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Fernando Ordóñez†and Jiamin Zhao‡

November 2006

Abstract

We consider the problem of expanding arc capacities in a network subject to

demand and travel time uncertainty. We propose a robust optimization approach

to obtain capacity expansion solutions that are insensitive to this uncertainty. Our

results show that, under reasonable assumptions for network flow applications,

such robust solutions can be computed by solving tractable conic linear problems.

For example, the robust solution for a multicommodity flow problem is obtained by

solving a linear program if the problem has a single source and sink per commodity

and the uncertainty in demand and travel time is given by independent bounded

polyhedral sets. Preliminary computational results show that the robust solution

is attractive, as it can reduce the worst case cost by more than 20%, while incurring

a 5% loss in optimality when compared to the optimal solution of a representative

scenario.
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1 Introduction

A natural problem in many network applications is where to increase arc capacity so that

the overall network routing/transmission cost is reduced. There exists substantial re-

search on capacity expansion (or capacity planning) problems in different domains, such

as manufacturing [26], electric utilities [22], telecommunications [20], inventory manage-

ment [18], and transportation [21]. This diverse body of work includes some common

elements: these problems expand the capacity of a network flow problem and consider

uncertainty in the data. In this paper we consider a classic network flow problem with

additional decision variables for arc capacity expansion. More precisely, we represent a

network with n nodes and m arcs using its arc-incidence matrix N ∈ <n×m, a vector

u ∈ <m of initial arc capacities, and a demand-supply vector b ∈ <n. The capacity

expansion problem is given by

zD(b, c) = minx,y cT x

s.t. Nx = b

x ≤ u + y

dT y ≤ q

x, y ≥ 0 ,

(1)

where we minimize a linear transportation cost with coefficients c ∈ <m by selecting

feasible arc flow variables x ∈ <m that satisfy new arc capacities defined by the arc

expansion variables y ∈ <m. Expanding the capacity of arc e incurs a linear cost de with

a total budget for investment of q.

This basic network flow model can be enhanced, using multiple time periods, non-

linear latency cost functions, etc.; see [2] for a description of different network flow

problems. In particular, this problem is closely related to the mixed-integer network

design problem, which is obtained by dropping the budget q, considering y as integer

variables, and including the capacity expansion cost dT y in the objective.
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In our work we consider that travel times c and demands b are uncertain, which is

observed in many applications and is particularly relevant for planning problems. For

example, Problem (1) can be used to plan freight routes on a transportation network.

The uncertain traffic conditions lead to an uncertain transportation cost, variability

in demand for freight leads to uncertainty in the demand vector b, and increasing the

number of vehicles on a certain route amounts to increasing the capacity on arcs.

Uncertainty in capacity expansion problems can be traced back to [13]. A standard

method to represent the uncertainty in optimization problems is via discrete uncer-

tainty scenarios, an approach used in stochastic optimization [10]; see [1] for its use in

capacity planning. Previous robust optimization methodology in the literature either

considers discrete uncertainty scenarios as in [23] or are defined for discrete optimiza-

tion problems with continuous uncertainty in the objective function coefficients; see [19].

Additional, problem specific, methods for robust optimization with scenario uncertainty

are described in [17] for uncapacitated network design, [14] for routing in a network with

failures, and in [24] for capacity planning in a manufacturing application. Main draw-

backs of scenario based uncertainty models are that the distribution of the uncertainty

must be known and that a prohibitive number of scenarios might be required to rep-

resent the uncertainty accurately. For robust discrete optimization, these methods are

limited to uncertainty in the objective function, in addition they either lead to NP-hard

formulations for problems whose deterministic version is polynomially solvable, or use

solution techniques that are specific to each problem.

In this paper we use a robust optimization model (in the sense of Ben-Tal and

Nemirovski [6]) to find a solution to the capacity expansion problem with uncertainty in

demand and travel time. We use conic uncertainty sets to represent this uncertainty and

show that the robust solution can be obtained by solving tractable conic linear problems.

These conic problems include linear programming (LP), second order cone, and semi-

definite programs that can be solved efficiently with current interior point methods.
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For example, we find that a robust solution is obtained as the optimal solution to a

conic linear problem for a multicommodity flow problem with single source and sink

per commodity, interval uncertainty on demand, and independent conic uncertainty

set on the cost vector. Linear, convex quadratic, and semi-definite constraints form

different types of conic uncertainty sets, which lead to tractable conic linear problems.

We discuss these conic sets in more detail in Section 3. Two recent papers [3, 8] also

consider robust optimization for network flow and design problems using a different type

of uncertainty set referred to as budget of uncertainty. In [8] the authors consider the

network flow problem over arbitrary networks with deterministic demand and a budget

of uncertainty set on travel time. In [3] the authors investigate robust solutions for the

adaptive network flow and network design problems. That work considers budget of

uncertainty sets on demand and shows that the robust problem is tractable on totally

ordered networks or arborescences.

