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Abstract

3D structure recovery from a collection of 2D images

requires the estimation of the camera locations and orien-

tations, i.e. the camera motion. For large, irregular collec-

tions of images, existing methods for the location estimation

part, which can be formulated as the inverse problem of

estimating n locations t1, t2, . . . , tn in R
3 from noisy mea-

surements of a subset of the pairwise directions
ti−tj

‖ti−tj‖
, are

sensitive to outliers in direction measurements. In this pa-

per, we firstly provide a complete characterization of well-

posed instances of the location estimation problem, by pre-

senting its relation to the existing theory of parallel rigidity.

For robust estimation of camera locations, we introduce a

two-step approach, comprised of a pairwise direction esti-

mation method robust to outliers in point correspondences

between image pairs, and a convex program to maintain ro-

bustness to outlier directions. In the presence of partially

corrupted measurements, we empirically demonstrate that

our convex formulation can even recover the locations ex-

actly. Lastly, we demonstrate the utility of our formulations

through experiments on Internet photo collections.

1. Introduction

Structure from motion (SfM) is the problem of recov-

ering a 3D (stationary) structure by estimating the camera

motion corresponding to a collection of 2D images of the

same structure. Classically, SfM involves three steps: (1)
Estimation of point correspondences between pairs of im-

ages, and relative pose estimation of camera pairs based

on corresponding points (2) Estimation of camera motion,

i.e. global camera orientations and locations, from relative

poses (3) 3D structure recovery based on the estimated

motion by reprojection error minimization (e.g., using the

bundle adjustment algorithm of [33]). Although there ex-

ist accurate and efficient algorithms for the first and the

third steps, existing methods for camera motion estimation,

and specifically for the camera location estimation part, are

usually sensitive to noise. The camera location estimation

problem can be formulated as a specific case (for d = 3)

of the inverse problem of estimating n locations t1, . . . , tn
in R

d from a subset of (potentially noisy) measurements of

the pairwise directions γij , given by

γij =
ti − tj

‖ti − tj‖
(1)

(see Figure 1 for a noiseless instance of the problem). In

terms of this formulation, misidentified point correspon-

dences may manifest themselves (see §3) as direction mea-

surements with large errors (i.e., outlier directions), and

hence, may induce instability in location estimation.
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Figure 1. A (noiseless) instance of the location estimation problem

in R
3, with n = 6 locations and m = 8 pairwise directions.

Existing methods for SfM can roughly be classified into

two main categories; incremental approaches (e.g. [1, 6, 11,

16, 31, 32, 44]), that integrate images to the estimation pro-

cess one by one (or in small groups) and global methods,

that aim to estimate the camera motion (and sometimes also

the 3D structure) jointly for all images. Incremental meth-

ods are prone to accumulation of estimation errors at each

step. On the other hand, for the global methods, since si-

multaneous estimation of motion and 3D structure is com-

putationally expensive, a usual procedure is to estimate mo-

tion and structure separately. Given an accurate motion es-

timate, a single instance of reprojection error minimization

is usually enough to obtain high quality structure estimates.

Since orientation estimation is a relatively well-posed

problem, with several efficient and stable existing meth-



ods (e.g. [2, 7, 13, 14, 25, 27]), it is customary to estimate

the locations separately (based on the orientation estimates).

The works of [2, 5, 12], formulate the problem as finding a

least squares solution to a linear system of equations de-

rived from pairwise direction measurements (we refer to

this method as the “least squares” (LS) solver). However,

empirical observations (as in [27]) have pointed out the in-

stability of the LS solver, in the form of a tendency to pro-

duce spurious solutions clustering around a few locations.

The multistage linear method of [30] attempts to eliminate

the clustering solutions by estimating the relative scales be-

tween cameras. The Lie algebraic averaging method of [13]

is an efficient alternative, but may suffer from convergence

to local minima. [29] formulates a quasi-convex method

(based on iterative optimization of a functional of the ℓ∞
norm). However, since the ℓ∞ norm is prone to outlier

directions, this method usually fails to produce accurate

estimates (see, e.g., [27]). A relatively accurate method,

closely related to our formulation, is studied in [34, 35].

