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Abstract. Computer-aided diagnosis (CAD) is a promising tool for ac-
curate and consistent diagnosis and prognosis. Cell detection and seg-
mentation are essential steps for CAD. These tasks are challenging due
to variations in cell shapes, touching cells, and cluttered background. In
this paper, we present a cell detection and segmentation algorithm using
the sparse reconstruction with trivial templates and a stacked denoising
autoencoder (sDAE). The sparse reconstruction handles the shape varia-
tions by representing a testing patch as a linear combination of shapes in
the learned dictionary. Trivial templates are used to model the touching
parts. The sDAE, trained with the original data and their structured
labels, is used for cell segmentation. To the best of our knowledge, this
is the first study to apply sparse reconstruction and sDAE with struc-
tured labels for cell detection and segmentation. The proposed method
is extensively tested on two data sets containing more than 3000 cells ob-
tained from brain tumor and lung cancer images. Our algorithm achieves
the best performance compared with other state of the arts.

1 Introduction

Reproducible and accurate analysis of digitized histopathological specimens plays
a critical role in successful diagnosis and prognosis, treatment outcome predic-
tion, and therapy planning. Manual analysis of histopathological slides is not
only laborious, but also subject to inter-observer variability. Computer-aided di-
agnosis (CAD) is a promising solution. In CAD, cell detection and segmentation
are often prerequisite steps for critical morphological analysis [10,16].

The major challenges in cell detection and segmentation are: 1) large varia-
tions of cell shapes and inhomogeneous intensity, 2) touching cells, and 3) back-
ground clutters. In order to handle touching cells, radial voting based detection
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Fig. 1. An overview of the proposed algorithm.

method achieves robust performance with an assumption that most of the cells
have round shapes [7]. In [14], an active contour algorithm is applied for cell seg-
mentation. Recently, shape prior model is proposed to improve the performance
in the presence of weak edges [2,15].

In this paper, we propose a novel cell detection and segmentation algorithm.
To handle the shape variations, inhomogeneous intensity, and cell overlapping,
the sparse reconstruction using an adaptive dictionary and trivial templates is
proposed to detect cells. In the segmentation stage, a stacked denoising autoen-
coder (sDAE) trained with structural labels is used for cell segmentation.

2 Methodology

An overview of the proposed method is shown in Figure 1. During the training
for cell detection, a compact cell dictionary (Figure 1(b)) is learned by applying
K-selection [6] to a cell patch repository containing single centered cells. In the
testing (Figure 1(a)-(e)), a sample patch from the testing image is first used as a
query to retrieve similar patches in the learned dictionary. Since the appearance
variation within one particular image is small, any sample patch containing a
centered cell can be used. Next, sparse reconstruction using trivial templates [13]
is utilized to generate a probability map to indicate the potential locations of the
cells. Finally, weight-guided mean-shift clustering is used to compute the seed
detection. Different from [13], our algorithm removes the sparsity constraints
for the trivial templates. Therefore, the proposed method is more robust to the
variations of the cell size and background. During the segmentation stage (Figure
1(f)-(i)), the sDAE is trained using the gradient maps of the training patches
and their corresponding human annotated edges (Figure 1(f)). Our proposed
segmentation algorithm is designed to handle touching cells and inhomogeneous
cell intensities. As shown in (Figure 1(h)), the false edges are removed, the broken
edges are connected, and the weak edges are recovered.
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Fig. 2. (a) A demonstration of sparse reconstruction with/without trivial templates.
From row 1 to 3: a testing patch, the sparse reconstruction without trivial templates,
the sparse reconstruction with trivial templates. Row 4 and 5 are the first term and
the second term in equation pij ≈ Bc+ e, respectively. (b) A demonstration of recon-
struction errors obtained from a testing patch aligned to the center of the cell and from
those misaligned patches. Row 1 displays a small testing image. The green box shows a
testing patch aligned to the cell. Boxes in other colors show misaligned testing patches.
From row 2 to row 5: A testing image patch with occlusion from a neighboring cell,
the reconstruction of the testing patch, the reconstructed patches with the occlusion
part removed, and the visualization of the reconstruction errors. Note that the aligned
testing patch has the smallest error. (c) From left to right: the original testing patches,
the gradient magnitude maps, and the recovered cell boundaries using sDAE.