Our work, in contrast, considers arbitrary networks and identifies convex uncertainty

sets on demand and travel time that lead to tractable robust problems. We find that

conic uncertainty sets in travel time (which includes bounded polyhedra and ellipsoids)

and independent interval uncertainty in the demand of a single source-sink pair make

the robust problem tractable regardless of the underlying network. We also provide

examples that show that relaxing these assumptions on the demand uncertainty leads

to non-convex problems. In addition, we present computational results comparing the

robust solution to the deterministic optimal solution for fixed nominal data. These

results show that the robust solution can improve significantly in the worst case, while

incurring a modest loss in optimality on the nominal instance.

The structure of the paper is as follows: in the next section we describe the robust

optimization approach as it pertains to our problem. In Section 3 we present the robust

capacity expansion problem, the types of uncertainty sets considered, and investigate

the reason for the difficulty of this problem. In Section 4 we identify the conditions that
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make it possible to solve the robust capacity expansion problem efficiently. We present

our computational results in Section 5 and provide concluding remarks in Section 6.

2 Robust Optimization Methodology

The robust optimization approach was introduced for convex optimization in [6]. This

methodology has generated research on a number of applications such as structural

design [5], least-square optimization [11], portfolio optimization [12, 15], and supply

chain management problems [9] to name a few.

The robust solution is defined as the solution that achieves the best worst case ob-

jective function value. Consider the following optimization problem under uncertainty:

minu,v f(u, v, w)

s.t. g(u, v, w) ≤ 0 ,

where the uncertainty parameter w belongs to a closed bounded and convex uncertainty

set w ∈ U . The robust solution is obtained by solving the following robust counterpart

problem (RC):

zRC = minu,v,γ γ

s.t. f(u, v, w) ≤ γ for all w ∈ U

g(u, v, w) ≤ 0 for all w ∈ U .

(2)

An attractive feature of this approach is that the complexity of solving problem (RC)

is, for very general cases, the same as the complexity of the original problem. For

example, when the original problem is an LP, from [7] we know that Problem (2) above

is equivalent to an LP when U is a polyhedron and to a quadratically constrained convex

program when U is a bounded ellipsoidal set. In addition, the size of the resulting

problem (RC) is bounded by a polynomial in the original problem’s dimensions, which

implies a polynomial method for the robust solution.
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The robust counterpart for a stochastic problem with recourse, dubbed the adjusted

robust counterpart problem (ARC), is introduced in [4]. In a problem with recourse,

some of the decision variables u are decided a priori, while the rest v can adjust to the

outcome of the uncertainty, which yields the following (ARC) problem:

zARC = minu,γ γ

s.t. for all w ∈ U exists v :

 f(u, v, w) ≤ γ

g(u, v, w) ≤ 0 .

(3)

Clearly zARC ≤ zRC , since selecting one v that is feasible for all w ∈ U is a possibility

for (ARC). However, we do not retain the nice complexity results, as Theorem 3.5 of

[16] shows that the (ARC) problem of an LP with polyhedral uncertainty is NP-hard.

In our work we focus on identifying the conditions on the uncertainty set that yield a

tractable (ARC) for the robust capacity expansion problem.

3 The Robust Capacity Expansion Problem

We formulate the robust counterpart for Problem (1) assuming the demand b and travel

times c belong to given uncertainty sets, b ∈ Ub and c ∈ Uc, where the sets Ub and Uc are

closed, convex, and bounded. Given this uncertainty, it is natural to separate the deci-

sion variables, deciding investment variables y prior to observing the traffic conditions

(realizations of b and c), and letting the traffic flow x adapt to these conditions. Thus,

our problem is a stochastic problem with recourse and the robust capacity expansion

problem (RCEP) is obtained by substituting the capacity expansion Problem (1) in the

(ARC) Problem (3):
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zARC = miny,γ γ

s.t. dT y ≤ q

y ≥ 0

for all c ∈ Uc, b ∈ Ub exists x :


Nx = b

0 ≤ x ≤ u + y

cT x ≤ γ .

(4)

Proposition 1 The (RCEP) Problem (4) is equivalent to Problem (5) below, in that

both problems have the same optimal solution y∗ and zARC = zR.

zR = miny maxc,b minx cT x

dT y ≤ q c ∈ Uc s.t. Nx = b

y ≥ 0 b ∈ Ub 0 ≤ x ≤ u + y .

(5)

Proof: For any b ∈ Ub and vector y ≥ 0 let X(b, y) = {x | Nx = b, 0 ≤ x ≤ u+y} be

the set of feasible flows. Then the last constraint in problem (4) becomes: for all c ∈ Uc

and b ∈ Ub, there exists x ∈ X(b, y) and cT x ≤ γ, which is equivalent to: for all c ∈ Uc

and b ∈ Ub we have γ ≥ minx∈X(b,y) cT x. This is equivalent to γ ≥ maxc,b minx∈X(b,y) cT x,

which concludes the proof.