Based on minimizing the ℓ2 norm of the error in direction

measurements (linearized in ti’s), this method also employs

constraints to eliminate clustering solutions (hence, we re-

fer to this method as the “constrained least squares” (CLS)

solver). However, in the presence of outlier directions, the

accuracy of the CLS solver is degraded (see Figure 5). An-

other method closely related to our formulation, minimizing

the ℓ∞ norm of the error in direction measurements, is stud-

ied in [26]. The accuracy of this method is affected by the

sensitivity of the ℓ∞ norm to outlier directions. In [19], a

global linear method, which uses triplets of images instead

of pairwise directions, is studied. In the recent work [40], a

preprocessing step (named 1DSfM, and designed to remove

outlier directions), followed by a non-convex optimization

method is introduced. Another recently introduced alterna-

tive is the “semidefinite relaxation” (SDR) solver of [27].

Formulated as an abstract problem to estimate locations

from pairwise “lines” (i.e., from measurements of ±γij ,

where the sign is unknown), this method aims to resolve

the instability of the LS method by introducing extra non-

convex constraints in the LS problem, and then relaxing

them. However, semidefinite programming is computation-

ally expensive for large data sets, and its accuracy is de-

graded in the presence of outlier lines (see Figure 5).

In this paper, we characterize well-posed instances of the

camera location estimation problem, by presenting its rela-

tion to the existing results of parallel rigidity theory. For

robust estimation of camera locations, we introduce a two-

step formulation: robust estimation of pairwise directions

(in the presence of outliers in point correspondences), and

a convex program for robust estimation of camera locations

in the presence of measurements corrupted by large errors,

i.e. outlier directions. We provide empirical evaluation of

our formulations using synthetic data, which demonstrate

highly accurate location recovery performance compared to

existing methods, and even exact location recovery in the

presence of partially corrupted measurements (with suffi-

ciently many noiseless directions). We also provide exper-

imental results using real images, that present the accuracy

and efficiency of our methods.

Notation: We denote vectors in R
d, d ≥ 2, in boldface. For

x ∈ R
d, ‖x‖ denotes its Euclidean norm. Sd and SO(d)

denote the (Euclidean) sphere in R
d+1 and the special or-

thogonal group of rotations acting on R
d, respectively. We

use the hat accent, to denote estimates of our variables, as

in X̂ is the estimate of X . We use star to denote solutions

of optimization problems, as in X∗. Lastly, we use the let-

ters n and m to denote the number of locations |Vt| and the

number of edges |Et| of graphs Gt = (Vt, Et) that encode

the pairwise direction information.

2. Location Estimation

The entire information of pairwise directions is repre-

sented using a measurement graph Gt = (Vt, Et), where

the i’th node in Vt = {1, 2, . . . , n} corresponds to the loca-

tion ti and each edge (i, j) ∈ Et is endowed with the direc-

tion γij . Provided with the set {γij}(i,j)∈Et
of (noiseless)

directions on Gt = (Vt, Et), we first study the problem of

unique realizability of the locations. We will then introduce

our robust formulation for location estimation from noisy

pairwise directions.

2.1. Parallel Rigidity

The unique realizability of locations from (noise-

less) pairwise directions was previously studied un-

der the general title of parallel rigidity theory (see,

e.g., [9, 10, 20, 21, 28, 38, 39] and references therein).

In the context of SfM, the implications of the parallel

rigidity theory for the camera location estimation part were

recognized in [27]1. Here, we present a brief summary of

fundamental results in parallel rigidity theory.

Provided with the noiseless pairwise directions

{γij}(i,j)∈Et
⊆ Sd−1 (termed a “formation”), we first

consider the following fundamental questions: Can we

uniquely realize {ti}i∈Vt
, of course, up to a global transla-

tion and scale (i.e. can we obtain a set of points congruent

to {ti}i∈Vt
)? Is unique realizability a generic property of

the measurement graph Gt (i.e. is it independent of the

particular realization of the points, assuming they are in

generic position) and can it be decided efficiently?

Certifying unique realizability of locations is more

complicated, e.g., compared to certifying uniqueness of

camera orientations, which only requires (for arbitrary d)

1We note that, although the pairwise measurements studied in [27] are

of the form ±γij (where, the sign is unavailable), the results of parallel

rigidity theory for unique realizability remain the same when the signs are

given.
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Figure 2. (a) A formation of 6 locations on a connected graph,

which is parallel rigid in R
3 but not parallel rigid in R

2. Non-

uniqueness in R
2 is demonstrated by two non-congruent loca-

tion solutions {t1, t2, t3, t4, t5, t6} and {t1, t2, t
′
3, t4, t5, t

′
6},

each of which can be obtained from the other by an independent

rescaling of the solution for one of its maximally parallel rigid

components in R
2, (b) Maximally parallel rigid components in

R
2, of the formation in (a), (c) A parallel rigid formation (in R

2

and R
3) obtained from the formation in (a) by adding the extra

edge (3, 4) linking its maximally parallel rigid components

the connectivity of the measurement graph (see Figure 2).

