
Robust Central Pattern Generators

for Embodied Hierarchical Reinforcement Learning

Matthijs Snel

Intelligent Systems Lab Amsterdam

University of Amsterdam

Amsterdam, The Netherlands

Email: m.snel@uva.nl

Shimon Whiteson

Intelligent Systems Lab Amsterdam

University of Amsterdam

Amsterdam, The Netherlands

Email: s.a.whiteson@uva.nl

Yasuo Kuniyoshi

Intelligent Systems and Informatics Lab

The University of Tokyo

Tokyo, Japan

Email: kuniyosh@isi.imi.i.u-tokyo.ac.jp

Abstract—Hierarchical organization of behavior and learning
is widespread in animals and robots, among others to facilitate
dealing with multiple tasks. In hierarchical reinforcement learn-
ing, agents usually have to learn to recombine or modulate low-
level behaviors when facing a new task, which costs time that
could potentially be saved by employing intrinsically adaptive
low-level controllers. At the same time, although there exists
extensive research on the use of pattern generators as low-
level controllers for robot motion, the effect of their potential
adaptivity on high-level performance on multiple tasks has not
been explicitly studied. This paper investigates this effect using
a dynamically simulated hexapod robot that needs to complete
a high-level learning task on terrains of varying complexity.
Results show that as terrain difficulty increases and adaptivity to
environmental disturbances becomes more important, low-level
controllers with a degree of instability have a positive impact on
high-level performance. In particular, these controllers provide an
initial performance boost that is maintained throughout learning,
showing that their instability does not negatively affect their
predictability, which is important for learning.

I. INTRODUCTION

Hierarchical organization of behavior and learning is

widespread in animals [1], [2], and has also been adopted

in robotics [3] and machine learning [4]. Generally, layers

near the bottom of the hierarchy are responsible for low-

level, “subconscious” tasks, such as generating neural patterns

for locomotion, while higher layers carry out cognitive tasks,

such as finding food, by chaining and modulating low-level

behaviors. For example, an animal may adapt direction or

speed of locomotion in order to find food.

In principle, adaptation to changes in environment could be

organized in a similar hierarchical fashion. For example, in the

context of locomotion, subtle adaptation of gait to low-level

terrain variations (e.g. flat, rocky, debris) could be at least

partly handled by lower layers in order to reduce the burden

on cognitive processing.

In general, we hypothesize that low-level robustness in

a hierarchical system can reduce the need for high-level

learning. For example, a walking animal or robot would have

to spend less effort to learn to adapt its gait to different terrains.

Moreover, while the robot could eventually learn to avoid

difficult patches of terrain, having an adaptive low-level gait

controller would reduce the need to do so.

We investigate this hypothesis in an embodied setting:

goal-directed locomotion of a dynamically simulated hexapod

robot on several different terrain types. Cognitive processing

is represented by a reinforcement learning (RL) module. In

particular, we use temporal-difference learning [5], a popular

method for learning optimal control policies that has been

linked to learning in the brain (e.g. [6]).

In hierarchical RL, high-level behaviors are typically

learned while low-level behaviors are either pre-designed and

fixed [7], [8] or also learned [9], [10], [11], [12]. Both ap-

proaches can be problematic when adaptation to environmental

changes is required. If low-level behaviors are fixed, then the

burden of adaption falls entirely on the high-level behaviors,

which must learn how to use the same low-level behaviors in

a new environment. If low-level behaviors are learned, then

they can adapt to the new environment but doing so may be

time consuming, yielding poor performance in the meantime.

In this paper, we demonstrate that the performance of hier-

archical RL can be improved by using intrinsically robust low-

level controllers. Since these controllers adjust automatically

to environmental changes, low-level learning is not required

and the burden on high-level learning is reduced.

To achieve robust low-level behavior for the robot’s legs, we

employ several models for central pattern generators (CPGs),

which are networks of neurons capable of autonomously

generating oscillating output patterns [13]. There has been

extensive research demonstrating that CPGs can achieve stable

locomotion, with varying degrees of adaptivity in the face

of environmental disturbances [14], [15], [16], [17], [18].