3.1 Uncertainty Sets

The uncertainty model considers a demand and travel time that belong to closed, convex,

and bounded uncertainty sets. There are no distribution assumptions over these sets

and they model an independent uncertainty between demand and travel time. Such

uncertainty sets can represent, for example, the confidence intervals of the uncertain

quantities.
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Here we present conditions on the uncertainty sets that help obtain a tractable

(RCEP). We begin with the assumption that all travel times in the uncertainty set

have non-negative arc costs, that is if c ∈ Uc then ce ≥ 0 for all arcs e. In addition,

we make the following assumption on the uncertainty sets, which is equivalent to the

relatively complete recourse assumption of the stochastic programming literature [10]:

Assumption 1 For every b ∈ Ub and c ∈ Uc, the network flow problem min{ cT x | Nx =

b, 0 ≤ x ≤ u } is feasible.

This assumption implies that the network flow LP has an optimal solution for all c ∈ Uc

and b ∈ Ub, since c ≥ 0 guarantees that the objective is bounded.

In this paper, we consider conic uncertainty sets, in particular those from linear or

ellipsoidal constraints. A polyhedral set in <h formed by the intersection of p hyperplanes

(linear constraints) is given by U = {x | Mx ≤ g}, where M is a p×h matrix and g ∈ <p.

Ellipsoidal uncertainty sets in <h are given by U = {x | x = x0+
∑L

l=1 ξlx
l, ξ ∈ X}, where

X = {ξ | ∃w,Aξ + Bw ≥K d} and the constraint a ≥K b means the vector a − b ∈ K,

for some regular cone K. Note that the ellipsoidal set reduces to the polyhedral set if

h = L, x0 = 0, xl is the l-th canonical vector, A = −M , B = 0, d = −g, and K is

the p dimensional positive orthant. A similar transformation shows that ellipsoidal sets

include sets defined by any conic linear system U = {x | −Mx ≤K −g}, which includes

linear, second order, and semidefinite constraints. See [6] for a detailed discussion and

motivation of ellipsoidal sets.

Below we provide other examples of ellipsoidal sets. Let K∗ denote the positive polar

of cone K and e ∈ <h the vector of all ones, <h
+ the h dimensional positive orthant, and

Lh+1 = {(x1, x̄) ∈ <h+1 | x̄ ∈ <h, ‖x̄‖2 ≤ x1} the h + 1 dimensional second order cone.

• U is an ellipse centered at x0 with axes x1, . . . , xL if the set X = {ξ | ‖ξ‖2 ≤ 1},

which is given by the conic constraints X = {ξ | ∃w, (w, ξ) ∈ LL+1, −w+1 ∈ <+}.
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• U is a box centered at x0, with edges in directions x1, . . . , xL if the set X =

{ξ | ‖ξ‖∞ ≤ 1}, given by the conic constraints X = {ξ | −ξ+e ∈ <L
+, ξ+e ∈ <L

+}.

• U is the convex combination of discrete uncertainties x0, x0 + x1, . . . , x0 + xL if

the set X = {ξ | ‖ξ‖1 ≤ 1, ξ ≥ 0}, given by the conic constraints X = {ξ | ξ ∈

<L
+, − eT ξ + 1 ∈ <+}.

3.2 Difficulty of Solving (RCEP)

Here we investigate whether there exists any special structure in (RCEP) that can guar-

antee a polynomial solution to this instance of the NP-hard Problem (ARC). We begin

defining the worst case cost of investment decision y by φ(y). Thus, problem (RCEP) is

simply min{φ(y) | dT y ≤ q, y ≥ 0}, and the worst case cost is given by

φ(y) = maxc,b minx cT x

c ∈ Uc s.t. Nx = b

b ∈ Ub x ≤ u + y

x ≥ 0 .

(6)

Theorem 1 Under Assumption 1, φ(y) is a convex function in y.

Proof: Assumption 1 implies that the network flow in the innermost minimization

problem is feasible and has an optimal solution. Therefore we replace the innermost

minimization problem with its dual, which attains the same objective value, obtaining:

φ(y) = maxc,b,λ,π bT λ− (u + y)T π

s.t. NT λ− π ≤ c

b ∈ Ub, c ∈ Uc, π ≥ 0 .

(7)

It is straightforward to show from this last expression that φ(y) is a convex function in

y since the maximum of a sum is less than the sum of maximums.
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Theorem 1 shows that the (RCEP) is the minimization of a convex function over a

simplex, thus it can be NP-hard only when evaluating φ(y) cannot be done in polynomial

time. The non-linear term bT λ in the objective of Problem (7) is the challenging aspect

of this problem. For example, for deterministic demand, i.e. Ub = {b}, the objective

becomes linear and computing the value of φ(y), and thus solving (RCEP), can be done

in polynomial time. We study this case in detail in the beginning of the next section.

The following examples, which only consider uncertainty in the demand, illustrate

that evaluating φ(y) can indeed be a difficult problem.

Example 1: Consider the network given in Figure 1, with fixed cost vector c and an

investment y that yields the capacities on the figure. In this example the only uncertain

parameter is the total amount of supply and demand at nodes 1 and 3. This demand

and supply pair is parameterized by δ ∈ [−1, 1]. The minimum cost flow for this example

for each value of δ is exactly 4 + 3|δ| and thus it is maximized for δ ∈ {−1, 1}.

c   , u ij ij

bi

bj

j

i

4

21

3

2+δ

−2−δ

2

−2

1,2

3,10
1,10

5,10

Figure 1: Difficult to evaluate φ(y). Multiple sources and sinks, δ ∈ [−1, 1].