On the other hand, parallel rigidity theory has a much

simpler structure compared to the (classical) rigidity

theory involving distance information (for a survey in

rigidity theory, see [3]). The identification of parallel rigid

formations is addressed in [9, 10, 38, 39, 20] (also see the

survey [17]), where it is shown that parallel rigidity in R
d

(d ≥ 2) is a generic property of Gt that admits a complete

combinatorial characterization:

Theorem 1 (Whiteley,1987). For a graph G = (V,E), let

(d− 1)E denote the set consisting of (d− 1) copies of each

edge in E. Then, G is generically parallel rigid in R
d if

and only if there exists a nonempty set D ⊆ (d− 1)E, with

|D| = d|V | − (d+ 1), such that for all subsets D′ of D,

|D′| ≤ d|V (D′)| − (d+ 1) , (2)

where V (D′) denotes the vertex set of the edges in D′.

The conditions of Theorem 1 can be used to design ef-

ficient algorithms (e.g., adaptations of the pebble game al-

gorithm [18], with a time complexity of O(n2)) for test-

ing parallel rigidity. Also, [27] provides a randomized

spectral test (having a time complexity of O(m)) for test-

ing parallel rigidity. Moreover, unique realizability turns

out to be equivalent to parallel rigidity, for arbitrary d
(see [9, 17, 20, 27, 39]).

For a formation that is not parallel rigid, the algorithms

in [20, 21] can be used to decompose the graph into max-

imally parallel rigid components (i.e., to obtain maximal

subgraphs of Gt that can be uniquely realized).

The results of parallel rigidity theory are valid for noise-

less directions. However, when provided with noisy direc-

tions (e.g., computed from real images), instead of unique-

ness of the solution of a specific camera location estimation

algorithm, we consider the following question: Is there suf-

ficient information for the location estimation problem to

be well-posed (in the sense that, if direction measurement

error is small enough, then locations can be estimated sta-

bly)? For formations which are not parallel rigid, instability

results from independent scaling and translation of maxi-

mally rigid components. Hence, we consider problem in-

stances on parallel rigid measurement graphs to be well-

posed. As a result, given a (noisy) formation {γij}(i,j)∈Et

on Gt = (Vt, Et), we firstly check for parallel rigidity of

Gt, then, if the formation is not parallel rigid, we extract its

maximally parallel rigid components (using the algorithm

in [21]) and estimate the locations for the largest maximally

parallel rigid component of Gt.

2.2. Robust Location Estimation

This section introduces our main formulation for robust

location estimation. Suppose we are given a set of pairwise

direction measurements {γij}(i,j)∈Et
⊆ Sd−1, i.e., for each

(i, j) ∈ Et, γij satisfies

γij =
ti − tj

‖ti − tj‖
+ ǫγij (3)

where, ǫγij denotes the direction error. Our objective is

to estimate the locations {ti}i∈Vt
(from the directions

{γij}(i,j)∈Et
) by maintaining robustness to outlier direction

measurements (i.e., γij’s with large ǫγij’s) in a computation-

ally efficient manner. In this respect, we first rewrite (3)

as

ti − tj = ‖ti − tj‖γij + ǫtij (4)

= dijγij + ǫtij (5)

⇐⇒ ǫtij = ti − tj − dijγij (6)

where, ǫtij denotes the displacement error, and we define

dij ..= ‖ti − tj‖ to rewrite ǫtij linearly in ti, tj and dij .

Observe that, large errors in directions (i.e., large ǫγij’s) in-

duce large displacement errors ǫtij’s. As a result, we can

employ displacement error minimization as a substitute for

direction error minimization for location estimation.

Hence, to maintain robustness to large ǫtij’s in (6), we

choose to minimize the sum of unsquared norms of ǫtij’s.

Also, for computational efficiency, we drop the intrinsic

non-convex constraints dij = ‖ti−tj‖ to obtain the convex

“least unsquared deviations” (LUD) formulation

minimize
{ti}i∈Vt

⊆R
d

{dij}(i,j)∈Et

∑

(i,j)∈Et

‖ti − tj − dijγij‖

subject to
∑

i∈Vt

ti = 0 ; dij ≥ c, ∀(i, j) ∈ Et

(7)

where the constraints
∑

i ti = 0 and dij ≥ c remove the

translational and the scale ambiguities of the solution, re-



spectively (wlog we take c = 1)2. The constraints dij ≥ c
are introduced to prevent trivial solutions of the form d∗ij ≡
0, t∗i ≡ 0, as well as solutions clustered around a few loca-

tions.

