cm100r3 234.2 236.0 6931 2 8135 236 236
cm100r4 215.6 217.8 4591 7 12188 219 219
cm100r5 219.8 221.9 2751 15 18032 223 223

cm200r1-200 970.7 974.0 1442 83 33542 1017 994
cm200r2 1170.5 1175.0 1484 27 17426 1221 1188
cm200r3 1298.7 1303.1 1045 76 31358 1365 1313
cm200r4 898.6 902.9 1660 44 20397 927 917
cm200r5 922.2 926.7 1246 63 32316 965 948

cm200r1-400 379.2 382.6 18913 30 234387 397 391
cm200r2 460.8 465.0 21270 41 223765 478 476
cm200r3 540.6 545.1 22741 36 215625 560 559
cm200r4 378.7 382.0 16539 89 302842 392 389
cm200r5 407.3 411.1 21335 65 228001 420 418

The experiments here described on the CMST are encouraging, the addition
of one such family of cuts, the HECCs, could reduce substantially the integrality
gaps, without making the resolution of a node much slower. Those improve-
ments are consistent in all kinds of tested instances, UD or non-UD, small or
large capacities. Several hard instances would not have been solved without the
new cuts.
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Table 5 Branch-and-cut results over the remaining 45 instances

Instance L1 RootT Nodes TotalT PrevUB Ours

tc80-1-10 877.0 1.21 153 40.4 888 888
tc80-2 876.3 0.64 1 0.64 877 877
tc80-3 870.4 1.00 630 17.0 878 878
tc80-4 861.3 1.03 193 57.3 868 868
tc80-5 1000.0 1.21 4 2.14 1002 1002

tc80-1-20 834.0 0.39 2 0.50 834 834
tc80-2 820.0 0.31 8 0.51 820 820
tc80-3 824.0 0.12 1 0.12 824 824
tc80-4 820.0 0.26 1 0.26 820 820
tc80-5 916.0 0.23 1 0.23 916 916

te80-1-20 1256.0 2.45 226 99.0 1275 1275
te80-2 1206.8 3.48 243 69.8 1224 1224
te80-3 1259.0 3.67 43 9.90 1267 1267
te80-4 1246.5 1.75 194 41.3 1265 1265
te80-5 1233.0 2.43 12 3.62 1240 1240

td80-1-20 1256.0 2.45 32 6.81 1833 1832
td80-2 1206.8 3.48 844 423.4 1830 1829
td80-3 1259.0 3.67 204 86.0 1839 1839
td80-4 1246.5 1.75 1192 1647.8 1834 1834
td80-5 1233.0 2.43 428 95.3 1829 1826

tc120-1-20 763.5 3.73 27 9.59 768 768
tc120-2 565.4 7.68 16 13.8 569 569
tc120-3 529.4 10.8 157 101.7 537 536
tc120-4 561.3 6.73 7436 7392 572 571
tc120-5 574.2 4.87 200 67.7 581 581

cm50r1-400 651.8 0.87 905 233.1 681 679
cm50r2 620.0 0.87 216 39.9 631 631
cm50r3 714.1 0.92 1007 272.7 732 732
cm50r4 545.4 0.23 207 11.0 564 564
cm50r5 588.8 0.65 1188 279.3 611 611

cm50r1-800 492.5 0.50 87 4.06 495 495
cm50r2 508.0 0.75 267 30.0 513 513
cm50r3 529.0 0.68 7 1.12 532 532
cm50r4 471.0 0.14 1 0.14 471 471
cm50r5 484.0 0.35 170 7.68 492 492

cm100r1-800 181.7 2.93 5 4.26 182 182
cm100r2 177.7 8.03 106 75.8 179 179
cm100r3 173.5 3.34 92 29.2 175 175
cm100r4 181.0 2.95 117 43.2 183 183
cm100r5 184.0 4.18 116 60.4 186 186
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Appendix

Proof of Lemma 1

Since x̄k ∈ Pk, for k = 1, 2, we may write x̄k = ∑qk
i=1 λk

i x̂i,k, where x̂i,k is a 0–1

vector that belongs to Pk, λk
i ≥ 0, and

∑qk
i=1 λk

i = 1. Moreover, since
(
x̄1)′

x̄2 = 0,

we have that
(
x̂i,1)′

x̂j,2 = 0, for all i = 1, . . . , q1 and j = 1, . . . , q2. As a result,
x̂i,1 + x̂j,2 is a 0–1 vector that belongs to P. Hence, we only need to write x̄1 + x̄2

as a convex combination of x̂i,1 + x̂j,2, for i = 1, . . . , q1 and j = 1, . . . , q2. First,
observe that
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