Example 2: Consider the network given in Figure 2, where again we have a fixed

cost c and an investment y that yields the capacities on the figure. Now, the demands

at nodes 2 and 3 are parameterized by δ ∈ [−1, 1]. The minimum cost flow of this

problem as a function of δ has an objective function value of 12+4|δ| and thus it is also
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maximized for δ ∈ {−1, 1}.

c   , u ij ij

bi

bj

j

i

32

1

4,10

1,2

−2−δ −2+δ

5,10

4

Figure 2: Difficult to evaluate φ(y). Multiple sink uncertainty, δ ∈ [−1, 1].

Both examples maximize a convex function to evaluate φ(y). Although these are

simple one dimensional examples, they illustrate the potential difficulty in finding the

demand b that defines the worst case. Example 1 is based on what is known as the

“more for less paradox”: in increasing the supply in node 1 from 1 to 2 (and increasing

the demand at node 3 accordingly), we actually reduce the total cost as we replace the

expensive flow on (2, 4) with cheaper flow on (1, 4). This stops when the supply at 1

increases above 2 units, since then the arc (1, 4) is saturated and the extra flow is sent

on an expensive arc increasing the total cost. A similar phenomenon occurs in Example

2, where we use the capacity of the low cost arc to switch from decreasing the total cost

to increasing it.

4 Solving (RCEP)

We now present three cases in which the (RCEP) can be formulated as a conic linear

problem and thus solved in polynomial time by interior point algorithms. The cases

are: fixed demand, single commodity with uncertain demand, and a multicommodity

problem with uncertain demand.
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4.1 Case of Deterministic Demand

In the case of deterministic demand, in other words Ub = {b}, the set of feasible flows is

fixed since the uncertainty only affects the cost vector. In this case, besides the (RCEP)

obtained from (ARC), we can define the following standard robust problem (RC), as in

Problem (2), by also deciding the routing x prior to the realization of the uncertainty:

zRC = minx,y,γ γ

s.t. Nx = b

x ≤ u + y

dT y ≤ q

x, y ≥ 0

for all c ∈ Uc cT x ≤ γ .

(8)

It is well known that Problem (RC) is a tractable problem when the uncertainty set Uc

is a polyhedral or ellipsoidal set [6, 7]. In the case of polyhedral uncertainty for example,

if Uc = {c | Mc ≤ g, c ≥ 0} then from weak LP duality we have that the last constraint

in Problem (8) is equivalent to the inequalities: γ ≥ gT w, MT w ≥ x, w ≥ 0, which

makes Problem (RC) the following linear program:

miny,x,w gT w

s.t. Nx = b

x ≤ u + y

x ≤ MT w

dT y ≤ q

x, w, y ≥ 0

(9)

In fact (RCEP) is also equivalent to Problem (9) if Assumption 1 holds, Ub = {b}, and

Uc = {c | Mc ≤ g, c ≥ 0}. In this case φ(y) in Problem (7) is an LP whose dual combined

with the outer minimization on y yields Problem (9).

We now show that this equivalence between the robust counterpart (RC) and the

adjusted robust counterpart (RCEP) of the capacity expansion problem holds regardless
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of the uncertainty set Uc considered. This states that for deterministic demand there is

no change in the robust solution by conducting the routing decisions after the uncertainty

is revealed. To solve (RCEP) we need only to solve (RC), which is a tractable problem

for polyhedral or ellipsoidal uncertainty sets.

Theorem 2 If Ub = {b} then (RCEP) is equivalent to (RC).

Proof: Problem (RC), defined in (8), is equivalent to

zRC = miny,x maxc cT x

Nx = b c ∈ Uc

x ≤ u + y

dT y ≤ q

x, y ≥ 0 .

Let X(y) = {x | Nx = b, 0 ≤ x ≤ u + y}. Since the function f(x, c) = cT x is bilinear

and the convex uncertainty set Uc is bounded, then we have that for any feasible y

min
x∈X(y)

max
c∈Uc

cT x = max
c∈Uc

min
x∈X(y)

cT x ,

see for example Corollary 37.3.2 in [25]. Substituting this saddle point equivalence in

the expression for (RC) above, we obtain Problem (5) with deterministic demand.

4.2 Uncertain Demand

As pointed out in Examples 1 and 2, evaluating the worst case cost function φ(y) can be

a non-convex problem under demand uncertainty. We now identify the conditions on the

uncertainty set Ub under which we can evaluate φ(y) efficiently. The key observation for

this result is that for single source and single sink, an optimal routing is greedy sending

every additional unit of flow along a path of minimum cost out of paths with remaining

available capacity. In this case, if the total flow increases, then so does the value of the

minimum cost solution and there is no “more for less paradox.”
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A slightly broader case is to consider multiple sinks and a single source, or equiva-

lently multiple sources and a single sink, with demand uncertainty only in a single source

and sink pair. We describe the methodology in the case with multiple sinks and single

source, and omit the analogous multiple source/single sink case. Let s be the single

source, and assume a demand b̄ with uncertainty in s and one fixed sink node t 6= s.