For well-posed instances of the location estimation prob-

lem (i.e., for parallel rigid Gt), and in the presence of noise-

less direction measurements (i.e., ǫγij ≡ 0 in (3)), we expect

the LUD and CLS solvers to recover the locations ti exactly.

Proposition 1 (Exact Recovery in the Noiseless Case).

Assume that the noiseless formation {γij}(i,j)∈Et
, corre-

sponding to the locations {ti}i∈Vt
(in general position), is

parallel rigid. Then, the LUD (7) and CLS solvers recover

the locations exactly, in the sense that any solution is con-

gruent to {ti}i∈Vt
.

Proof. Wlog, we assume min(i,j)∈Et
‖ti − tj‖ = 1 and

∑

i ti = 0. Then, {ti}i∈Vt
together with dij = ‖ti − tj‖,

(i, j) ∈ Et, constitute an optimal solution for the LUD (7)

and CLS problems, with zero cost value. Let, {t′i}i∈Vt
and

{d′ij}(i,j)∈Et
be another solution of the LUD (7) and CLS

problems, which must also have zero cost value. Then, for

each (i, j) ∈ Et, we get

‖t′i − t′j − d′ijγij‖ = 0 ⇐⇒ t′i − t′j = d′ijγij

=⇒
t′i − t′j

‖t′i − t′j‖
=

ti − tj

‖ti − tj‖
(8)

i.e., {t′i}i∈Vt
induces a formation on Gt, which is parallel to

the formation corresponding to {ti}i∈Vt
on Gt. However,

since Gt is parallel rigid, {t′i}i∈Vt
has to be congruent to

{ti}i∈Vt
(in fact, t′i = αti, for α ≥ 1, by the feasibility of

{t′i, d
′
ij}).

2.3. Iteratively Reweighted Least Squares (IRLS)

In this section we formulate an iteratively reweighted

least squares (IRLS) solver (see, e.g., [8, 43]) for the LUD

problem (7). The main idea of IRLS is to iteratively solve

(successive smooth regularizations of) the convex problem

by using quadratic programing (QP) approximations. A

pseudo code version is provided in Algorithm 1 (where, we

consider a single smooth regularization). At the r’th itera-

tion, more emphasis is given to the directions that are better

approximated by the estimates t̂ri ’s and d̂rij’s. Also, the reg-

ularization parameter δ ensures that no single direction can

attain unbounded influence. The iterations are repeated un-

til a convergent behavior in the variables, and in the cost

value of the problem is observed. We refer the reader to [4]

2We note that the least squares version of (7) (i.e., the program with the

cost function
∑

(i,j)∈Et
‖ti − tj − dijγij‖

2, and the same constraints

as in (7)), which we name the “constrained least squares” (CLS) method,

was previously studied in [34, 35]. However, as we experimentally demon-

strate in §4, the CLS formulation fails to maintain robustness to outliers.

Also, the ℓ∞ version of (7), using the same constraints, was studied in [26].

for a proof of convergence of the IRLS solver (where, a

sequence of smooth regularizations, with δ ց 0, is as-

sumed3).

Algorithm 1 Iteratively reweighted least squares (IRLS) al-

gorithm for the LUD (7) solver

Initialize: w0
ij = 1, ∀(i, j) ∈ Et

for r = 0, 1, . . . do
























• Compute {t̂r+1
i }, {d̂r+1

ij } by solving the QP:

minimize
{∑

ti=0,
dij≥1

}

∑

(i,j)∈Et

wr
ij ‖ti − tj − dijγij‖

2

• wr+1
ij ←

(

∥

∥

∥
t̂
r+1
i − t̂

r+1
j − d̂r+1

ij γij

∥

∥

∥

2

+ δ

)−1/2

3. Robust Pairwise Direction Estimation

We now present a pairwise direction estimation method

designed to maintain robustness to outlier point correspon-

dences between image pairs.

Let {Ii}
n
i=1 be a collection of images of a stationary

3D scene. We use a pinhole camera model, and denote

the orientations, locations, and focal lengths of the n cam-

eras corresponding to these images by {Ri}
n
i=1 ⊆ SO(3),

{ti}
n
i=1 ⊆ R

3, and {fi}
n
i=1 ⊆ R

+, respectively. Consider

a scene point P ∈ R
3 represented in the i’th image plane

by pi ∈ R
3. To produce pi, P is firstly represented in the

i’th camera’s coordinate system by Pi = RT
i (P − ti) =

(Px
i ,P

y
i ,P

z
i )

T and then projected onto the i’th image plane

by pi = (fi/P
z
i )Pi. Note that, for the image Ii, we in fact

observe qi = (px
i ,p

y
i )

T ∈ R
2 (i.e., the coordinates on the

image plane) as the measurement corresponding to P.