However, locomotion is merely a means to achieving a goal,

not a goal in itself. In addition, flexibility can come at the cost

of predictability, which is important for learning. Therefore, it

is important to also evaluate these systems in the context of

high-level learning. To the best of our knowledge, this paper

presents the first results on the influence of various CPG types

on the performance of high-level goal-directed behavior.

II. PROBLEM SETTING

In this section, we describe the specific simulated robot

setting in which we evaluate our approach. There are three

main properties that such a setting should possess in order

to be suitable for evaluating our hypothesis that low-level



(a) Simulator snapshot (b) (c) Framework (d) Neural architecture

Fig. 1. Hexapod (a), terrains (b), learning framework (c), and neural architecture (d). The latter only depicts 4 of the 12 nodes in the sensory and CPG layer.

robustness can reduce the need for high-level learning in

different environments.

First, while the body morphology should be simple so as to

isolate the effects of each controller, it should also be complex

enough to justify a hierarchical approach and to make stable

locomotion non-trivial. To this end, we use a hexapod robot

with a single disk-shaped body and 2-DOF legs, as shown in

Fig. 1(a). As shown in the insets, a spring-damper system

is connected to both the hip and knee joint, pulling back

respectively the upper and lower leg to their resting positions.

This adds important passive dynamics to the system that,

among others, enable the robot to stand upright even if no

torque is exerted on the joints.

Second, since our hypothesis concerns the robustness of

low-level controllers, the problem setting should require those

controllers to adapt to environmental changes. To this end,

we consider four different terrains on which the robot must

walk. In addition to the default flat terrain, we use the three

terrains shown in fig. 1(b). From top to bottom, they are

the rubble terrain, containing fixed rectangular obstacles of

variable length, width, and height; he bars terrain, consisting

of long, thin, and high rectangles; and the wobbly terrain,

containing both fixed obstacles and loose planks. While final

evaluation of the controllers takes place on these terrains, we

optimize our models on terrains that are simpler, yet share

properties with the final terrains. This tests the controllers’

ability to deal with unforeseen, and more difficult, terrains

that are nonetheless not completely new. Section IV-A will

explain this in more detail.

Third, since our hypothesis concerns how low-level control

affects high-level performance, each task should require not

only locomotion but also achieving a high-level objective.

Thus, the robot must not only walk successfully in each terrain

but also travel to a specific goal area. We expect that low-level

controllers that are better able to handle the various terrain

types will help the high-level learner more quickly discover

how to reach the goal.

III. METHOD AND RELATED WORK

Figure 1(c) shows the general hierarchical controller frame-

work. At the bottom level, the robot’s legs are controlled by

a CPG network that receives as input a 12-dimensional vector

of joint angles and outputs a vector of torques that are applied

to the joints. The CPG makes the robot walk, while at the top

level, the RL module decides whether to walk straight or turn

left or right, based on its current position and heading.

The rest of this section describes the models used for

each component and provides a comparison to related work.

Discussion of the parameterization of the models is left to

section IV, which explains the experimental set-up.

A. CPG Controller

When dealing with multiple unknown terrains of vary-

ing difficulty, model-based and trajectory-planning approaches

to locomotion become infeasible. Central pattern generators

(CPGs) are widely deployed for locomotion in both animals

and robots [16], [2]. While CPGs are capable of producing

rhythmic output patterns autonomously, the addition of sensory

feedback can modulate rhythmic patterns and synchronize

neural and body dynamics [19], [16], [20].

In robotics, CPGs are usually modeled using dynamical sys-

tems, often based on coupled oscillators [16]. Such systems are

attractive because of their potential for entering stable limit-

cycle behavior, allowing the generation of oscillatory patterns.

An alternative approach to CPG modeling that is receiving

increasing interest is one based on chaotic systems. A key

property of such systems is that, although their trajectory

through state space remains confined to a bounded region (a

strange attractor), their behavior within this region is erratic.