This implies the following demand uncertainty set

Ub = {b | b = b̄ + δ(es − et), δ ∈ [0, δ̄]} , (10)

where δ̄ > 0 and ei ∈ <n is the i-th canonical vector. Note that we assume the demand

uncertainty does not change whether a node is source or sink, thus b̄s ≥ 0 and b̄i ≤ 0 for

any i 6= s. Under the conditions of a single source and sink pair being affected by the

uncertainty and not allowing changes of source to sink and vice-versa, the only demand

uncertainty set possible is of the form (10).

Theorem 3 Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). Then φ(y) is the following convex optimization problem

φ(y) = maxλ,π,c b̄T λ + δ̄(λs − λt)− (u + y)T π

s.t. NT λ− π − c ≤ 0

c ∈ Uc

π ≥ 0 .

(11)

Proof: Under the uncertainty set Ub the definition of φ(y) becomes

φ(y) = maxc maxδ minx cT x

c ∈ Uc δ ∈ [0, δ̄] Nx = b̄ + δ(es − et)

0 ≤ x ≤ u + y .

The proof is based in showing that the function

Γ(δ) = minx cT x = maxλ,π b̄T λ + δ(λs − λt)− (u + y)T π

Nx = b̄ + δ(es − et) NT λ− π ≤ c

0 ≤ x ≤ u + y π ≥ 0
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is an non-decreasing function of δ. If Γ(δ) is non-decreasing it implies that φ(y) =

maxc∈Uc Γ(δ̄) completing the proof. From Assumption 1 we have that function Γ(δ) is

well defined for all δ ∈ [0, δ̄]. The complementary slackness optimality conditions state

that xij(λi−λj−πij−cij) = 0 for all arcs (i, j), which combined with a positive flow from

s to t implies that λs − λt ≥ 0 at optimality for all δ > 0. Therefore we can restrict the

dual problem only to variables that satisfy λs−λt ≥ 0. Then, for any dual feasible point

(λ, π) and δ ≤ δ′, the dual objective function D(λ, π, δ) satisfies D(λ, π, δ) ≤ D(λ, π, δ′),

which implies Γ(δ) ≤ Γ(δ′).

Remark 1 The conditions (a) single source s and (b) uncertainty set Ub given by (10)

are necessary and sufficient for φ(y) to be a convex optimization problem.

Proof: The theorem proves the sufficiency of these conditions. For the necessity we

show that if either of the conditions does not hold, then evaluating φ(y) is not a convex

problem. Example 1 considers a network with multiple sources and sinks and uncertainty

only in a single source and sink pair, i.e. violates only condition (a). Example 2 considers

a network with a single source and uncertainty among the sink nodes, i.e. only condition

(b) does not hold. In both examples we evaluate φ(y) by maximizing a convex function,

which is not a convex optimization problem.

The following two corollaries present the (RCEP) for problems with demand uncer-

tainty given by (10) and polyhedral or ellipsoidal uncertainty sets on travel time. We

omit the proofs as both simply take the dual of Problem (11) with the appropriate Uc.

Corollary 1 Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). If Uc = {c | Mc ≤ g, c ≥ 0}, then (RCEP) is equivalent
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to the following LP:

miny,x,w gT w

s.t. Nx = b̄ + δ̄(es − et)

x ≤ u + y

x ≤ MT w

dT y ≤ q

x, w, y ≥ 0 .

Corollary 2 Consider a network flow problem with a single source s and an uncertainty

set Ub given by Equation (10). Let Uc = {c | c = c0 +
∑L

l=1 ξlc
l, ξ ∈ X}, with X =

{ξ | ∃w, Aξ + Bw ≥K d}, and let C = [c1, . . . , cL]. Then (RCEP) is equivalent to the

conic linear program

miny,x,z (c0)T x− dT z

s.t. Nx = b̄ + δ̄(es − et)

x ≤ u + y

CT x + AT z = 0

BT z = 0

dT y ≤ q

x, y ≥ 0, z ≥K∗ 0 .

4.3 Multicommodity Flow

A relevant model for network flow applications is the multicommodity flow problem with

a single source and single sink for each commodity. In this section we show that the

(RCEP) is also tractable for a multicommodity flow problem, in which each commodity

has a single source and sink with demand uncertainty independent per commodity. The

(RCEP) is also tractable for the slightly more general conditions where each commodity
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has either multiple sources or sinks with a single source - sink pair affected by demand

uncertainty, in other words where each commodity has demand uncertainty given by

(10). However, we omit this result here for clarity of exposition.

Assuming that commodity k has a source sk and a sink tk, and the amount to be

sent is uncertain, but bounded, we can define the demand uncertainty set by

Ub =
{
(b1, . . . , bK) | bk = δk (esk − etk) , δk ∈ [δk

l , δ
k
u], for all k ∈ 1, . . . , K

}
, (12)

where we assume that δk
l ≥ 0 for all k = 1, . . . , K. In other words, the demand uncer-

tainty does not allow a supply node to become a demand node.