For an image pair Ii and Ij , the essential matrix Eij =
[tij ]×Rij (where Rij = RT

i Rj and tij = RT
i (tj − ti)

denote the pairwise rotation and translation, and [tij ]× is

the matrix of cross product with tij) satisfies the “epipolar

constraints” given by

pT
i Eijpj = 0 (9)

⇐⇒

[

qi/fi
1

]T

Eij

[

qj/fj
1

]

= 0 (10)

The estimates R̂ij and t̂ij , computed from the decom-

position of Êij (estimated via (10)), usually have large

errors due to misidentified and/or small number of corre-

sponding points. Hence, instead of using existing algo-

rithms (e.g., [2, 14, 25]) to estimate the orientations R̂i

and then computing the pairwise direction estimates γ̂ij =

3Although we use a single smooth approximation by fixing δ ≪ 1 for

simplicity, we always obtained a convergent behavior in our experiments.



R̂it̂ij/‖t̂ij‖, we take the following approach (a similar ap-

proach is used in [27]): First, the rotation estimates R̂i are

computed using the iterative method in §4.1 of [27] (us-

ing the robust algorithm of [7] for each iteration), and we

then use the epipolar constraints (10) to robustly estimate

the pairwise directions.

To that end, we rewrite the epipolar constraint (10) to

emphasize its linearity in ti and tj . Let {qk
i }

mij

k=1 and

{qk
j }

mij

k=1 denote mij corresponding feature points. Then,

for ηki =
[

q
k
i /fi
1

]

and ηkj =
[

q
k
j /fj
1

]

, we can rewrite (10)

as (also see [2, 22, 27])

(ηki )
TEijη

k
j =

(

Riη
k
i ×Rjη

k
j

)T
(ti − tj) = 0

⇐⇒ (νkij)
T (ti − tj) = 0, for νkij denoting

νkij
..= Θ

(

Riη
k
i ×Rjη

k
j

)

(11)

where, the normalization function Θ is defined by Θ(x) =
x/‖x‖, Θ(0) = 0. Then, in the noiseless case (assuming

mij ≥ 2, and that we can find at least two νkij’s not parallel

to each other), {νkij}
mij

k=1 determine a 2D subspace orthogo-

nal to ti − tj , and hence the (undirected) “line” through ti
and tj (i.e., γ0

ij = bijγij , where the sign bij ∈ {−1,+1} is

unknown, but can be determined by using the fact that the

3D scene points should lie in front of the cameras).

In the presence of noisy measurements, i.e. if we replace

Ri’s, fi’s and qi’s with their estimates in (11), we essen-

tially obtain noisy samples ν̂kij’s from the 2D subspace or-

thogonal to ti − tj . In order to maintain robustness to out-

liers among ν̂kij’s in the estimation of (undirected) lines γ0
ij ,

we first consider the following (non-convex) problem:

minimize
γ0
ij

mij
∑

k=1

|(γ0
ij)

T ν̂kij |

subject to ‖γ0
ij‖ = 1

(12)

In order to obtain the estimate γ̂0
ij , we use a (heuristic) IRLS

method for (12). Here, although the program (12) is not

convex, and hence the IRLS method is not guaranteed to

converge to global optima, we empirically observed this ap-

proach to produce high quality estimates for the lines γ0
ij ,

while preserving computational efficiency (for alternative

methods, see [23, 37, 42]). Lastly, the estimates b̂ij of the

signs of the direction estimates γ̂ij = b̂ij γ̂
0
ij are computed

using the fact that the 3D points should lie in front of the

cameras.

In Figure 3, we provide a comparison of our robust direc-

tion estimation method, with a PCA-based estimator (com-

prised of solving (12) by replacing the cost function with the

sum of squares version, i.e. with
∑

k |(γ
0
ij)

T ν̂kij |
2). The re-

sults imply that, the accuracy of the direction estimates can

be significantly improved by our robust method. We also

note that the running time of our robust method is compara-

ble to that of PCA and hence does not significantly increase

the overall running time of the entire pipeline.
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Figure 3. Histogram plots of the errors in direction estimates com-

puted by our robust method (12) and the PCA method, for some

of the datasets (from [40]) studied in §4.2. The errors represent

the angles between the estimated directions and the corresponding

ground truth directions (computed from a sequential SfM method

based on [31], and provided in [40]). We note that the errors take

values in [0, π], yet the histograms are restricted to [0, π/4] to em-

phasize the difference of the quality in the estimated directions.