This inherent bounded instability “facilitates the extraordinary

ability of neural systems to adapt, make transitions from one

pattern of behavior to another when the environment is altered,

and consequently [to] create a rich variety of patterns” [20].

Thus, a potential advantage of chaotic systems over more

conventional dynamical systems is their ability to incorporate

various behavioral patterns, with different patterns emerging

in different circumstances.

In fact, previous studies have demonstrated the inherent

adaptivity of coupled chaotic systems. Kuniyoshi and Suzuki

[17] showed that an insect-like robot controlled by a weakly

coupled chaotic map can spontaneously generate movement



and adjust that movement when it encounters obstacles. Simi-

larly, when terrain roughness increases, a robot controlled by a

chaotic Rössler system has been shown to cover more distance

than one using stable limit-cycle behavior [15].

These examples underscore the adaptive ability of chaotic

systems. However, we do not claim that chaotic systems are

required: other systems with a degree of instability could

exhibit similar properties.

In this paper, we evaluate how one chaotic and three non-

chaotic systems affect performance on a high-level task. Low-

level instability can decrease predictability, which is important

for high-level control. Hence, we investigate whether flexible

low-level controllers retain enough predictability that their

overall effect is to speed high-level learning on various ter-

rains.

The framework for all CPG types that we compare is a

two-layer recurrent neural net (RNN) (fig. 1(d)), consisting

of a sensory layer that is fully connected to the CPG layer,

which is in turn fully connected to itself. The network has

one sensory node and one CPG node at each robot joint; each

CPG node sends motor output only to its own joint. Thus, 6

CPG nodes output to hip joints and 6 to knee joints. The RL

options layer, in which high-level learning interacts with the

CPG, is discussed in the next section.

Input to the sensory layer consists of a vector of joint angles

linearly transformed by a sensor gain and bias, and CPG output

is similarly transformed by a motor gain and bias before it is

applied as torque to the joints. The rest of this section describes

how the four CPG models that we compare are implemented

in this neural-network framework.

The first model is a discrete-time chaotic CPG in which the

output xn at the nth update is given by:

xn = f(Kxn−1 +Wsn), (1)

where K is the matrix of CPG layer weights (couplings

between nodes), W is the weights from sensory to CPG nodes,

sn is the sensory input at update n, and f is the logistic map:

f(x) = 1− αdiag(xxT), (2)

where α is a parameter that influences how chaotic the function

is: for low values of α, the function’s behavior is stable, either

settling on a single value (fixed point) or oscillating regularly

(limit cycle). For higher values, output oscillates irregularly

and never exactly repeats itself, but remains confined to a

bounded interval (chaotic).

The next two models are not usually seen as CPGs, but

have the ability to exhibit oscillatory patterns. We include

them here for comparison purposes, and because they represent

standard RNN models. The first of these is a discrete-time

RNN (DTRNN); it is the same as the chaotic model except

that f(·) is a sigmoid function:

f(·) = tanh(·). (3)

The third model is a continuous-time RNN (CTRNN), of which

output x is governed by:

τ ẋ = −x+ σ(Kx+Ws), (4)

where ẋ is the derivative with respect to time, τ is a time

constant and σ(·) the tanh(·) sigmoid function. This is a fairly

standard CTRNN model; the −x term drives the activation

of each node to 0, which together with the sigmoid function

ensures network output stays bounded.

The fourth model is a coupled oscillator. Coupled oscillators

are widely employed in CPG modeling in robotics [16].

However, there is great variation in the kind of models used,

and they are often tailored to a specific robot. For the sake of

comparison, we employ a basic model that is a variation on

the Kuramoto model [21]:

τ θ̇i = ωi +

N∑

j=1

kji sin(θj − θi) +w
T
i s (5)

x = cos(θ), (6)

where θi and ωi are the phase and intrinsic frequency of node

i, kji is the coupling weight from node j to i, and wi is

the vector of incoming sensory weights to node i. Without

coupling or sensory input, each node is driven to oscillate at its

intrinsic frequency; coupling encourages phase synchroniza-

tion of nodes while sensory input encourages synchronization

to external dynamics.