Theorem 4 Consider the multicommodity flow problem, where each commodity has a

single source sk and single sink tk and that Ub is given by Equation (12). Then φ(y) is

the following convex optimization problem

φ(y) = maxλ,π,c

K∑
k=1

δk
u(λk

sk − λk
tk)− (u + y)T π

s.t. NT λk − π − ck ≤ 0 k = 1, . . . , K

(c1 . . . cK) ∈ Uc

π ≥ 0 .

Proof: This proof is analogous to the proof of Theorem 3, and requires showing that

the inner minimization problem

Γ(δ1 . . . δK) = minx

K∑
k=1

(ck)T xk

s.t. Nxk = δk(esk − etk) k = 1 . . . K
K∑

k=1

xk ≤ u + y

xk ≥ 0 k = 1 . . . K

is a non-decreasing function of (δ1 . . . δK).

17



The following two corollaries show that problem (RCEP) is tractable for the multi-

commodity flow problem with single source and sink and for polyhedral and ellipsoidal

cost uncertainty sets. We omit the proofs as they are easily derived from Theorem 4.

Corollary 3 Consider the multicommodity flow problem, where each commodity has a

single source and sink, and Ub is given by Equation (12). If Uc = {(c1 . . . cK) | Mkck ≤

gk, ck ≥ 0}, then the (RCEP) problem is equivalent to the following LP:

miny,x,w

K∑
k=1

(gk)T wk

s.t. Nxk = δk
u (esk − etk) k = 1, . . . , K

xk ≤ (Mk)T wk k = 1, . . . , K
K∑

k=1

xk ≤ u + y

dT y ≤ q

xk, wk, y ≥ 0 .

Corollary 4 Consider the multicommodity flow problem, where each commodity has a

single source and sink, and Ub is given by Equation (12). If Uc = {(c1 . . . cK) | ck =

ck0 +
∑L

l=1 ξlc
kl, ξ ∈ X}, with X = {ξ | ∃w, Aξ + Bw ≥K d}, and let Ck = [c1k . . . cLk].

Then (RCEP) is equivalent to the following conic linear program

miny,x,z

K∑
k=1

(ck0)T xk − zT d

s.t. Nxk = δk
u (esk − etk) k = 1, . . . , K

K∑
k=1

(
Ck

)T
xk + AT z = 0

BT z = 0
K∑

k=1

xk ≤ u + y

dT y ≤ q

xk, y ≥ 0, z ≥K∗ 0 .
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5 Computational Experiments

We now present computational experiments that compare the robust solution to the

deterministic solution obtained for nominal data, i.e. data that is representative of the

uncertainty set. These experiments serve to illustrate the conditions under which a

robust solution is preferable to a deterministic solution.

For each experiment described in this section, we compute four values: zD the optimal

value of the deterministic solution, zR the optimal value of the robust solution, zwc

the worst case value of the deterministic solution, and zac the objective value of the

robust solution for the nominal data. We obtain zD = zD(b̄, c̄) as the optimal objective

function value of Problem (1) for the nominal data b̄ ∈ Ub and c̄ ∈ Uc. Let yD be the

optimal investment strategy for the deterministic problem. The value zR is obtained by

solving the appropriate tractable characterization of (RCEP), either Corollary 1 or 3

depending on the form of the uncertainty sets. Let yR be the optimal robust investment

strategy. The worst case value zwc = φ(yD) is obtained from the appropriate tractable

characterization of Problem (7) (either Theorem 3 or 4). Finally the cost of the robust

solution for the nominal data, zac, is obtained by solving

min c̄T x

s.t. Nx = b̄

0 ≤ x ≤ u + yR .

We compare the performance of the robust and deterministic solution through the

following two ratios:

rwc =
zwc − zR

zR

and rac =
zac − zD

zD

.

The quantity rwc is the relative improvement of the robust solution in the worst case

and rac is the relative loss of optimality of the robust solution on the nominal data.
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5.1 A Triangular Network

Our first example consists of a scalable triangular network shown in Figure 3, formed

by repeating r times a simple network on three nodes shown in the left of Figure 3. The

nominal travel times appear on the arcs of the 3-node network and are set to 1.95 on

diagonal and 1 on non-diagonal arcs; arcs have capacity ue = 1 and a rate of investments

de = 2 for diagonal and de = 1 for non-diagonal arcs. We consider an uncertainty set on

travel times given by

Uc =

c | 0.5c̄ ≤ c ≤ 1.5c̄,
∑

(i,j) non−diag

4cij +
∑

(i,j) diag

cij = 9.95r

 .

There is a deterministic demand of δ units of flow from the top left to the lower right and

a total investment of q. This example is constructed so straight paths using diagonal arcs

are shorter but with higher variability than the longer alternate paths using horizontal

and vertical arcs.

1

1
1.95

1 2

3

1 2

3

4

5

6

7

8
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10

11

12

13

14

15

16

17

18

19

20

21

Figure 3: Triangular network. Three node building block and a 21 node example, r = 15.