A summary of our camera motion estimation algorithm

is given in Table 1.

Input: Images: {Ii}
n
i=1, Focal lengths: {fi}

n
i=1

Feature

Points,

Essential

Matrices,

Camera

Orientations

1. Find corresponding points between images (using SIFT [24])

2. Compute Êij , using the eight-point algorithm [15] (for pairs

with sufficiently many correspondences)

3. Factorize Êij to compute {R̂ij}(i,j)∈ER
and GR = (VR, ER)

4. Compute the orientation estimates R̂i from {R̂ij}(i,j)∈ER

(using the iterative approach of [27] with the robust method

of [7] for each iteration)

Robust

Pairwise

Direction

Estimation §3

5. Compute the 2D subspace samples {ν̂kij}
mij

k=1 for each

(i, j) ∈ ER (11)

6. Estimate the pairwise directions {γ̂ij}(i,j)∈ER
using (12)

Location

Estimation §2

7. Extract the largest maximally parallel rigid component

Gt = (Vt, Et) of GR (see [21])

8. Compute the location estimates {t̂i}i∈Vt
by

the LUD (7) method (using the IRLS Algorithm 1 or classical

interior point methods, e.g., [36])

Output: Camera orientations and translations: {R̂i, t̂i}

Table 1. Algorithm for camera motion estimation

4. Experiments

4.1. Synthetic Data Experiments

In this section we provide synthetic data experiments for

the LUD formulation (7). In particular, we provide evidence



for exact location recovery from partially corrupted direc-

tions, and also compare the LUD solver to the CLS [34, 35],

the SDR [27] and the LS [2, 5] methods.

The measurement graphs Gt = (Vt, Et) of our exper-

iments are random graphs drawn from the Erdős-Rényi

model G(n, q), i.e. each (i, j) is in the edge set Et with

probability q, independently of all other edges. In each ex-

periment, we only record the results of problem instances

defined on parallel rigid Gt. Given a set of locations

{ti}
n
i=1 ⊆ R

d and Gt = (Vt, Et), for each (i, j) ∈ Et,

we first let

γ̃ij =

{

γU
ij , w.p. p

(ti − tj)/‖ti − tj‖+ σγG
ij w.p. 1− p

(13)

and normalize γ̃ij’s to obtain γij = γ̃ij/‖γ̃ij‖ as the di-

rection measurement for the pair (i, j). Here, {γU
ij}(i,j)∈Et

and {γG
ij}(i,j)∈Et

are i.i.d. random variables drawn from the

uniform distribution on Sd−1 and the standard normal dis-

tribution on R
d, respectively. Also, the original locations

ti’s are i.i.d. random variables drawn from standard normal

distribution on R
d.

We evaluate the performance in terms of the “normalized

root mean squared error” (NRMSE) given by

NRMSE({t̂i}) =

√

∑

i ‖t̂i − ti‖2
∑

i ‖ti − t0‖2
(14)

where t̂i’s are the location estimates (after removal of the

global scale and translation) and t0 is the center of ti’s.

The first set of experiments demonstrates the recovery

performance of the LUD solver in the presence of partially

corrupted directions, by setting σ = 0 in (13), and by con-

trolling the proportion of outlier measurements via the pa-

rameter p. The results are summarized in Figure 4, where

for each experiment the intensity of each pixel represents

log10(NRMSE) (NRMSE values are averaged over 10 ran-

dom realizations). These results demonstrate a striking fea-

ture of the LUD solver: In the presence of partially cor-

rupted directions (with sufficiently small, but non-zero, pro-

portion of corrupted directions), the LUD solver recovers

the original locations exactly (i.e., we get NRMSE < ǫIRLS,

where ǫIRLS is the convergence tolerance for the IRLS algo-

rithm, set to ǫIRLS = 1e-8 in our experiments). In Figure 4,

we observe that, the exact recovery performance for d = 3
is improved as compared to the d = 2 case. Additionally,

the transition to the exact recovery region becomes slightly

sharper, and exact recovery performance for small values of

outlier probability p is marginally improved when enlarging

n from 100 to 200.