B. RL Module

A reinforcement-learning agent interacts with an unknown

environment by sequentially choosing actions based on sen-

sory input, or state. For each action, the agent receives a

reward, and its goal is to learn a policy – a mapping from states

to actions – that maximizes return: the expected cumulative

reward. In most realistic scenarios, it is also important to

maximize reward accrued during learning.

Basic RL methods do not cope well with tasks with large

or continuous state or action spaces. One tool for combating

this scaling problem is temporally extended actions, in which

the agent follows a sub-policy for multiple time steps. Such

actions enable hierarchical approaches in which both the task

and the state-action space are decomposed into sub-tasks and

sub-spaces that are tackled separately, and have also been

linked to psychological and neuroscientific constructs [28]. In

our setting, one result of this decomposition is that the RL

module at the high level need not consider the continuous

action space addressed by the CPG at the low level.

In this paper we employ the options framework [4]. An

option is a temporally extended action parameterized by a

set of states in which the option can be selected, a policy

to follow during option execution, and a function β(s) that

gives the probability of terminating in state s. Generally, the

agent selects a new option once the currently selected option

terminates according to β. However, once the agent has a

good estimate of each option’s expected return, it can learn

to interrupt an executing option before termination if other

options in that state yield higher expected return.

Our framework uses a CPG network with fixed param-

eters to implement three options: walk, turn-left and



turn-right. As shown in fig. 1(d), the RL module inter-

acts with the CPG through two neural nodes that are fully

connected to the CPG layer. For turning left, the RL module

activates the left node (by clamping its value to 1), while for

turning right, it activates the right node. When neither node is

active, the robot walks into the direction of its current heading.

This approach differs substantially from existing work re-

garding options. Much research, e.g., [7], has investigated

the use of fixed, pre-designed options for use in a single

task. Fixed options have also been used in multi-task settings

to facilitate transfer learning [22], by representing a fixed

behavior that is useful in different tasks. Our option parameters

are similarly fixed but, since their behavior is inherently

adaptive, they are especially well suited to use across multiple

tasks (e.g., terrains).

However, options are also commonly learned, often based

on identification of subgoals [23], [24], [11], [12], [25], [26].

While options that learn can obviously adapt to new tasks,

doing so is typically time-consuming. In contrast, the inher-

ent robustness of our options allows them to adapt without

additional low-level learning.

Furthermore, while dynamical systems have previously been

used as policies in RL [9], [10], [27], the main focus was on

exploiting the limit-cycle (rhythmic) or point-attractor (single-

stroke movement) behavior of these systems. To the best of

our knowledge, the capacity of options based on dynamical

systems to automatically adapt to environmental changes has

not been explicitly exploited to date.

IV. EXPERIMENTS AND RESULTS

The goals of the following experiments are to 1) demon-

strate that the robot can learn to reach a goal area on the

four terrain types described in section II, 2) compare how

the controllers fare on each terrain, and 3) qualitatively relate

performance to the CPGs’ adaptivity. However, we begin by

describing experiments conducted to optimize the parameters

of the CPG models described in section III-A and qualitatively

assess adaptivity via a dynamical systems analysis.

A. CPG Weights and Properties

Due to the complex nonlinear dynamics of some of the

models, particularly the chaotic map, weight learning is infea-

sible. In addition, it is likely that in nature low-level controllers

are at least partly preset by evolution, selected for the ability

to cope with environmental variation. Therefore, we employ

an evolutionary algorithm (EA) [29] to optimize the weight

matrices W and K and the time constant of the models. For

the coupled oscillator model, we also evolve a single intrinsic

frequency ω used for all nodes. We first evolve parameters

for walking straight and fix them, then separately evolve the

coupling between the RL options and CPG layers for turning.