In Figure 4 we plot rwc and rac for the 3-node network. We present the ratios for

q ∈ [2, 3] in 0.25 increments, for each q considering δ ∈ [1, 3] in increments of 0.1. Note

that the robust solution is able to achieve more than a 20% reduction in the value of the

worst case with a smaller than 2% increase in the value for the nominal data. This occurs

for cases with a flow δ bigger than 2.25; in addition this worst case benefit improves for

larger values of investment budget q. Note that, for some fixed investments q, the benefit
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Figure 4: Comparison of robust and deterministic solutions for 3-node network. Invest-

ments q ∈ {2, 2.25, 2.5, 2.75, 3} with δ ∈ [1, 3] in 0.1 increments for each q

of the robust solution in the worst case, rwc, increases and then decreases with δ. Clearly

for δ close to 1, the flow can be sent on either of the existing paths, thus both investment

solutions are comparable. As the flow increases however, the investment becomes crucial

in routing the flow. For large enough flows, for example δ = 2.5 for the case q = 2, all the

new capacity is installed in the best path, and as the flow keeps increasing the benefit

of the robust solution decreases, as it must route flow through the other path.

In Figure 5 we plot the ratios rwc and rac obtained for the 21-node network for

different values of the investment q ∈ {10, 30, 50, 70, 80}, for each q considering different

total flows δ ∈ [1, 10] in 0.2 increments. Similar to the 3-node network example, the

robust solution is better than the deterministic solution in the worst case, in some cases

by about 20%, while it is never worse than 2.5% of the deterministic solution on the

nominal data. Here we also observe that rwc decreases for flows larger than a certain level

and that this drop can be substantial. Note that some investment-flow combinations are

infeasible, for example q = 10 and δ = 10. For large flows δ, the only feasible investment

strategy for the robust and deterministic solutions becomes to expand the bottleneck
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arcs near the source and sink nodes, which are used by all paths from 1 to 21.
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r
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Figure 5: Comparison of robust and deterministic solutions for 21-node network. In-

vestments q ∈ {10, 30, 50, 70, 80} with δ ∈ [1, 10] in 0.2 increments for each q

5.2 A Transportation Network

We now consider a multicommodity flow problem with cost and demand uncertainty

on a planar network. The network is given in Figure 6 with the nominal travel times

depicted. In this example we plan routes from sources at either node 2 or node 5 to

be delivered in either nodes 1, 4, or 8 in a rush hour situation, where traffic along the

corridor 2-5-7-8 and 4-5 is subject to travel time uncertainty. The nominal demand

values are 1000 units of flow from node 2 to node 4, 500 units from node 2 to node 1,

and 1000 from node 2 to node 8. We also have 500 units of flow from node 5 to node 8.

The network has uniform arc capacity of 900, and there is a total budget of 2000 units of

arc capacity to distribute. We consider that the travel times on arcs (2, 5), (5, 4), (5, 7),

and (7, 8) are subject to uniform box uncertainty and can vary either up or down by

µ%. The demand is also under uniform box uncertainty, and all commodities can have
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Figure 6: Transportation network problem.

their demand/supply vary by µb% up or down.

In Figure 7 we present the ratios rwc and rac for different values of total investment

budget q ∈ [0, 3000] in 500 increments as we vary the amount of uncertainty in travel

time µ ∈ [0.1, 1]. We first consider deterministic demand, i.e. µb = 0. We observe that

for small investments and uncertainty levels in travel times there is no clear benefit of

the robust solution, as the relative loss in the nominal instance is comparable to, some-

times greater than, the relative improvement in the worst case. However as investment

budgets and uncertainty levels increase the robust solution becomes more attractive.

For instance, when µ ≥ 0.6 and q ≥ 1500, the robust solution obtains more than 15%

improvement in the worst case incurring less than a 7% overhead for the nominal data.

In Figure 8 we plot the same results for the different values of µ as we vary the invest-

ment budget q. Here we observe that we reach the best improvement in rwc starting

with q = 1500, regardless of the uncertainty in travel time. The same does not happen

for rac which increases as more budget is available until a sharp drop.

In Figure 9 we plot how demand uncertainty affects the performance ratios. For a

fixed investment budget q = 2000 and different µ ∈ [0.2, 1] in 0.2 increments, we plot

23



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

µ

r w
c, r

ac

q = 0.5 k

q = 0.75 k

q = 1 k

q = 1.25 k

q > 1.5 k

r
wc

r
ac

Figure 7: Comparison of robust and deterministic solutions for transportation network

as a function of µ ∈ [0.1, 1], for different q ∈ [0, 3000] in 500 increments, with µb = 0.
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Figure 8: Comparison of robust and deterministic solutions for transportation network

as a function of q ∈ [0, 3000], for different µ ∈ [0.1, 1] in 0.1 increments, with µb = 0.
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the value of rwc and rac as a function of µb ∈ [0, 0.5]. There is no significant change in

rac. The effect on rwc of changing µb varies for different values of the uncertainty µ. For

small µ (0.2 or 0.4) there is a small improvement in rwc as µb increases. However for

µ ≥ 0.6, the ratio rwc increases and then decreases for increasing µb. This effect is similar

to our prior observation that rwc for a robust solution under travel time uncertainty can

decrease with the total flow, see Figure 5, and the fact that demand uncertainty leads

to routing the maximum possible demand.
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Figure 9: Sensitivity to demand uncertainty µb ∈ [0, 0.5] for transportation network,

different values of µ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and q = 2000.