2.1 Detection via Sparse Reconstruction with Trivial Templates

Adaptive Dictionary Learning. During cell dictionary learning, a set of rele-
vant cell patches are first retrieved based on their similarities compared with the
sample patch. Considering the fact that pathological images commonly exhibit
staining variations, the similarities are measured by normalized local steering ker-

nel (nLSK) feature and cosine similarity. nLSK is more robustness to contrast
change [9]. An image patch is represented by the densely computed nLSK fea-
tures. Principal component analysis (PCA) is used for dimensionality reduction.
Cosine distance: Dcos = (vT

i vj)/(‖vi‖‖vj‖), where vi denotes the nLSK feature
of patch i, is proven to be the optimal similarity measurement under maximum
likelihood decision rule [9]. Therefore, it is used to measure the similarities. The
dictionary patches are selected by a nearest neighbor search.

Probability Map Generation via Sparse Reconstruction with Trivial

Templates: Given a testing image, we propose to utilize sparse reconstruc-
tion to generate the probability map by comparing the reconstructed image
to the original patch via a sliding window approach. Because the testing im-
age patch may contain part of other neighboring cells, trivial templates are
utilized to model these noise parts. When the testing image patch is aligned
to the center of a cell, it can be linearly represented by the cell dictionary
with small reconstruction errors. The touching part can be modeled with trivial
templates. Let pij ∈ R

√
m×√

m denote a testing patch located at (i, j), and B
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represent the learned cell dictionary, this patch can be sparsely reconstructed by:
pij ≈ Bc+e = [B I][c e]T , where e is the error term to model the touching part,
and Im×m is an identity matrix containing the trivial templates. The optimal
sparse reconstruction can be found by:

min
c̃

‖pij − B̃c̃‖2 + λ‖d⊙ c‖2 + γ‖e‖2, s.t. 1T c = 1, (1)

where B̃ = [B I], c̃ = [c e]T , and d represents the distance between the testing
patch and the dictionary atoms, ⊙ denotes element-wise multiplication, and λ
controls the importance of the locality constraints, and γ controls the contri-
bution of the trivial templates. The first term incorporates trivial templates to
model the touching cells, and the second term enforces that only local neighbors
in the dictionary are used for the sparse reconstruction. The locality constraint
enforces sparsity [12]. In order to solve the locality-constrained sparse optimiza-
tion, we first perform a KNN search in the dictionary excluding the trivial tem-
plates. The selected nearest neighbor bases together with the trivial templates
form a smaller local coordinate system. Next, we solve the sparse reconstruction
problem with least square minimization [12].

The reconstruction error is defined as ǫrec = ‖(pij − B̃c̃) ⊙ k(u, v)‖, where
k(u, v) is a “bell-shape” spatial kernel that penalizes the errors in the central

region. A probability map is obtained by Pij = |ǫrec−max(E)|
max(E)−min(E) , where Pij de-

notes the probability at location (i, j), and E represents the reconstruction error
map. We demonstrate the reconstruction results of touching cells with and with-
out trivial templates in Figure 2(a)-(b). The final cell detection is obtained by
running a weight-guided mean-shift clustering on the probability map.

2.2 Cell Segmentation via Stacked Denoising Autoencoders

In this section, we propose to train a stacked denoising autoencoder (sDAE)
[11] with structural labels to remove the fake edges while preserving the true
edges. An overview of the training and testing procedure is shown in Figure 1
(f)-(i). Traditionally, denoising autoencoders (DAE) are trained with corrupted
versions of the original samples, which requires the clean image as a premise. In
our proposed method, we use the gradient images of the original image patches
as the noisy inputs and the human annotated boundaries as the clean images.
The DAE is trained to map a noisy input to a clean (recovered) image patch
that can be used for segmentation.