For all experiments, sensor gain gs = 0.625, sensor bias

bs = 0.5, motor gain gm = 70, and motor bias is -26 for

hip nodes and 0 for knee nodes. Instead of evolving the full

weight matrices, we evolve a genetic template of 48 weights

for a single leg: 12 sensory connections for the hip and knee

joint, and 12 couplings for the hip and knee CPG node. Thus,

each hip CPG node is connected in the same way to its own

leg and neighboring legs, and the same holds for each knee

CPG node. This corresponds to mechanisms employed in a

developing embryo, where genetic templates are re-used to

form for example limbs and segmental structures [30].

Fitness evaluation consists of simulating the robot for 1000

time steps, twice on each of four terrains: the flat terrain;

a terrain containing a single 6 degree slope; a terrain with

wobbly properties, consisting of a collection of loose planks;

and the rubble terrain. As explained in section II, these terrains

share basic properties with the terrains on which the robot will

be evaluated. Thus, the controllers are allowed to incorporate

the basic patterns necessary for dealing with these terrain

types, though in testing they must synthesize these patterns

and extend them to more difficult situations.

The fitness function determines the direction the robot heads

in during the first 200 steps; the score for each fitness evalua-

tion is the distance traveled in this direction after 1000 steps.

The final fitness score is the average of the 8 measured fitness

evaluations. Before starting the EA, we initialize parameters

randomly close to 0, but thereafter do not restrict them, except

for the time constant τ of the continuous-time models, which

we sample from a normal distribution N (0.5, 0.2), and the

intrinsic frequency of the oscillator model, ω ∼ N (6, 0.5).
Figure 2(a) shows phase portraits for each evolved con-

troller, on the flat and rubble terrain. This figure illustrates

a key difference between the controllers: on the flat terrain,

without any disturbances, cyclic behavior is evident for all

controllers but the chaotic controller is clearly less stable. On

the rubble terrain, its behavior becomes even more erratic, ex-

ploring the state space for viable behavioral patterns. Although

a difference can also be seen for the other controllers, they stay

closer to their limit cycles.

B. Learning

As explained in section III-B, RL options for each model

consist of the CPG network with evolved parameters. The

goal of learning is to reach a fixed cylinder-shaped goal area

with the same radius as the robot’s body; a learning episode

terminates when the robot’s center enters the cylinder. The

robot’s body has diameter 1, and the environment is 5x5, in

arbitrary units. Option parameters are as follows. The walk

option terminates whenever the robot is about to leave the

environment, and is ineligible while the robot is near the edge

of the world and facing outward. The turn options are always

eligible, and terminate if the robot looks into the direction of

the goal area, in order to keep episodes short. Note that in spite

of this, the robot still has to learn whether to turn left or right

and when to interrupt options, since just walking when facing

the goal usually does not get the robot to the goal, especially

on difficult terrains.

Reward is -0.01 per simulator time step (10ms), and 1 upon

reaching the goal area. To speed learning, we assume the robot

has an innate sense of direction and distance to the goal (e.g.,

through smell), and give it an additional positive (negative)



(a) Phase portraits (b) High-level performance

Fig. 2. (a) Phase portraits of the two nodes controlling the joints of the right front leg for each model, measured on the flat terrain (top row) and rubble
terrain (bottom row). Range of each variable is [-1,1]. (b) Learning curves for each controller on each terrain. Results are strongly smoothed averages over
20 runs. For an indication of variance, see fig. 3. The wavy pattern of the graphs is caused by the noisiness of the results.

Fig. 3. Average total return per run (i.e., summed over all episodes in a
run) per terrain, together with the standard deviation. This represents the area
between the (unsmoothed) learning curves of fig. 2(b) and the line return=0.
(CTRNN and oscillator not shown, see main text.)

reward when distance to the goal is decreased (increased).

Evaluation on each terrain consists of 500 learning episodes;

at the start of each episode, the robot is placed at a random

location facing a random direction.

Figure 3 presents the average total return per terrain ac-

cumulated by each controller, while 2(b) displays learning

curves. All results are smoothed averages over 20 runs.

On flat terrain, the DTRNN provides the best performance,

while the chaotic controller does worst. This is in accordance

with previous results [15], which showed that on easy terrain,

controllers with stable limit-cycle behavior cover the largest

distance. The right panel of fig. 4 confirms this, showing

that the DTRNN has highest average speed, while the chaotic

controller is slowest.