6 Conclusions

The robust capacity expansion problem (RCEP) we consider in this paper, Problem (4),

is the basis of an approach to decide capacity expansions for network flow problems

that finds a robust solution with respect to the uncertainty in demands and travel

times. Here we exploit the structure of the capacity expansion problem to show that
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(RCEP) is a tractable problem under conditions that are reasonable for network flow

applications: for a multicommodity flow problem with a single source and sink per

commodity, independent uncertainty on the demand and travel times given by conic

uncertainty sets (e.g. polyhedral or ellipsoidal), non-negative travel times, and feasible

flow routes under any uncertain outcome of the demand. We identify a tractable (RCEP)

by showing the problem can be formulated as a conic linear problem, which can be solved

with interior point methods in polynomial time. The computational results obtained

indicate that the robust solution can reduce substantially the worst case cost while

incurring a small loss of optimality with respect to the optimal deterministic solution

for a nominal uncertainty data. In particular, our examples showed that the robust

solution becomes more attractive as the uncertainty in travel times and available budget

increases.

The methodology presented here can be applied to the classic network design prob-

lem, as the integer variables are part of the outermost problem, yielding a mixed-integer

robust counterpart problem. The present work on the linear capacity expansion prob-

lem and our preliminary computational results indicate that the robust solution can

be attractive for certain network instances. This suggests both that the mixed-integer

network design problem might also have an attractive robust solution and that these

robust solutions could be efficient in practice. Extensions to considering more compli-

cated demand uncertainty models, or correlations among the demand and travel time

uncertainties, do not appear to be straightforward and are a topic for future research.

References

[1] S. Ahmed, A. J. King, and G. Parija. A multi-stage stochastic integer programming

approach for capacity expansion under uncertainty. Journal of Global Optimization,

26(1):3–24, 2003.

26



[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, New Jersey, 1993.

[3] A. Atamtürk and M. Zhang. Two-stage robust network flow and design under de-

mand uncertainty. Technical Report BCOL.04.03, IEOR, University of California–

Berkeley, December 2004.

[4] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust

solutions of uncertain linear programs. Mathematical Programming, 99(2):351–376,

2004.

[5] A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite pro-

gramming. SIAM Journal on Optimization, 7(4):991–1016, 1997.

[6] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Op-

erations Research, 23(4):769–805, 1998.

[7] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs.

Operations Research Letters, 25(1):1–13, 1999.

[8] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math-

ematical Programming, 98(1-3):49–71, 2003.

[9] D. Bertsimas and A. Thiele. A robust optimization approach to supply chain man-

agement. Technical report, MIT, LIDS, November 2003.

[10] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer

Verlag, New York, 1997.

[11] L. El-Ghaoui and H. Lebret. Robust solutions to least-square problems to uncertain

data matrices. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–

1064, 1997.

27



[12] L. El-Ghaoui, M. Oks, and F. Oustry. Worst-case value-at-risk and robust portfolio

optimization: A conic programming approach. Operations Research, 51(4):543–556,

2003.

[13] A. Ferguson and G. Dantzig. The allocation of aircraft to routes - an example of

linear programming under uncertain demand. Management Science, 3(1):45–73,

1956.

[14] M. Ferris and A. Ruszczynski. Robust path choice in networks with failures. Net-

works, 35(3):181–194, 2000.

[15] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics of

Operations Research, 28(1):1–38, 2003.

[16] E. Guslitser. Uncertainty-immunized solutions in linear program-

ming. Master’s thesis, Minerva Optimization Center, Technion, 2002.

http://iew3.technion.ac.il/Labs/Opt/index.php?4.

[17] G. Gutiérrez, P. Kouvelis, and A. Kurawarwala. A robustness approach to un-

capacitated network design problems. European Journal of Operational Research,

94(2):362–376, 1996.

[18] V. N. Hsu. Dynamic capacity expansion problem with deferred expansion and

age-dependent shortage cost. Manufacturing & Service Operations Management,

4(1):44–54, 2002.

[19] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer

Academic Publishers, Norwell, MA, 1997.

[20] M. Laguna. Applying robust optimization to capacity expansion of one location in

telecommunications with demand uncertainty. Management Science, 44(11):S101–

S110, 1998.

28



[21] T. Magnanti and R. Wong. Network design and transportation planning: Models

and algorithms. Transportation Science, 18(1):1–55, 1984.

[22] S. Malcolm and S. Zenios. Robust optimization for power systems capacity expan-

sion under uncertainty. Journal of the Operational Research Society, 45(9):1040–

1049, 1994.

[23] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale

systems. Operations Research, 43(2):264–281, 1995.

[24] D. Paraskevopoulos, E. Karakitsos, and B. Rustem. Robust capacity planning under

uncertainty. Management Science, 37(7):787–800, 1991.

[25] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New

Jersey, 1997.
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