The second set of experiments, depicted in Figure 5,

presents a comparative evaluation of the NRMSE of the

LUD, the CLS, the SDR and the LS solvers, for d = 3 (we

p

q

d = 2, n = 100
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Figure 4. NRMSE (14) results of the LUD (7) solver for the exact

recovery experiments. The color intensity of each pixel represents

log10(NRMSE), depending on the edge probability q (x-axis), and

the outlier probability p (y-axis). Measurements are generated by

the noise model (13), assuming σ = 0, and NRMSE values are

averaged over 10 trials.

observed similar performance for d = 2). The outcomes

clearly present the robustness of the LUD formulation in

the presence of outliers (up to a significant proportion of

outliers, depending on q and n), while the recovery perfor-

mance of the other methods is degraded significantly. Even

if the measurement noise is dominated by small errors in the

inlier directions (i.e., when σ is relatively large compared to

p), the LUD solver continues to outperform the other meth-

ods, in almost all cases.
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Figure 5. NRMSE (14) performance of the LUD (7) formulation

vs. the CLS [34, 35], the SDR [27] and the LS [2, 5] solvers,

for n = 200 locations. Measurements are generated by the noise

model (13) and NRMSE values are averaged over 10 trials.

4.2. Real Data Experiments

We tested our location estimation algorithm on nine sets

of real images from [40]. These are relatively irregular col-

lections of images and hence estimating the camera loca-



Dataset LUD CLS [34, 35] SDR [27] 1DSfM [40] [12]

Name

Size Initial After BA Initial After BA Initial After BA Init. After BA After BA

PCA Robust Robust Robust Robust Robust Robust

m Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ Nc ẽ ê Nc ẽ

Piazza del Popolo 60 328 3.0 7 1.5 5 305 1.0 4 3.5 6 305 1.4 5 1.9 8 305 1.3 7 3.1 308 2.2 200 93 16

NYC Library 130 332 4.9 9 2.0 6 320 1.4 7 5.0 8 320 3.9 8 5.0 8 320 4.6 8 2.5 295 0.4 1 271 1.4

Metropolis 200 341 4.3 8 1.6 4 288 1.5 4 6.4 10 288 3.1 7 4.2 8 288 3.1 7 9.9 291 0.5 70 240 18

Yorkminster 150 437 5.4 10 2.7 5 404 1.3 4 6.2 9 404 2.9 8 5.0 10 404 4.0 10 3.4 401 0.1 500 345 6.7

Tower of London 300 572 12 25 4.7 20 425 3.3 10 16 30 425 15 30 20 30 425 17 30 11 414 1.0 40 306 44

Montreal N. D. 30 450 1.4 2 0.5 1 435 0.4 1 1.1 2 435 0.5 1 − − − − − 2.5 427 0.4 1 357 9.8

Notre Dame 300 553 1.1 2 0.3 0.8 536 0.2 0.7 0.8 2 536 0.3 0.9 − − − − − 10 507 1.9 7 473 2.1

Alamo 70 577 1.5 3 0.4 2 547 0.3 2 1.3 3 547 0.6 2 − − − − − 1.1 529 0.3 2e7 422 2.4

Vienna Cathedral 120 836 7.2 12 5.4 10 750 4.4 10 8.8 10 750 8.2 10 − − − − − 6.6 770 0.4 2e4 652 12

Table 2. Performance comparison of various methods for datasets from [40]: Units are (approximately) in meters. Nc denotes number of

estimated camera locations, ê denotes the average distance, and ẽ denotes the median distance of the estimated camera locations to the

corresponding cameras in the reference solution (computed using [31], and provided in [40]). ‘PCA’ and ‘Robust’ refers to the pairwise

direction estimation method used (c.f . (12) and Figure 3).

tions for all of these images (or a large subset) is challeng-

ing. To solve the LUD problem (7), we use the IRLS al-

gorithm 1, and to construct a 3D structure in our exper-

iments, we use the parallel bundle adjustment (PBA) al-

gorithm of [41]. We perform our computations on work-

stations with Intel(R) Xeon(R) X7542 CPUs, each with 6
cores, running at 2.67 GHz. In order to directly compare

the accuracy of the location estimation by LUD to that of

CLS [34, 35] and SDR [27] solvers, we use the same direc-

tion estimates (c.f . Table 1) for each method (except for the

case where the PCA directions are used for the LUD solver,

c.f . columns 4 and 5 of Table 2). These estimates produced

more accurate location estimates for all data sets. We note

that, the computation of the robust direction estimates is

performed in parallel (using 10 cores for each dataset). Sim-

ilar to [40], for performance evaluation, we consider the

camera location estimates computed by a sequential SfM

solver based on Bundler [31] (and provided in [40]) as the

ground truth, and use a RANSAC-based method to com-

pute the global transformation between our estimates and

the ground truth.