On the rubble terrain, the situation starts to reverse, with

the chaotic controller outperforming the other controllers by a

small margin, and the CTRNN doing worst. Continuous-time

controller performance significantly deteriorate with increasing

Fig. 4. Average speed and percentage of time steps in which a controller is
not moving in each terrain.

terrain difficulty, while the chaotic controller is less affected.

The left panel of fig. 4 shows the percentage of time steps

on which controllers get stuck, i.e., have moved less than 0.01

distance units in one second. In light of their bad performance,

it is surprising to see that the CTRNN and oscillator controllers

get stuck the least often, although their average speed does

decrease. Further path analysis shows that this is due to the

robot wandering off beyond the edge of the world imposed

by the option termination conditions. Since turn options are

always eligible, this is probably due to premature option

interruption, which causes the robot to keep turning left and

right. It is not clear, though, why this happens only for these

controllers on difficult terrains. Unfortunately, we did not have

time to further investigate this issue, so we will focus on the

difference between the chaotic and DTRNN controller.

Notice the relation between the performance results and

the phase portraits of fig. 2(a). The chaotic controller’s phase

portrait clearly deviates from that of the flat terrain, which is

reflected in its greater adaptivity and performance on difficult

terrains.

From the learning curves in fig. 2(b), it is not entirely clear



whether the more adaptive low-level controller (i.e., chaotic)

speeds high-level learning. If it did, we would expect the

chaotic controller’s performance to asymptote soonest, with

the DTRNN achieving similar performance only after more

learning. Nevertheless, these results demonstrate the positive

effect of low-level adaptivity on high-level performance in a

hierarchical system: especially on difficult terrains such as the

wobbly terrain, initial performance is much higher than for the

DTRNN controller, and remains higher throughout learning.

V. DISCUSSION AND FUTURE WORK

This paper presents a study of the effect of adaptivity of

various low-level controllers in a hierarchical reinforcement

learning controller. Controllers are evaluated using a dynami-

cally simulated hexapod robot that needs to complete a high-

level learning task on terrains of varying complexity.

Results show that on flat terrain, where speed is more

important than adaptivity, controllers with stable limit-cycle

behavior achieve the highest return by reaching the goal area

in the shortest time. On the other hand, when terrains become

more difficult and adaptivity to environmental disturbances

becomes more important, the chaotic controller, which has the

most unstable, and thus most flexible, phase-space behavior,

significantly outperforms other controllers. This confirms the

findings of previous studies [15], [17] and extends them to

hierarchical learning on high-level tasks.

Analysis of the chaotic and DTRNN controller’s behavior

on each terrain showed a correlation between the amount of

time a controller got stuck and its high-level performance: the

less a controller got stuck, the better its performance. This is a

clear indication that low-level adaptivity is an important factor

in achieving high-level return. Unfortunately, we were not able

to accurately investigate the relation between adaptivity and

performance of the other two controllers. We are currently

addressing this issue.

From a hierarchical reinforcement-learning perspective, the

relation between low-level adaptivity and high-level perfor-

mance shows that adaptive dynamical systems are useful for

dealing with multiple tasks (terrains, in this case). Even though

controllers were optimized on a simple set of terrains, the

adaptivity of the chaotic controller allowed it to achieve high

return on much more difficult terrains, without re-learning.

This can present a performance boost that can be further fine-

tuned through low-level learning. Such an approach would be

an interesting extension for future work.

Although the chaotic controller’s behavior is more erratic

and hence unpredictable, it is not so unpredictable as to hinder

learning. However, there must be a point beyond which more

chaotic behavior negatively affects learning performance. Fu-

ture studies should further investigate and quantify this relation

between instability, adaptivity, and learning performance.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for useful comments.

Special thanks to Alex Pitti for many discussions. M. Snel

was partly supported by JSPS Fellowship grant PE09053.

REFERENCES

[1] N. Tinbergen, “The hierarchical organization of nervous mechanisms
underlying instinctive behaviour,” Soc. Exp. Biol., vol. 4, 1967.