We first focus on training a single layer of the DAE. Let X̃ ∈ R
m denote the

noisy gradient magnitude map of the original image patch centered on a detected
center of the cell (seed). The DAE learns a parametric encoder function fθ(x̃) =
s(Wx̃+b), where s(·) denotes the sigmoid function to transform the input from
the original feature space into the hidden layer representation y ∈ R

h, where
θ = {W,b} and W ∈ R

h,m. A parametric decoder function gθ′(y) = s(W′y +
b′), θ′ = {W′,b′} is learned to transform the hidden layer representation back
to a reconstructed version Z ∈ R

m of the input X̃.
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Since it is a reconstruction problem based on real-valued variables, a square
error loss function of the reconstruction z and the manually annotated structural
label x is chosen, and the sigmoid function in gθ′ is omitted. The parameters
{θ, θ′} are obtained by:

min
W,b,W′,b′

‖x− gθ′ ◦ fθ(x̃)‖
2. (2)

We choose tied weights by setting W′ = WT [11]. The fake edges are suppressed
in the reconstructed patches (Figure 2(c)). The final results are obtained by
applying five iterations of an active contour model to the convex hull computed
from the reconstructed image.

3 Experimental Results

Data set: The proposed algorithm is extensively tested on two data sets in-
cluding about 2000 lung tumor cells and 1500 brain tumor cells, respectively.
For the detection part, 2000 patches of size 45 × 45 with a centralized single
cell are manually cropped from both data sets. K = 1400 patches are selected
by K-selection. The parameter γ in equation (1) is set to 10−4. In the segmen-
tation part, contours of more than 4900 cells are annotated. Training sample
augmentation is conducted via rotation and random translation. In total more
than 14× 104 training patches are used and each of them is resized to 28× 28.
A two-layer sDAE with 1000 maps in the first layer and 1200 maps in the sec-
ond layer is trained on the data set. An active contour model [4] is applied to
obtain the final segmentation result. All the experiments are implemented with
MATLAB on a workstation with Intel Xeon E5-1650 CPU and 128 GB memory.

Detection Performance Analysis: We evaluate the proposed detection
method through both qualitative and quantitative comparison with four state of
the arts, including Laplacian-of-Gaussian (LoG) [1], iterative radial voting (IRV)
[7], and image-based tool for counting nuclei (ITCN) [3], and single-pass voting
(SPV) [8]. The qualitative comparison of two patches is shown in Figure 3.

To evaluate our algorithm quantitatively, we adopt a set of metrics defined in
[14], including false negative rate (FN), false positive rate (FP ), over-detection
rate (OR), and effective rate (ER). Furthermore, precision (P), recall (R), and
F1 score are also computed. In our experiment, a true positive is defined as a
detected seed that is within the circular neighborhood with 8-pixel distance to a
ground truth and there is no other seeds within the 12-pixel distance neighbor-
hood. The comparison results are shown in Table 1. It can be observed that the
proposed method outperforms other methods in terms of most of the metrics
on the two data sets. We also observed that in solving equation (1), increase
of the number of nearest neighbors can help the detection performance. Such
effect vanishes when more than 100 nearest neighbors are selected. Friedman
test is performed on the F1 scores obtained by the methods under comparison.
P−values< 0.05 are observed. The proposed detection algorithm is based on
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Fig. 3. Detection and segmentation results of two testing images randomly selected
from the two data sets. Row 1 and row 2 show the comparison of the detection results:
(a) is the original image patches. (b)-(f) are the corresponding results obtained by
LoG [1], IRV [7], ITCN [3], SPV [8], and the proposed method. Row 3 and row 4 show
the comparison of the segmentation results: (a) is the ground truth. (b)-(f) are the
corresponding results obtained by MS, ISO [5], GCC [1], RLS [8], and the proposed
method.

Table 1. The comparison of the detection performance.