We provide the accuracy comparisons in Table 2: The

results are given in terms of the average distance ê, and the

median distance ẽ of the estimated camera locations to the

corresponding cameras in the reference solution (units are

approximately in meters). The results of [40] correspond

to the estimates computed by the combination of an out-

lier direction detection method (termed “1DSfM” in [40])

and a location estimation method employing a robust cost

function. The results of [12] are cited from [40]. Also, the

results of the SDR method [27] correspond to the estimates

computed by applying the solver to the whole measurement

graphs, and hence are not provided for the relatively larger

datasets due to computational limitations. We also provide

the running times corresponding to each experiment in Ta-

ble 3 (note that the bundle adjustment times TBA for the

LUD, the CLS and the SDR solvers are computed after an

initial 3D structure is provided). The comparison of the ac-

curacy of the LUD solver given the robust directions (c.f .

§3) to the case of the PCA directions, and the comparison

of the LUD solver to the CLS, the SDR and [40] imply that,

the combination of our robust direction estimation method

and the LUD solver produces highly accurate initial esti-

mates, with a computation cost that is slightly higher than

the CLS method and [40]. Using the initial estimates, we

apply PBA once, to obtain rich 3D structures and further

improvements in accuracy. See Figure 6 for some of the 3D

structures obtained from the initial LUD estimates.

5. Conclusion and Future Work

We provided a complete characterization of well-posed

instances of the camera location estimation problem, via

the existing theory of parallel rigidity, and used it in prac-

tice to extract maximal image subsets for which estimation

of camera location is well posed. For robust estimation of

camera locations, we introduced a pairwise direction esti-

mation method to maintain robustness to outliers in point

correspondences, and we also presented a robust convex

program, namely “the least unsquared deviations” (LUD)

solver, to diminish the effects of outliers in pairwise di-

rection measurements. We empirically demonstrated that

unlike other estimators, the LUD formulation allows exact

recovery of locations in the presence of partially corrupted

direction measurements. In the context of structure from

motion, our formulations can be used to efficiently and ro-

bustly estimate camera locations, in order to produce a high-

quality initialization for reprojection error minimization al-

gorithms, as demonstrated by our experiments on real image

sets.

As future work, we plan to further investigate the phe-

nomenon of exact recovery with partially corrupted direc-

tions, to characterize the conditions for its existence.



LUD CLS [34, 35] SDR [27] 1DSfM [40] [12] [31]

Dataset TR TG Tγ Tt TBA Ttot Tt TBA Ttot Tt TBA Ttot TR Tγ Tt TBA Ttot Ttot Ttot

Piazza del Popolo 35 43 18 35 31 162 9 106 211 358 39 493 14 9 35 191 249 138 1287

NYC Library 27 44 18 57 54 200 7 47 143 462 52 603 9 13 54 392 468 220 3807

Metropolis 27 37 13 27 38 142 6 23 106 181 45 303 15 8 20 201 244 139 1315

Yorkminster 19 46 33 51 148 297 10 133 241 648 75 821 11 18 93 777 899 394 3225

Tower of London 24 54 23 41 86 228 8 202 311 352 170 623 9 14 55 606 648 264 1900

Montreal N. D. 68 115 91 112 167 553 21 270 565 − − − 17 22 75 1135 1249 424 2710

Notre Dame 135 214 325 247 126 1047 52 504 1230 − − − 53 42 59 1445 1599 1193 6154

Alamo 103 232 96 186 133 750 40 339 810 − − − 56 29 73 752 910 1403 1654

Vienna Cathedral 267 472 265 255 208 1467 46 182 1232 − − − 98 60 144 2837 3139 2273 10276

Table 3. Running times, in seconds, for the experiments in Table 2: times for orientation estimation (TR), extraction of largest maximally

parallel rigid component (TG), robust pairwise direction estimation (Tγ), translation estimation (Tt), bundle adjustment (TBA), and total

time (Ttot). (For the LUD, the CLS and the SDR solvers, the bundle adjustment times TBA are computed after an initial 3D structure is

provided, and the first three columns, i.e., TR,TG,Tγ , are common).

Figure 6. Snapshots of selected 3D structures computed using the camera location estimates of the LUD solver (7) (without bundle adjust-

ment). Each 3D point is visible through at least three cameras.
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