[2] F. Delcomyn, “Walking robots and the central and peripheral control of
locomotion in insects,” Autonomous Robots, vol. 7, pp. 259–270, 1999.

[3] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, 1986.

[4] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, pp. 181–211, 1999.

[5] R. Sutton, “Learning to predict by the method of temporal differences,”
Machine Learning, vol. 3, pp. 9–44, 1988.

[6] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of
prediction and reward,” Science, vol. 275, pp. 1593–1599, 1997.

[7] P. Stone, R. S. Sutton, and G. Kuhlmann, “Reinforcement learning for
Robocup soccer keepaway,” Adaptive Behavior, vol. 13, no. 3, 2005.

[8] M. Huber and R. A. Grupen, “Learning to coordinate controllers -
reinforcement learning on a control basis,” in IJCAI, 1997.

[9] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, pp. 1–33, 2010.

[10] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs. optimal
control: a unifying view,” Progress in Brain Research, vol. 165, 2007.

[11] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Transactions on Evolution-

ary Computation, vol. 11, no. 2, pp. 265–286, 2007.
[12] A. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated learning

of hierarchical collections of skills,” in ICDL, 2004.
[13] F. Delcomyn, “Neural basis of rhythmic behavior in animals,” Science,

vol. 210, pp. 492–498, 1980.
[14] J. Nassour, P. Hénaff, F. B. Ouezdou, and G. Cheng, “A study of

adaptive locomotive behaviors of a biped robot: patterns generation and
classification,” in SAB, 2010, pp. 313–324.

[15] L. Matthey, L. Righetti, and A. J. Ijspeert, “Experimental study of limit
cycle and chaotic controllers for the locomotion of centipede robots,” in
IROS, 2008, pp. 1860–1865.

[16] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, 2008.

[17] Y. Kuniyoshi and S. Suzuki, “Dynamic emergence and adaptation of
behavior through embodiment as coupled chaotic field,” in IROS, 2004.

[18] G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of
bipedal locomotion by neural oscillators in unpredictable environment,”
Biological Cybernetics, vol. 65, pp. 147–159, 1991.

[19] H. J. Chiel, L. H. Ting, O. Ekeberg, and M. J. Z. Hartmann, “The brain
in its body: Motor control and sensing in a biomechanical context,” The

Journal of Neuroscience, vol. 29, no. 41, pp. 12 807–12 814, 2009.
[20] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel,

“Dynamical principles in neuroscience,” Reviews of Modern Physics,
vol. 78, no. 4, pp. 1213–1265, 2006.

[21] S. Strogatz, “From Kuramoto to Crawford: Exploring the onset of
synchronization in populations of coupled oscillators,” Physica D, vol.
143, pp. 1–20, 2000.

[22] M. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey.” Journal of Machine Learning Research, vol. 10,
no. 1, pp. 1633–1685, 2009.

[23] G. Comanici and D. Precup, “Optimal policy switching algorithms for
reinforcement learning,” in AAMAS, 2010.

[24] G. Konidaris and A. Barto, “Skill discovery in continuous reinforcement
learning domains using skill chaining,” in NIPS, 2009.

[25] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and

Autonomous Systems, vol. 36, pp. 37–51, 2001.
[26] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in

reinforcement learning using diverse density,” in ICML, 2001.
[27] Y. Nakamura, T. Mori, M. aki Sato, and S. Ishii, “Reinforcement

learning for a biped robot based on a CPG-Actor-Critic method,”
Neural Networks, vol. 20, no. 6, pp. 723 – 735, 2007.

[28] M. M. Botvinick, Y. Niv, and A. G. Barto, “Hierarchically organized be-
havior and its neural foundations: A reinforcement learning perspective,”
Cognition, vol. 113, pp. 262–280, 2009.

[29] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.
[30] L. Wolpert, , T. Jessell, P. Lawrence, E. Meyerowitz, E. Robertson, and

J. Smith, Principles of Development. OUP; 3rd ed., 2006.