Brain tumor data Lung cancer data

Methods FN FP OR ER P R F1 FN FP OR ER P R F1

LoG [1] 0.15 0.004 0.3 0.8 0.94 0.84 0.89 0.19 0.003 0.13 0.78 0.96 0.80 0.88

IRV [7] 0.15 0.04 0.07 0.76 0.95 0.83 0.88 0.33 0.014 0.21 0.64 0.98 0.66 0.79

ITCN [3] 0.22 0.0005 0.01 0.77 0.99 0.77 0.87 0.31 0.002 0.05 0.68 0.98 0.69 0.81

SPV [8] 0.1 0.02 0.06 0.86 0.98 0.89 0.93 0.18 0.008 0.006 0.79 0.98 0.81 0.89

Ours 0.07 0.0007 0.04 0.92 0.99 0.930.96 0.15 0.01 0.06 0.81 0.96 0.850.90

MATLAB and is not yet optimized with respect to efficiency. It takes about 10
minutes to scan an image of size 1072× 952.

Segmentation Performance Analysis: A qualitative comparison of perfor-
mance between the sDAE and the other four methods, including mean-shift
(MS), isoperimetric graph partitioning (ISO) [5], graph-cut and coloring (GCC)
[1], and repulsive level set (RLS) [8], is shown in Figure 3. It is clear that the
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Table 2. The comparison of the segmentation performance.

Brain tumor data Lung cancer data

Methods P.M. P.V. R.M.R.V. F1 M. F1. V. P.M. P.V. R.M. R.V. F1 M. F1. V.

MS 0.92 0.02 0.59 0.08 0.66 0.05 0.88 0.01 0.73 0.04 0.77 0.02

ISO [5] 0.71 0.04 0.81 0.03 0.71 0.03 0.75 0.03 0.82 0.025 0.75 0.02

GCC [1] 0.87 0.03 0.77 0.0440.78 0.024 0.87 0.03 0.73 0.04 0.77 0.02

RLS [8] 0.84 0.01 0.75 0.09 0.74 0.05 0.85 0.013 0.82 0.04 0.81 0.02

Ours 0.86 0.018 0.87 0.01 0.85 0.009 0.86 0.023 0.85 0.012 0.84 0.01
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Fig. 4. (a) F1 score as a function of the number of training epochs. (b) F1 score as a
function of the model complexity. (c) A set of learned feature maps in the first hidden
layer.

proposed method learns to capture the structure of the cell boundaries. There-
fore, the true boundaries can be recovered in the presence of inhomogeneous
intensity, and a better segmentation performance is achieved. The quantitative
comparison based on the mean and variance of precision (P), recall (R), and F1

score is shown in Table 2. In addition, Friedman test followed by Bonferroni-
Dunn test is conducted on the F1 scores. P−values are all significantly smaller
than 0.05. The Bonferroni-Dunn test shows there does exist significant difference
between our methods and the other state of the arts.

We also explored the interaction between the segmentation performance and
the number of training epochs. The result is shown in Figure 4(a). As one can
tell that the performance increases as the number of training epochs increases,
and it converges after 200 epochs. The number of training samples needed for
a reasonable performance depends on the variation of the data. In our setting,
it is observed that around 5000 samples are sufficient. The interaction between
the performance and the model complexity is shown in Figure 4(b), where the
dimension of the second layer is fixed to 200. The proposed segmentation algo-
rithm is very efficient. It takes only 286 seconds for segmenting 2000 cells. This
is because it takes only four vector-matrix multiplications using the two-layer
sDAE to compute the outputs for one cell. Finally, a set of learned feature maps
are shown in Figure 4(c).



390 H. Su et al.

4 Conclusion

In this paper we have proposed an automatic cell detection and segmentation
algorithm for pathological images. The detection step exploits sparse reconstruc-
tion with trivial templates to handle shape variations and touching cells. The
segmentation step applies a sDAE trained with structural labels to remove the
non-boundary edges. The proposed algorithm is a general approach that can be
adapted to many pathological applications.
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